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Abstract

We address the problem of human action classification

in drone videos. Due to the high cost of capturing and

labeling large-scale drone videos with diverse actions, we

present unsupervised and semi-supervised domain adapta-

tion approaches that leverage both the existing fully anno-

tated action recognition datasets and unannotated (or only

a few annotated) videos from drones. To study the emerging

problem of drone-based action recognition, we create a new

dataset, NEC-DRONE, containing 5,250 videos to evaluate

the task. We tackle both problem settings with 1) same and

2) different action label sets for the source (e.g., Kinectics

dataset) and target domains (drone videos). We present a

combination of video and instance-based adaptation meth-

ods, paired with either a classifier or an embedding-based

framework to transfer the knowledge from source to target.

Our results show that the proposed adaptation approach

substantially improves the performance on these challeng-

ing and practical tasks. We further demonstrate the appli-

cability of our method for learning cross-view action recog-

nition on the Charades-Ego dataset. We provide qualitative

analysis to understand the behaviors of our approaches.

1. Introduction

People create large amounts of digital video data re-

cently. Such data comes from many sources e.g., surveil-

lance videos, personal videos, commercial videos, and etc.

Many of videos are human-centered. Automatic analysis

of videos, e.g., for indexing and searching, is thus an in-

teresting and critical problem. It is also very challenging

due to its unconstrained nature and sheer scale. Human ac-

tion recognition is one of the tasks, in this genre, which has

gained substantial attention in recent years [6, 36, 39, 44].

Most of such works have addressed third-person videos

while there are some works on egocentric videos as well

[11, 40, 54].

Drones are becoming more popular and readily available

for purchase in the consumer market. Similar to the existing

‘hugging’
(a) Domain differences due to viewpoint, appearance, and background

(b) Label set differences due to different classes in the two domains
‘yoga’ ‘canoeing’ ‘shaking hands’ ‘exchange backpack’

Source dataset (Kinetics) Target dataset (Drones)

‘hugging’

Figure 1: Action recognition from drone videos. Trans-

ferring knowledge learned from existing action recognition

datasets is challenging as they contain mostly third-person

videos. We address two challenges, i.e., domain difference

(a) due to visual variation as well as (b) due to different la-

bel sets, in the two domains.

human-borne camera videos, it is desirable to automatically

analyze drone-captured videos. However, drone-captured

videos present distinct challenges due to continuous and

typical motions, perspectives, and distortions. Thus they are

very different from human-borne camera videos (Fig. 1a).

In this paper, we focus on an unsupervised video domain

adaptation setting. We aim to leverage the existing large-

scale annotated datasets of third-person videos1, to help

perform action recognition on challenging drone-captured

videos. Since acquiring and annotating videos in any new

domain is an expensive and time-consuming task, under

such domain adaptation settings, we aim to minimize the

annotation efforts.

The large domain differences between the source do-

main of third-person videos and the target domain of drone-

captured videos (Fig. 1a), motivate us to also investigate

the case of semi-supervised domain adaptation [15]. In the

semi-supervised domain adaptation setting, we assume that

a limited amount of annotated target data is available during

1We refer to existing action recognition datasets such as Kinetics and

UCF-101 as third-person datasets while noting that they may contain some

other perspective videos, e.g., first person, as well.
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training in contrast to the unsupervised domain adaptation

setting.

In addition to the case where both source and target have

the same label sets, we also address the challenging setting

where the label sets are different (Fig. 1b). To reduce the

domain gap between source and target data, we employ a

domain classifier and adversarial loss in the both problem

settings, i.e., same and different label sets. We use stan-

dard cross-entropy loss in the same label set setting, while

we use an embedding-based framework in the different la-

bel sets case. The input in the latter case is agnostic of the

specific class annotations of the training examples. We care

only about dis-/similarities between examples, i.e., if they

belong to different/same classes irrespective of the partic-

ular classes. By employing an embedding-based method,

our classifier can generalize to new categories in the target

domain.

We also propose to do both full video-based as well as

instance-based adaptation. The full video-based method has

the merit that exploits correlated context while the instance-

based approach is motivated by the argument that focusing

on the actor itself is more critical for better performance.

