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Abstract

Appearance-based gaze estimation provides relatively

unconstrained gaze tracking. However, subject-indepen-

dent models achieve limited accuracy partly due to individ-

ual variations. To improve estimation, we propose a gaze

decomposition method that enables low complexity calibra-

tion, i.e., using calibration data collected when subjects

view only one or a few gaze targets and the number of

images per gaze target is small. Lowering the complex-

ity of calibration makes it more convenient and less time-

consuming for the user, and more widely applicable. Moti-

vated by our finding that the inter-subject squared bias ex-

ceeds the intra-subject variance for a subject-independent

estimator, we decompose the gaze estimate into the sum of

a subject-independent term estimated from the input image

by a deep convolutional network and a subject-dependent

bias term. During training, both the weights of the deep

network and the bias terms are estimated. During testing,

if no calibration data is available, we can set the bias term

to zero. Otherwise, the bias term can be estimated from

images of the subject gazing at known gaze targets. Ex-

perimental results on three datasets show that without cali-

bration, our method outperforms state-of-the-art by at least

6.3%. For low complexity calibration sets, our method out-

performs other calibration methods. More complex cali-

bration algorithms do not outperform our method until the

size of the calibration set is excessively large. Even then,

the gains obtained by alternatives are small, e.g., only 0.1◦

lower error for 64 gaze targets. Source code is available at

https://github.com/czk32611/Gaze-Decomposition.

1. Introduction

As an important cue about people’s intent, eye gaze has

been used in many applications, such as human-computer

interfaces [4, 23, 30], human-robot interaction [16], virtual

reality [24, 29], social behavioral analysis [15] and health

care [12]. These successes have attracted more and more

attention to gaze tracking.

To date, most eye trackers have relied upon active il-

lumination, e.g. infrared illumination used in pupil center

corneal reflections (PCCR). While these provide high accu-

racy, accuracy rapidly degrades as the head pose changes.

These techniques are commonly used in well-controlled

laboratory settings where high accuracy is required. Re-

searchers have proposed many novel methods to alleviate

the constraints on head movement, which enable more real-

world applications [2, 6, 10, 31, 39]. However, a common

disadvantage of active illumination approaches is that they

are relatively costly, as they rely upon custom hardware.

Appearance-based gaze estimation estimates gaze direc-

tions based on RGB images, providing relatively uncon-

strained gaze tracking and requiring only commonly avail-

able off-the-shelf cameras. However, obtaining high accu-

racy is very challenging due to large variability caused by

factors such as differences in individual appearance, head

pose, and illumination [51]. The application of deep con-

volutional neural networks (CNNs) has reduced estimation

error significantly [49]. There are a large number of real and

synthetic datasets covering a wide range of these variations

[9, 11, 14, 19, 34, 36, 38, 41, 42, 49]. Using these datasets,

it has been shown that deep CNNs can learn to compensate

for the variability [3, 5, 7, 10, 19, 20, 28, 32, 50].

Unfortunately, the estimation error of subject-indepen-

dent appearance-based methods is still higher than that

achievable using active illumination, e.g. ∼5◦ vs ∼1◦

achieved by PCCR. Thus, further work must be done to re-

duce this error. One way to further reduce estimation error

is through personal calibration. PCCR-based eye trackers

typically require the user to look sequentially at a number

of targets for calibration [13]. This enables subject-specific

parameters of a geometric 3D eye model to be estimated.

Typically, there are nine calibration gaze targets arranged on

a three by three grid, but the number of gaze targets is often

reduced to five to save time at the expense of poorer accu-

racy. A similar calibration procedure has been proposed for

appearance-based methods, where some parameters of the

estimator are fine-tuned [19, 21, 22, 26, 37, 40, 45].
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This study focuses on calibrating appearance-based gaze

estimators using low complexity calibration sets. We mea-

sure the complexity by two factors: the number of gaze tar-

gets and the number of images per gaze target. The larger

the values, the higher the complexity. For best performance,

the multiple images per target should contain a variety of

head poses. Low complexity sets are desirable, as they are

easier to collect. However, a complex model may easily

overfit to low complexity sets, even leading to an increase

in estimation error, as reported in [19]. The challenge we

address is how to achieve the best accuracy with the lowest

complexity and to determine the point at which more com-

plex calibration methods begin to outperform lower com-

plex calibration methods. We target low complexity calibra-

tion, as it is more convenient and is more widely applicable.