To evaluate the presented methods, we also propose

a novel dataset of human actions captured by drones:

NEC-DRONE. The NEC-DRONE dataset consists of 5250

videos. We evaluate the proposed method on this challeng-

ing dataset and show that we can successfully perform do-

main adaptation from mostly third-person videos to drone-

captured videos. We further evaluate the proposed method

on a publicly available Charades-Ego dataset [37]. We show

qualitative results on the NEC-DRONE dataset to better un-

derstand the behaviors of the methods.

To summarize, we make the following three contribu-

tions of this work.

• We introduce a new problem of unsupervised and

semi-supervised domain adaptation for action recog-

nition from drones with two settings, i.e., same and

different source and target label sets.

• We propose a new dataset, NEC-DRONE, containing

5250 videos for action recognition from drones.

• We explore the problem with thorough experiments

and show significant improvements with the proposed

method.

2. Related Work

Drone-based video datasets. A few drone-based video

datasets have been proposed [3, 26, 30, 56]. However, there

is only one dataset for drone-based human action recogni-

tion that we are aware of – the OKUTAMA-ACTION dataset

[3]. The OKUTAMA-ACTION dataset is an outdoor dataset,

and it is 43 minutes total while ours (NEC-DRONE) is 256

minutes. The number of actors is 9 vs. 19 actors (ours),

and actions are 12 vs. 16 actions (ours). To the best of

our knowledge, the proposed dataset is the largest drone-

captured dataset for human action recognition.

Action recognition. After the success of deep networks

in the image domain, many works have addressed action

recognition in videos [2, 4, 6, 9, 12, 14, 18, 19, 20, 36, 38,

39, 43, 44, 49, 50, 51, 52]. This is in contrast to the earlier

handcrafted features [47, 48].

Most of these methods use third-person videos to train

their models. In this work, we show that such third-person

models do not accurately transfer to novel domains. We

propose methods to make models to generalize better using

domain adaptation, utilizing a large amount of annotated

third-person data.

Cross-view modeling. Understanding object, scene, and

action across different views has drawn attention in com-

puter vision. There have been works on aerial and ground

view matching [22, 29], albeit the tasks are not human

action recognition. For human actions, recent approaches

use multi-stream networks to model first and third person

videos jointly [1, 10, 35]. However, most of them require a

dataset of paired videos across views.

We also want to learn view-invariant representations.

However, collecting paired videos across different views

such as a drone view, a third-person view, and a first-person

view is expensive. Thus, we aim to leverage the existing la-

beled third-person videos while using only unlabeled target

videos (from drones), for learning representations.

Domain adaptation. Many works have addressed the

problem of domain adaptation for the case of image clas-

sification [13, 15, 24, 25, 31, 34, 45, 46, 55] and object

detection [8, 28, 53]. However, not much work has been

done on domain adaptation for video-related tasks. A few

approaches deal with an image to video domain adapta-

tion [24, 42]. Our work is different as we are interested

in a video to video domain adaptation with the target videos

being captured by drones.

There are a few works on video domain adaptation [17,

7]. Similar to them, we also use the basic adversarial learn-

ing framework. However, we are also dealing with more

challenging problem setting where we have different source

and target label sets. We are also different in that we pro-

pose to use instance-based domain adaptation as our NEC-

DRONE dataset has more significant domain gap.

Open set domain adaptation. Open set domain adapta-

tion is the setting where both source and target datasets have

‘unknown’ classes, and unseen class examples are all classi-

fied together into one ‘unknown’ category [27, 5, 32]. How-

ever, we are interested in classifying the unknown examples

in different novel classes in the target domain (e.g., ‘ex-

changing backpack’).
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3. Approach

Our aim is to do domain adaptation from a source do-

main where we have class annotated training data (xs,ys) ∈
Xs ×Ys, where Ys is the source label set, and unannotated

data or a very limited amount of annotated data from the tar-

get domain (xt ,yt) ∈ Xt ×Yt with Yt being the target label

set. We address two cases of domain adaptation: (i) when

the source and target label sets are the same i.e., Ys = Yt ,

and (ii) when they are different i.e., Ys 6= Yt . We parti-

tion the target annotated data into three parts, the usual train

and test sets and a third support set (Xt
N ,Y

t
N). We use the

support set only in the case of unsupervised domain adapta-

tion with different source and target label sets, to do k-NN

classification in the target domain. We report the target per-

formances on the target test set, which we again stress, has

no overlap with the support set.

3.1. Overview of the architecture

Our overall architecture (Figure 2) leverages the ad-

vances made in both video representations as well as do-

main adaptation. The system takes a video with T frames,

denoted as V = {v1,v2 . . .vT} where vi ∈ R
h×w×c are the

height h, width w, and c channel frames, as an input

and splits it into small, potentially overlapping, clips x =
[v j,v j+1 . . .v j+L−1] where L is the clip length. Then we pass

the clips through a state-of-the-art video CNN, denoted as

ψ(·) to obtain feature representations, ψ(x) of the clips. We

pass the clip features to a softmax with classification loss

or an embedding-based metric learning loss, as well as to

a discriminator network with domain adversarial loss. We

describe the different cases in the following.

3.2. Same source and target label set

The first case is when the K classes are the same in the

source and target domains i.e., Ys = Yt (Figure 2a). Even

in this case, the domain differences are substantial due to

the various challenges such as variations in appearance, per-

spective, motion, etc. In this case, the system learns rep-

resentations with a combination of cross-entropy loss for

classification in the source domain along with the domain

adversarial loss, i.e., binary cross-entropy loss, between ex-

amples of source and target domains. Formally, denoting

the classifier by fC(·) with parameters θc, and the discrimi-

nator by fD(·) with parameters θd , we define the losses as,

LCE =−E(xs,ys)∼(Xs,Ys)

K

∑
k=1

ys,k log fC(ψ(xs)), (1)

LADV =−Exs∼Xs log fD(ψ(xs))

−Ext∼Xt log(1− fD(ψ(xt))). (2)

The optimization problem is then given by,

L (θ f ,θc,θd) = LCE(θ f ,θc)−λLADV (θ f ,θd),

(θ ∗
f ,θ

∗
c ) = arg min

θ f ,θc

L (θ ∗
d ), θ ∗

d = argmax
θd

L (θ ∗
f ,θ

∗
c ). (3)

where, θ f are the feature extractor parameters of ψ , and

λ is a hyper-parameter for the trade-off between the cross-

entropy and the domain adversarial losses. We mark opti-

mal parameters θ with a symbol ∗ in a superscript.

The optimization learns a classifier by minimizing the

classification loss, a discriminator by minimizing the adver-

sarial loss and a feature extractor by minimizing the classi-

fication loss and maximizing adversarial loss, to learn do-

main invariant and discriminative representations. We use

the gradient reversal layer [13] for adversarial training.

Semi-supervised adaptation. We also evaluate semi-

supervised domain adaptation, where, in addition to the un-

labeled target examples, some annotated target examples

are available for training as well. We use the target anno-

tated examples with cross-entropy loss, and the target unan-

notated examples with domain adversarial loss only.

3.3. Different source and target label sets

In the second case, the domain differences are due to the

difference in labels sets i.e., Ys 6= Yt (Figure 2b) as well

as the variations such as appearance, perspective, motion,

etc. The source and target label sets could be different with

some or potentially no overlap. In this case, we propose to

learn embeddings of the videos which are agnostic of the

specific classes but are aware of being similar (when ex-

amples come from the same class) or dissimilar (when they

come from different classes). To do this we use a standard

metric learning loss, i.e., the triplet loss [33], which takes a

triplet of examples (xa,xp,xn) with xa being the anchor and

xp,xn being the positive (same class as anchor) and nega-

tive (different class than the anchor) examples respectively.

In the embedding space, the triplet loss forces the smaller

distance between the anchor and the positive example by a

margin of δ , than the distance between the anchor and the

negative example. Formally the loss and optimization prob-

lem are given as,

LT RI =−E(xa,xp,xn) max(0,δ+

‖ψ(xa)−ψ(xp)‖
2 −‖ψ(xa)−ψ(xn)‖

2), (4)

L (θ f ,θd) = LT RI(θ f ,θd)−λLADV (θ f ,θd),

θ ∗
f = argmin

θ f

L (θ ∗
d ), θ ∗

d = argmax
θd

L (θ ∗
f ). (5)

In a minibatch, we sample examples from both the source

as well as the target domain. All samples contribute to min-

imizing the adversarial loss, while the samples from the

source domain construct the triplet examples and contribute
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Figure 2: Overview of the proposed domain adaptation method. Our system takes a video as an input and splits it into

small clips. We pass these clips through a video CNN. (a) In the same source and target label set setting, the clips features

are input to a softmax with classification loss as well as to a discriminator network with domain adversarial loss. At testing

time, the system takes a video as an input, split into multiple clips, pass the clips into the trained CNN to extract features.