For example, in screen-free applications, it is difficult to di-

vert user’s gaze towards a large number of different gaze

targets. We are particularly interested in single gaze target

calibration. Since the camera should always be visible to

the users if it is to get a clear picture of the eyes, it can serve

as a convenient gaze target.

We propose a gaze decomposition method based on the

assumption that there exists a person-dependent bias that

cannot be estimated from images. It is known that there

is a deviation between the visual axis and the optic axis of

an eye, and that this deviation varies from person to per-

son [1, 13]. Our experimental results confirm this find-

ing. For a subject-independent estimator, the estimation

bias varies significantly across subjects but is relatively con-

stant across different gaze angles for the same subject (see

Fig. 1). Thus, we decompose the gaze estimate into the

sum of a subject-dependent bias term and the output of a

subject-independent gaze estimate from images. When no

calibration data is available, we set the bias to zero. For

calibration, we estimate the bias from images taken as the

subject gazes at one or more targets.

Despite its simplicity, our results show that our method

outperforms state-of-the-art without calibration on the MPI-

IGaze [49] and EYEDIAP [11] datasets by more than 6.3%.

With only a single gaze target for calibration, our method

outperforms all previously proposed calibration methods no

matter how many images are used. Using more gaze targets

results in further improvements. Although more complex

methods eventually outperform ours, this does not occur

until the number of gaze targets is prohibitively large (more

than 32 gaze targets), which would result in long calibration

procedures unlikely to be tolerated by most users.

2. Related work

2.1. Appearance­based gaze estimation

Methods for appearance-based gaze estimation estimates

gaze directions from RGB images under visible light. One

common approach is the machine learning based method,

which directly regress from images to gaze estimates using

machine learning techniques. Past approaches to this prob-

lem have included k-Nearest Neighbors [33, 38], Support

Vector Regression [33] and Random Forests [38]. Recently,

deep CNNs have received increasing attention. Zhang et

al. proposed the first deep CNN for gaze estimation in the

wild [49, 51], which improved accuracy significantly. To

further improve the accuracy, researchers have proposed en-

hancements, such as employing the information outside the

eye region [19, 50], focusing on the head-eye relationship

[7, 25, 32] and extracting better information from the eye

images [3, 5, 20, 27, 44].

Another common approach is the model based method,

which estimates gaze directions using geometric head/eye

models whose parameters are estimated from the images

(e.g. by facial landmark and pupil center detection) [28, 40].

2.2. Calibration

Existing calibration methods for appearance-based gaze

estimation can be divided into differential and adaptation-

based approaches.

The differential approach was introduced by [22], where

the authors trained a subject-independent Siamese network

to estimate the gaze angle difference between two images of

the same subject. During testing, they used this network to

estimate gaze differences between the input image and nine

calibration images taken as the subject gazed at different

targets, and averaged the resulting estimates.

In the adaptation-based approach, a subset of the param-

eters are subject-dependent. Methods following this ap-

proach consist of two parts: a subject-independent part,

which extracts the common features across different sub-

jects, and an adaptive part, which changes for new subject.

These methods are either machine learning based or geo-

metric model based. For machine learning based methods,

the subject-independent part is often a CNN-based gaze es-

timator or feature extractor. These methods differ primarily

in the adaptive part. Krafka et al. [19] and Strobl et al. [37]

trained a subject-dependent Support Vector Regression on

the features extracted from a subject-independent estima-

tor. Liu et al. [22] and Strobl et al. [37] learned a homo-

geneous linear transformation matrix to warp the estimates

from a subject-independent estimator. Zhang et al. learned a

third order polynomial function to warp the estimates [48].

Lindén et al. concatenated some subject-dependent param-

eters to the features extracted from the convolutional lay-

ers of a subject-independent network [21]. Zhang et al.

adapted networks across multiple devices [46]. As an ex-

ample of a geometric model based method, Wang and Ji

adapted subject-dependent parameters of a generic head/eye

geometric model [40].

The past work described above used high complexity
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Figure 1. Error analysis of a subject-independent estimator [3] on the MPIIGaze dataset [49]. Upper row shows scatter plots of the estimated

angles versus the ground truth of two subjects, (a) p06 and (b) p12. Bottom row shows mean and standard deviation of the (c) yaw and (d)

pitch angles for each subject. The green + or − indicate the sign of the mean. Better viewed in color and zoomed in.

calibration sets with multiple gaze targets and a large num-

ber of images. Error dropped significantly with high com-

plexity calibration sets, but increased with low complexity

sets, most likely due to overfitting [19].

Only recently has attention been paid to reducing the

complexity of the calibration set. Yu et al. proposed gaze

redirection synthesis, which used a generative adversarial

network (GAN) to augment the calibration samples used to

fine-tune a subject-independent estimator [45]. Park et al.

proposed FAZE, which trained the adaptive part (the last

multi-layer perceptron) using meta-learning to learn good

initial weights that can adapt to a few samples without over-

fitting [26].

3. Methodology

3.1. Analysis of estimation error

Fig. 1 analyzes estimation error on the MPIIGaze

dataset [49] made by a state-of-the-art subject-independent

estimator [3] by leave-one-subject-out cross-validation.

Fig. 1(a) and (b) compare the estimates and the ground truth

gaze of two subjects. The plots indicate that the bias is quite

constant across gaze angles, but varies between subjects.

Fig. 1(c) and (d) show the mean and standard deviation

(SD) of the yaw and pitch error for different subjects. The

results show that the errors in both yaw and pitch angles are

generally biased. The bias vary across subjects, whereas the

SDs are relatively stable. When the images are flipped hori-

zontally, the yaw bias has a similar magnitude, but opposite

sign. The pitch bias remains similar. The mean squared bias

across subjects (16.2 deg2) exceeds the mean intra-subject

variance (12.9 deg2), indicating that the bias is a significant

contributor to the error. As the data of each subject exhibits

considerable variability in illumination and head pose, we

hypothesize that the bias is primarily due to difference be-

tween subjects.

3.2. Gaze decomposition

Motivated by these findings, we assume that there exists

subject-dependent bias that cannot be estimated from im-

ages. This assumption is supported by the fact that there

exist subject-dependent deviations between the visual and

optic axes [1, 13]. The visual axis is the line connecting the

nodal point with the fovea, and is what we wish to estimate.

The optic axis is the line connecting the nodal point with the

pupil center, and is what can be estimated from the images.

We decompose the gaze estimates for the jth image

of subject i, ĝi,j ∈ R
2, into the sum of a subject-

independent term t̂ estimated from an image Xi,j and a

subject-dependent bias b̂i, i.e.,

ĝi,j = t̂(Xi,j ; Φ) + b̂i, (1)

where Φ denotes the parameters of a deep CNN for estimat-

ing t̂, as described below. All gaze angles are expressed as

yaw and pitch. A model that directly estimates the visual

axis is equivalent to a model with b̂i ≡ 0, ∀i.

3.3. The proposed network

The architecture of our proposed network is presented

in Fig. 2. The general architecture is inspired by iTracker

[19] and Dilated-Net [3]. It takes an image of the face and

images of both eyes as input. The input images Xi,j are

first fed to three base CNNs. The architecture of the base

CNN is shown in Fig. 2(b). It has five convolutional layers,

one max-pooling layer and four dilated-convolutional lay-

ers [43] with different dilation rates, r. The strides for all

convolutional layers are 1. The two base CNNs that take

the eyes as input share the same weights. The feature maps

extracted by the base CNNs are then fed to fully-connected
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Figure 2. Architecture of the proposed network. (a) The main network that outputs estimate of the gaze of optic axis, t̂(Xi,j ; Φ), from the

input image Xi,j . b̂i is the bias of subject i and ĝi,j is estimate of the gaze of visual axis. (b) The base CNN is the basic component of (a).

FC/Conv/Dilated-Conv denote fully-connected/convolutional/dilated-convolutional layers. r is the dilation rate.