The system then predicts labels with the source classification layer. (b) In a different source and label sets setting, the clip

features are input to an embedding based metric learning loss, as well as to a discriminator network with domain adversarial

loss. At testing time, the system takes a video as an input, split into multiple clips, pass the clips into the trained CNN to

extract features. The system requires few labeled target examples at test time (a support set) to perform k-NN classification.

to minimizing the triplet loss.

Once we have trained the network, the system classifies

query examples, by first, obtaining the embeddings from a

forward pass of the base CNN, and then performing k-NN-

based classification in the embedding space, using the target

support set (Xt
N ,Y

t
N).

Semi-supervised adaptation. We also evaluate semi-

supervised setting in a different source, and target label sets

setting, similar to the same label sets setting. The two differ-

ences are, (i) we use the cross-entropy loss for target classes

as well, and (ii) we do not use the support set, as now the

system can directly do target class classification.

3.4. Video­based and instance­based adaptation

Since we are interested in human actions, the discrimina-

tive visual regions in the frames are expected to be around

humans. We could expect that focusing on the humans in

frames would give better performance by eliminating noise

from the background. On the other hand, the background

might contain correlated elements which could potentially

contribute to better recognition. Since both the human fore-

ground as well as the background have potential merits,

we propose to do both ‘video-based’ and ‘instance-based’

adaptation. In the video-based adaptation we give the full

clip as the input to the system, while for the instance-based

case, we first perform human detection using a state-of-the-

art pre-trained human detector [16] and then feed only the

human spatio-temporal tube (i.e., a clip made by cropping

out human from every frame) as an input the the system.

We independently train video-based and instance-based

domain adaptation models. During testing, we perform

late-fusion of the two predictions from video-based and

instance-based models. We empirically show that both

have advantages, especially when some amount of target

annotated data is available (semi-supervised setting), and

their combination consistently improves over either of them

alone.

4. NEC-DRONE Dataset

We propose a new dataset, NEC-DRONE, of videos

taken from drones for the task of domain adaptation from

third-person videos to drone videos. Figure 3 shows some
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‘leave backpack and go’ ‘sit on a chair’ ‘pick up phone’

‘shaking hands’ ‘pushing’ ‘exchanging backpack’

Figure 3: Sample frames from the NEC-DRONE dataset. We show two close-by frames per video. The first row shows

single person actions, while the second row shows two person actions. Best viewed on screen, with zoom and color.

examples. We collected the dataset inside a school gym

with 19 actors acting out their interpretations of 16 pre-

defined actions multiple times. The actions performed by

the actors are in an unconstrained manner without any close

supervision.

The actions are both single as well as two-person actions.

The partial motivation of defining the actions was to keep

surveillance scenarios in mind, e.g., two people getting to-

gether and exchanging a backpack could be an interesting

event to tag, or retrieve. There are 10 single person actions,

i.e., walk, run, jump, pick up a backpack and go, leave a

backpack and go, sit on a chair, talk on a mobile phone,

drink water from a bottle, throw something, pick up a small

object, and 6 two-person actions, i.e., shake hands, push a

person, hug, exchange a backpack, walk toward each other

and stay, stand together leave.

We recorded each action instance by two drones simulta-

neously flown in an unconstrained manner by relatively new

pilots. The videos in the dataset are from varied perspec-

tives with the drones flying at varying distances and heights

from the actors. The drones used were ‘DJI Phantom 4.0

pro v2’ and the videos were recorded at 30 fps at a reso-

lution of 1920× 1080 pixels. We manually annotated the

actions of all videos.

Finally we have a total of 5250 videos with a total of

more than 460k frames. We split the videos into 1188 train,

437 val, and 454 test sets with labels, and 3171 videos with-

out labels. We make sure that the actors in the train, val and

test sets are disjoint. We evaluate the performance on the

dataset as the mean class accuracy.