(FC) layers, concatenated, fed to another FC layer followed

by a linear output layer which outputs t̂(Xi,j). We denote

the parameters of this network by Φ.

Rectified Linear Units (ReLUs) are used as the activation

functions. Zero-padding is applied to regular convolutional

layers. No padding is applied to dilated-convolutional

layers. The weights of the first four convolutional layers are

initialized from VGG-16 [35] pre-trained on the ImageNet

dataset [8]. Batch renormalization layers [17] are applied to

all layers trained from scratch. Dropout layers with dropout

rates of 0.5 are applied to all FC layers.

Training. Based on Eq. (1), we train the network by

solving the following optimization problem:

min
Φ,b̂i





∑

i,j

∥

∥gi,j − t̂(Xi,j ; Φ)− b̂i
∥

∥

2

2
+ λ|

∑

i

b̂i|



 . (2)

The second term is a regularizer that ensures that the mean

subject-dependent bias over the training set is zero. We in-

troduce this constraint because the estimate t̂ may have an

arbitrary offset which could be canceled by the mean bias.

Since this mean bias is arbitrary, the training is insensitive

to the value of λ. The b̂i could also be estimated by cal-

culating the individual mean over the training set, but this

would be time-consuming, given the large size of training

set, especially since we use online data augmentation.

We use Adam optimizer with default parameters in

TensorFlow and a batch size of 64. An initial learning rate

of 0.001 is used. It is divided by 10 after every ten epochs.

The training proceeds for 35 epochs. We apply online data

augmentation including random cropping, scaling, rotation

and horizontal flipping. As the bias changes if the images

are flipped horizontally, we considered the non-flipped and

flipped images as belonging to different subjects.

Testing and calibration. During testing, estimates

were computed according to Eq. (1). For a new subject m,

if no calibration images were available, we set b̂m = 0.

A calibration set Dm contains image-gaze pairs for a

subject m, {(Xm,j , gm,j), j = 1, 2, . . . , |Dm|}, where

|Dm| denotes the cardinality of Dm. We measure the com-

plexity of the calibration set by the number of gaze tar-

gets T and the number of images per gaze target S. Thus,

S · T = |Dm|. For best performance, the images should

capture the expected variability, e.g. in head pose and/or

illumination, during testing.

To conduct calibration, we set b̂m as follows:

b̂m =
1

|Dm|

∑

(Xm,j ,gm,j)∈Dm

(

gm,j − t̂(Xm,j)
)

. (3)

Unlike [21, 45, 26], which require back propagation for

calibration, our proposed calibration only requires forward

propagation, reducing computational cost.

Preprocessing. We apply the modified data normal-

ization method introduced in [47]. This method rotates and

scales an image so that the resulting image is taken by a

virtual camera facing a reference point on the face from a

fixed distance and canceling the roll angle of the head. The

images are normalized by perspective warping, converted

to gray scale and histogram-equalized. To automatically

detect landmarks we use dlib [18].

4. Experiments

We evaluated our proposed network through cross-

subject evaluation both within- and cross-datasets as well

as both with and without calibration. We evaluated two cal-

ibration scenarios: single gaze target calibration (SGTC)

with multiple images per target (T = 1, S variable) and

multiple gaze target calibration (MGTC) with multiple tar-

gets and with a single image (S = 1, T variable).
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Figure 3. Mean angular error of estimation without calibration on

MPIIGaze and EYEDIAP.

4.1. Datasets

We used the MPIIGaze [49] and the EYEDIAP [11]

datasets for within-dataset evaluation. We trained on the

MPIIGaze and tested on the ColumbiaGaze [36] for cross-

dataset evaluation.

The MPIIGaze dataset contains full face images of 15

subjects (six females, five with glasses). We train and test

on the “Evaluation Subset”, which contains 3, 000 images

for each subject. Within this subset, half of the images are

flipped horizontally. The reference point for image normal-

ization is set to the center of the face.

The EYEDIAP dataset contains full face videos with

three gaze targets (continuous screen target, discrete screen

target and floating target) and two types of head pose (static

and dynamic). We use the data from continuous and dis-

crete screen targets, which include 14 subjects (three fe-

males, none with glasses). The reference point for image

normalization is set to the midpoint of both eyes.

The ColumbiaGaze dataset contains 5, 800 full face im-

ages of 56 subjects (24 females, 21 with glasses). For each

subject, images are collected for each combination of five

horizontal head poses (0◦,±15◦,±30◦), seven horizontal

gaze directions (0◦,±5◦,±10◦,±15◦) and three vertical

gaze directions (0◦,±10◦). We exclude the images with

10◦ vertical gaze directions from ColumbiaGaze for these

evaluations, since the MPIIGaze dataset mainly covers pitch

angles from −20◦ to 0◦.

4.2. Within­dataset evaluation

Estimation without calibration. For MPIIGaze, we con-

ducted 15-fold leave-one-subject-out cross-validation as

in [3, 9, 50]. For EYEDIAP, we followed the protocol de-

scribed in [50], i.e., five-fold cross-validation on four VGA

videos (both screen targets with both types of head pose)

sampled at 2 fps (about 1,200 images per subject).

We compared with several baselines: iTracker [19, 50],

spatial weights CNN [50], RT-GENE [9], CNN with shape

cue [25] and Dilated-Net [3]. All of these methods used

face images (or face plus eye images) as input.

The results are shown in Fig. 3. On MPIIGaze, our

proposed network achieved 4.5◦ mean angular error, which

outperformed the state-of-the-art 4.8◦ [3, 9, 25, 50] by

6.3%. On the EYEDIAP dataset, it achieved 5.4◦, which

outperformed the state-of-the-art 5.9◦ [25] by 8.5%. The

re-implemented result of the CNN with shape cue on

EYEDIAP was worse than that reported in [25] because

we used different subset of the data and we did not filter

the data as in [25]. For consistency with the other models,

we compare only with RT-GENE without ensembling.

Using an ensemble of four models, RT-GENE achieved an

accuracy of 4.3◦ on MPIIGaze. Applying ensembling to

our model did not improve performance.

Calibration procedures. To evaluate calibration, for

each subject, we first sampled a calibration set Dm from

the test set and calibrated using Eq. (3). We then tested on

the images not belonging to Dm.

For multiple gaze target calibration (MGTC), we ran-

domly selected T images from the test set as Dm. For single

gaze target calibration (SGTC), we first randomly selected a

calibration target in gaze space. We then randomly selected

S images whose gaze angles were within 2◦ of the target as

Dm. We discarded a calibration gaze target if less than S

images met the 2◦ requirement.

We also calculated the lower bound performance of

our proposed method, E, by estimating the bias from all

images in the test set. We denote the mean error of the

subject-independent estimator without calibration by E.

Calibration results on MPIIGaze. To evaluate the

overall performance of MGTC and SGTC across different

calibration sets, for each value of S or T , we report average

errors computed over 5, 000 trials for each subject.

We compared our approach with several existing cali-

bration methods: fine-tuning the last FC layer (FC), linear

adaptation (LA) [22, 37], third order polynomial adaptation

(PA) [48], the differential method (DF) [22], fine-tuning

the latent parameters (LP) [21], gaze redirection synthe-

sis (GRS) [45] and FAZE [26]. FC, LA and PA were di-

rectly applied to our network trained with gaze decompo-

sition, where the Moore–Penrose inverse was used for LA

and PA. DF and LP were re-implemented using the same

architecture as in Fig. 2. For GRS and FAZE, we used

their reported results for within-dataset leave-one-subject-

out cross-validation. As both GRS and FAZE only used eye

images as input, we trained our network without the face

component in Fig. 2 for comparison.