The proposed dataset is challenging for the following

main reasons. First, view point is different from typical

action datasets, and it changes heavily over time due to

the flying drone. Second, due to the continuous and of-

ten erratic drone motion, the videos have jitters and motion

blur. Third, often the person(s) of interest are not centered

and are relatively small. To the best of our knowledge, the

NEC-DRONE is the largest drone dataset for human action

recognition. We plan to release it publicly upon acceptance

Table 1: Nearest neighbor test results (without learning any

parameters) on the UCF-101 and the NEC-DRONE dataset

with pre-trained I3D features.

Dataset UCF-101 (vid.) NEC-DRONE (vid.) NEC-DRONE (inst.)

Acc(%) 72.3 8.2 10.8

of the paper.

In Table 1, we show a significantly larger domain gap

between Kinetics and the NEC-DRONE dataset, compared

to the domain gap between Kinetics and UCF-101. We per-

form a nearest neighbor classification on the UCF-101 [41]

and NEC-DRONE datasets. Note that we do not learn any

parameters. We use ℓ2 normalized mixed5c activations of

the I3D network [6] pre-trained on Kinetics as our feature.

Video-based nearest neighbor classifier can achieve

72.3% accuracy on UCF-101 dataset (split 1). However,

the video-based nearest neighbor can achieve only 8.2% ac-

curacy on the NEC-DRONE dataset. Using instance-based

nearest neighbor, we can achieve 10.8% accuracy. This

significant difference is due to the large domain gap be-

tween the NEC-DRONE dataset and typical third-person

video datasets. Furthermore, the existing third-person video

datasets such as UCF-101 and Kinetics have correlated

backgrounds for different actions. However, the NEC-

DRONE dataset has a similar background for all the actions.

Thus the dataset is very challenging, as without capturing

the human motion, it is difficult to recognize the different

human actions in the NEC-DRONE dataset.

5. Experimental Results

Abbreviations. We use the following abbreviations. DA:

domain adaptation, UDA: unsupervised domain adaptation,

SSDA: semi-supervised domain adaptation, src.: source,

tgt.: target, vid.: video-based, inst.: instance-based, sup.:

supervised finetuning.
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Same label set for source and target. We use the Kinet-

ics [21] dataset as the source dataset and the NEC-DRONE

dataset as the target dataset. Since the two datasets do not

share the same classes, we subsample the two datasets to

obtain similar classes. We choose 13 classes from Kinet-

ics [21] dataset and 7 classes from the NEC-DRONE dataset

which have similar actions to construct the source and target

datasets. See supplementary for the details.

Different label sets for source and target. When we

work with different label sets settings, we use the UCF-

101 [41] as our source dataset. UCF-101 dataset is mainly

a third-person dataset and contains 13,320 videos from 101

action classes. The domain gap between the UCF-101 and

NEC-DRONE datasets is significant (as we also show quan-

titatively below) and the label sets of the UCF-101 dataset

and NEC-DRONE datasets are entirely disjoint. Hence this

makes a challenging and practical domain adaptation setting

from third-person videos to drone-captured videos.

For both settings, we use labels for m target examples per

class, in addition to the unannotated target and annotated

source examples, for semi-supervised adaptation.

Implementation details. We use state-of-the-art I3D net-

work [6] as our base network for feature extraction with

L = 16 frame clip inputs for drone experiments and L = 32

frame clip inputs for Charades-Ego experiments. We attach

the domain discriminator to mixed5c layer of the I3D net-

work. We use a 4 layer MLP for domain classifier where

the hidden fully connected layers have 4096 units each.

When aligning features at the instance-based, we extract

the human tubes by running per frame detectors and making

tracks based on the overlaps of the detections in the succes-

sive frames. We use a Mask R-CNN [16] pre-trained on

MS-COCO dataset [23] for person detection.

We set λ = 1.0 for the gradient reversal layer [13],

δ = 0.5 for the margin parameter of the triplet loss and the

embeddings. We use a batch size of 10 and sample mini-

batches as follows. In the case of triplet loss only, 7 out

of 10 examples are from anchor class, and the rest 3 are

from different classes. In the case of triplet loss with un-

supervised domain adaptation, 5 (3 same class, 2 different

classes) out of 10 examples are source examples and rest

5 are target examples. We use SGD optimizer with the

momentum of 0.9. For the source pre-training and semi-

supervised finetuning, we use an initial learning rate of

10−4, and for the unsupervised domain adaptation training,

we use an initial learning rate of 10−6. We reduce the learn-

ing rate by 1/10 after 5 epochs.