Table 1 and Table 2 show that for all methods, as the

complexity of calibration set increased (T or S increased),

the error decreased. Our proposed method performed the

best for low complexity calibration sets. It outperformed or
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Backbone
Number of images per gaze target S

1 5 9 16

FC Dilated+GD 4.8± 0.8 7.1± 1.2 8.0± 1.2 8.4± 1.1
LA [22, 37] Dilated+GD NA 15.1± 2.7 14.9± 2.5 14.3± 2.1

PA [48] Dilated+GD NA NA 14.7± 2.4 14.3± 2.1
LP [21] Dilated 4.2± 1.3 3.9± 0.8 3.8± 0.7 3.7± 0.6
DF [22] Dilated 4.2± 1.5 3.5± 0.7 3.4± 0.5 3.3± 0.4

Ours (w/o GD) Dilated 4.2± 1.4 3.6± 0.7 3.5± 0.5 3.4± 0.4
Ours Dilated+GD 3.7± 1.4 3.1± 0.6 3.0± 0.4 2.9± 0.3

Table 1. Estimation Error (mean ± SD in degree) of SGTC (T = 1) on MPIIGaze.

Face+Eye Backbone
Number of gaze targets T

1 5 9 16 32 64 128

FC Dilated+GD 4.8± 0.8 5.5± 1.5 4.5± 1.0 3.5± 0.5 2.9± 0.2 2.7± 0.1 2.5± 0.1
LA [22, 37] Dilated+GD NA 4.7± 3.0 3.1± 0.7 2.8± 0.3 2.6± 0.1 2.5± 0.1 2.4± 0.0

PA [48] Dilated+GD NA NA 9.2± 3.5 3.8± 1.3 2.8± 0.3 2.6± 0.1 2.4± 0.0
LP [21] Dilated 4.2± 1.3 3.3± 0.4 3.2± 0.3 3.0± 0.1 3.0± 0.1 2.9± 0.1 2.9± 0.0
DF [22] Dilated 4.2± 1.5 3.2± 0.4 3.1± 0.3 3.0± 0.1 2.6± 0.1 2.6± 0.0 2.6± 0.0

Ours (w/o GD) Dilated 4.2± 1.4 3.3± 0.4 3.1± 0.2 3.0± 0.1 3.0± 0.1 2.9± 0.0 2.9± 0.0
Ours Dilated+GD 3.7± 1.4 2.9± 0.4 2.7± 0.2 2.7± 0.1 2.6± 0.1 2.6± 0.0 2.6± 0.0

Eye only

GRS [45]∗ VGG16 5.0 4.2 4.0

FAZE [26]∗ DenseNet 4.7 4.0 3.9 3.8 3.8 3.7 3.7

Ours∗ Dilated+GD 4.6± 1.2 3.6± 0.5 3.4± 0.3 3.4± 0.3 3.3± 0.1 3.3± 0.0 3.3± 0.0
∗: The three methods at the bottom only used eye images as input, while the others used face+eye images as input.

Table 2. Estimation Error (mean ± SD in degree) of MGTC (S = 1) on MPIIGaze.

matched the performance of other methods for all cases in

SGTC and for MGTC when the number of images was less

than or equal to 32. For example, for SGTC with 16 sam-

ples, our method reduced the error by 12.1% compared to

the second best method (DF). We attribute this better perfor-

mance to the small number of adaptive parameters, which

avoids overfitting. Unlike LP, our method acts directly on

the gaze estimates, making it more effective since the pri-

mary cause of error is a subject-dependent bias. As the

number of gaze targets increased beyond 32, other methods

(e.g. LA and PA) eventually outperformed ours. However,

we believe that collecting images for more than 32 gaze tar-

gets for calibration would be too time-consuming for most

real-world applications.

For our proposed method, SGTC reduced the estimation

error significantly. For example, when calibrated on 16
samples, it reduced the error by 1.6◦ (35.6%) in compar-

ison to the estimator without calibration. MGTC led to

further reductions. On average, given the same number

of images, the gap between SGTC and MGTC was about

0.2◦ (4.4% of the error of the estimator without calibration).

Robustness of SGTC to the location of gaze target.

We further evaluated the robustness of SGTC to the

location of gaze target. Fig. 4 presents the average errors

for different gaze target locations. For each 5◦ × 5◦ region

in Fig. 4, we created a 10 × 10 square grid of calibration

targets spaced by 0.5◦ along each axis and computed the

average error of SGTC across all targets. We set S = 9,

since the error reduction begins to saturate at this point.

Since half of the images were flipped and we considered

them separately when computing the bias and the accuracy,

each subject generates two accuracies (30 in total). Note

that none of the flipped/non-flipped images of the test

subject were included in the training set.