5.1. Quantitative evaluation on NEC­Drone

Same source and target label sets. We first perform an

ablation study of video-based DA and instance-based DA

Table 2: Action recognition accuracies (%) on the NEC-

DRONE dataset (val set) in the same source and target la-

bel sets case. m is the number of target annotated examples

per class used while training. As a reference, the full target

supervised I3D performance is 76.7%.

Method m = 0 m = 3 m = 5 m = 10 m = 20

Inst. no DA 12.6 31.1 35.4 43.2 49.5
Inst. DA 16.5 31.6 39.3 41.3 52.4
Vid. DA 13.6 24.3 35.4 53.9 52.9

Vid. & inst. DA 15.1 32.0 41.8 54.9 58.3

Table 3: Comparison of methods on the NEC-DRONE

dataset (test set) in the same source and target label sets

setting, with m= 5 target annotated examples per class used

in semi-supervised adaptation. The classifier here is the

multi-class source classifier.

Method Training data Acc (%) Gain(%)

Fully sup. labeled drone 69.3 N/A

Src. only Kinetics 13.6 0.0

Vid. DA Kinetics + unlabeled drone 27.2 100.0

Inst. DA Kinetics + unlabeled drone 29.4 116.1

Vid. & inst. DA Kinetics + unlabeled drone 32.0 135.2

and their combination with different number m of target an-

notated examples per class used during training. We also

include the results without any domain adaptation. Since

it is an ablation study, we perform experiments on the val

set. The column where m = 0 is the unsupervised domain

adaptation setting while the columns where m > 0 are semi-

supervised domain adaptation settings.

The results show the contribution of different adaptation

components. The video-based adaptation achieves 13.6% in

the unsupervised case, the instance-based achieves 16.5%,

while the combination of the two gives 15.1%. The per-

formances rise rapidly as even a small number of annotated

examples from the target domain are provided during train-

ing. With only m= 3 examples the performance of the com-

bined method increases to 32.0% which further increases to

41.8%,54.9%,58.3% on m = 5,10,20. The m = 20 perfor-

mance of 58.3% is still far from the full target supervised

performance of 76.7%; in the latter case, the average num-

ber of examples per class is 80. We also note that the com-

bination of the video-based adaptation with the instance-

based adaptation is always greater than either of them indi-

cating complementary information in the two methods.

Table 3, third column, gives the final test performances

of the same label set setting for the different methods on

the NEC-DRONE dataset for m = 5. We see that the

video-based adaptation improves the source only classifier

from 13.6% to 27.2%, while the instance-based adaptation

achieves 29.4%. The combination of both gets the best per-
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Table 4: Comparison of methods on the NEC-DRONE

dataset (test set) in the different source and target label

sets setting, with, m = 0 i.e., unsupervised domain adapta-

tion, and n = 3 target examples per class used as a support

set at testing. The classifier is nearest neighbor in embed-

ding space.

Method Training data Acc (%) Gain (%)

Fully sup. labeled drone 68.3 N/A

Src. only UCF101 8.2 0.0

Vid. DA UCF101 + unlabeled drone 10.6 29.2

Inst. DA UCF101 + unlabeled drone 14.3 74.3

Vid. & inst. DA UCF101 + unlabeled drone 14.5 76.8

Table 5: Accuracies (%) on the NEC-DRONE dataset (test

set) in the different source and target label sets case. m is

the number of target annotated examples per class used for

training. In testing time, we do not use any target examples

as a support set. i.e., n = 0 setting.

Method m = 3 m = 5 m = 10 m = 20

Inst. DA 15.9 21.6 31.3 34.6
Vid. DA 12.8 18.7 29.1 34.4

Vid. & inst. DA 18.1 22.5 36.1 39.7

formance of 32.0%. This is still quite far from the target

fully supervised value of 69.3% indicating that still, a large

domain gap exists even after semi-supervised adaptation.

Different source and target label sets. Table 4 shows

the results of the different methods for the case of different

source and target label sets. Here, we are using no target

annotated examples for training (m = 0). But we are us-

ing n = 3 target examples per class at testing as a support

set. The task is harder as we use a larger number of classes

(all 16 classes present in the NEC-DRONE dataset) com-

pared to the same source and target label sets case, while

we use only 7 classes due to the constraint of finding simi-

lar classes. The full target supervised accuracy, in this case,

is 68.3% compared to 69.3% of the former.