The results in Fig. 4 show that the error achieved by

calibrating at a target in the center of the gaze range is

lower than the error achieved by calibrating at a target

in the boundary. However, the standard deviation over

locations is only 0.15◦, indicating that SGTC is quite

robust to the location of calibration target. The errors of

at least 22 out of 30 subjects (73.3%) were reduced by

calibration, dependent on the location of gaze target. For

those calibrations where the error increased, the average

increase was only 0.2◦.

Calibration results on EYEDIAP. We conducted

leave-one-subject-out cross-validation on two VGA videos
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Figure 4. Mean angular error of SGTC (S = 9) when the gaze

target is located within different 5◦ × 5◦ regions on the MPIIGaze

dataset. E = 4.5◦, E = 2.6◦. The upper-right value in each box

indicates the number of subjects whose mean errors were reduced

by calibration (30 subjects in total).

(continuous screen target with static and dynamic head

pose) sampled at 15 fps (about 3, 500 images per subject).

We chose this data because it had sufficient annotation to

remove outliers, e.g. images during blinks.

The results are shown in Fig. 5 and Fig. 6. The find-

ings are generally consistent with those of MPIIGaze. The

overall performance is worse than that on MPIIGaze, most

likely due to lower image resolution and larger head pose

variability. As shown in Fig. 5, SGTC reduced the error

significantly. A 1.2◦ (25.5%) improvement was achieved

when calibrated on 25 samples. As shown in Fig. 6, 0.5◦

(10.6%) to 1.4◦ (29.8%) improvement versus without cali-

bration (4.7◦) was achieved across different locations. The

standard deviation of the error across locations was small

(0.26◦). The errors of at least 10 out of 14 subjects (71.4%)

were reduced by calibration. For subjects whose error in-

creased, the average increase was 0.4◦.

Without calibration, the average error achieved in this

experiment (4.7◦) was better than that in the previous ex-

periment (5.4◦, Fig. 3), most likely due to the larger size

of the training set. Videos were sampled at 15 fps for this

experiment, but only 2fps for the experiment of Fig. 3. In

addition, outliers were removed in this experiment using the

extra annotation available for this subset.

4.3. Cross­dataset evaluation

We trained on MPIIGaze and tested on ColumbiaGaze.

Fig. 7 shows the performance of SGTC (S = 5) for each

calibration gaze target, which is higher than the within

dataset results of MPIIGaze (Fig. 4) and EYEDIAP (Fig. 6),

indicating the difficulty of cross-dataset evaluation. Con-

sistent with our previous results, the performance was poor

when calibrated at the four gaze targets at the boundary, i.e.,

samples with horizontal directions ±15◦. However, for the

middle ten calibration targets, SGTC reduced the error by

0.8◦ (14.5%) to 1.1◦ (20.0%) in comparison to that with-

out calibration. For 46 to 51 out of the 56 subjects (82.1%
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Figure 5. Mean angular error after calibration as a function of num-

ber of calibration samples on the EYEDIAP dataset.
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Figure 6. Mean angular error of SGTC (S = 9) when the gaze

target is located within different 5◦×5◦ regions on the EYEDIAP

dataset. E = 4.7◦, E = 2.9◦, S = 9. 14 subjects in total.

to 91.1%), errors were reduced by calibration. For subjects

whose error increased, the average increase was 0.4◦.

Our method also outperformed LP by 0.8◦ (14.5%) and

DF by 0.6◦ (11.3%) in this cross-dataset evaluation (see Ta-

ble A1 in the supplementary materials).

4.4. Ablation studies

We evaluated the importance of applying the gaze

decomposition (GD) during training by training a net-

work without gaze decomposition, i.e., by minimizing the

squared error between the estimated and ground truth gaze

angles without the bias term b̂ in Eq. (2), which we refer to

as ND. We calibrated this network in the same way as the

network trained with gaze decomposition by adding the bias

estimated by Eq. (3). As shown in Fig. 8, applying gaze de-

composition reduced the error on MPIIGaze both without

calibration (from 4.7◦ to 4.5◦, 4.3%) and with SGTC (by

about 0.35◦ across all values of S). We obtained similar

results on EYEDIAP. For example, the error without cali-

bration was reduced from 5.8◦ to 5.4◦ (6.9%).

We also repeated the cross-dataset evaluation. The re-

sults of ND are shown in Fig. 9, where E = 5.5◦ and

E = 4.5◦. Both GD and ND achieved the same 5.5◦ in

estimation without calibration. However, on average, a gain

of 0.4◦ was achieved by gaze decomposition after calibra-

tion (T = 1, S = 5).
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Figure 7. Mean angular error when calibrated at different gaze

targets (T = 1, S = 5). Trained on MPIIGaze and tested on

Columbia. E = 5.5◦, E = 4.1◦. 56 subjects in total.

We evaluated the extent to which the gains relative to the

state-of-the-art reported here were due to the use of gaze

decomposition or due to the use of dilated-convolution by

training a network similar to Fig. 2 but without dilated-

convolution. Its base CNNs had eight convolutional lay-

ers and four max-pooling layers. In leave-one-subject-out

cross-validation on MPIIGaze, the standard CNN without

calibration had errors of 5.3◦ when trained without the gaze

decomposition and 4.7◦ with gaze decomposition. In com-

parison, the dilated CNN had errors of 4.7◦ without gaze de-

composition and 4.5◦ with gaze decomposition. For SGTC

(T = 1, S = 9), the errors were 4.1◦ (standard CNN/ND),

3.6◦ (standard CNN/GD), 3.5◦ (dilated CNN/ND) and 3.0◦

(dilated CNN/GD). For MGTC (T = 9, S = 1), the errors

were 3.6◦ (standard CNN/ND), 3.2◦ (standard CNN/GD),

3.1◦ (dilated CNN/ND) and 2.7◦ (dilated CNN/GD). We

conclude that the use of gaze decomposition and the use of

dilated CNNs are equally effective in reducing the error (by

about 0.5◦), and that their effect is cumulative. Applying

one after the other reduces error further by 0.2◦ to 0.5◦.

4.5. Consistency of the learned bias

We evaluated whether the learned biases were consis-

tent for the same subject using the data from leave-one-

subject-out (15 fold) cross-validation on MPIIGaze. We

compared the intra-subject variance computed from the 14

folds where the subject was in the training set with the inter-

subject variance computed from the means of the estimated

biases. For yaw, the average intra-subject variance was 0.03
deg2 in comparison to the inter-subject variance of 5.40
deg2. For pitch, the variances were 0.05 deg2 and 3.66
deg2. The intra-subject variance was a small percentage

(0.56%-1.4%) of the inter-subject variance, indicating that

the bias is learned consistently and reliably during training.

The mean and SD for each subject is provided in Table A2

of the supplementary materials.

5. Conclusions

We proposed a novel gaze decomposition method for

appearance-based gaze estimation. We conducted experi-

ments on the MPIIGaze, the EYEDIAP and the Columbi-

aGaze datasets. Without calibration, the proposed method
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Figure 8. Comparison of the networks with/without gaze decom-

position (GD and ND) on MPIIGaze.
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Figure 9. Mean angular error achieved by the network with-

out gaze decomposition when calibrated at different gaze targets

(T = 1, S = 5). Trained on MPIIGaze and tested on Columbia.

E = 5.5◦, E = 4.5◦. 56 subjects in total.

outperformed state-of-the-art methods without ensembling

on the MPIIGaze and EYEDIAP datasets. Further work

must be done to determine why ensembling did not help our

method as much as it did in [9]. The proposed method re-

duced the estimation error significantly with low complex-

ity calibration sets. For example, it reduced the estimation

error by 33.3% while only requiring 9 images looking at

one target for calibration.

For best performance, the multiple images per gaze tar-

get should contain variations in head pose. In most real-

world applications, it is easy to ask the user to move his/her

head to provide variations in head pose. Including varia-

tions in illumination may also help if we expect to encounter

those during use. MPIIGaze includes significant variability

in illumination per subject, as data collection was over mul-

tiple days. However, EYEDIAP and ColumbiaGaze were

collected under fairly constant illumination. Our proposed

method provided significant reduction in error in all cases.
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