The trends among the methods are similar to the previ-

ous case of the same source and target label sets. The source

only classifier performs very poorly at 8.2%, cf. 6.25% for a

random chance for this 16 class case. The contrast is much

higher in this case compared to the previous as (i) it is a

harder setting where completely new classes are predicted,

and (ii) in general embedding-based methods perform lower

than cross entropy-based 1-of-C class classifiers. Compared

to the source only classifier, the video-based method im-

proves performance by 29.2% relatively, while the instance-

based method improves by 74.3% relatively. The combina-

tion of the two further improves 76.8% relatively.

Table 5 gives the semi-supervised domain adaptation re-

sults for the setting when the source and target label sets

Table 6: Comparison of methods on the Charades-Ego

dataset (first person test set). Note that for the semi-

supervised domain adaptation, we use x% of the target train-

ing data with labels and use the rest of the target training

data without labels for training.

Method Back-bone Pair sup. Train Test % of anno. tgt mAP (%)

[31] ResNet-152 X 3rd + 1st 1st pair sup. 20.0

Src. only I3D × 3rd 1st 0 16.6

UDA I3D × 3rd + 1st 1st 0 17.9

SSDA I3D × 3rd + 1st 1st 10 20.4

SSDA I3D × 3rd + 1st 1st 20 21.9

SSDA I3D × 3rd + 1st 1st 30 22.8

SSDA I3D × 3rd + 1st 1st 40 23.1

Fully sup. I3D × 1st 1st 100 25.8

drink / shake hands walk / drink drink / throw

shake hands / hug walk / jump drink / jump

Figure 4: Effect of DA and inst. DA. (Top row) Examples

misclassified by the method without DA but are correctly

classified with DA. (Bottom row) Examples that are mis-

classified with vid. DA method but are correctly classified

with the vid. & inst. DA. Ground truth/incorrect predictions

in green/red.

are different. We show the results for the different num-

ber m of target annotated examples per class, used during

training. The trend is similar to the Table 2. With a small

number of annotated examples used during training, we can

improve the performance compared to the unsupervised do-

main adaptation (14.5% for m = 0 vs. 39.7% for m = 20).

5.2. Quantitative evaluation on Charades­Ego

We compare the performance with other methods on a

publicly available Charades-Ego dataset [37] in Table 6.

Please note that Charades-Ego is a paired dataset. There-

fore every first person and third person video is paired with

its counterpart. Our method does not require paired dataset,

thus more general than Actor and Observer [35]. Also note

that the reported performance in [35] is invalid because the

authors evaluated on the wrong split2. Thus, we run the au-

thors’ code and report mAP on the valid test set, which is

20.0%. We obtain 17.9% mAP with our video-based un-

supervised domain adaptation. Using annotated target data

improves performance. With only 10% of the labeled tar-

2
https://github.com/gsig/actor-observer/issues/7
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Kinetics: ‘marching’ Drone: ‘walking’ Kinetics: ‘jumping into pool’ Drone: ‘jumping’

Kinetics: ‘throwing’ Drone: ‘throwing an object’ Kinetics: ‘drinking beer’ Drone: ‘drinking water’

Figure 5: Cross-domain retrieval results. For each of the 2× 2 blocks, the first column shows a frame of a query video

from the Kinetics dataset. The rest of the columns show the top five retrieved videos from the NEC-DRONE dataset. The

correct/incorrect category level retrievals are highlighted in green/red. Top row is with the video only model without domain

adaptation and the bottom row is the same model, but trained with domain adaptation. We show the class labels in Kinetics

and the corresponding classes from the NEC-DRONE dataset. Best viewed on screen, with zoom and color.

get data, our semi-supervised domain adaptation achieves

20.4% mAP, outperforming the Actor and Observer. Both

Actor and Observer and our semi-supervised domain adap-

tation method use some level of supervision: Actor and

Observer uses paired videos for supervision, while our

method uses x% of the target label for supervision. Our

semi-supervised domain adaptation method is more general

than requiring paired third-person and first-person videos.

Therefore, our method is more suitable for action recogni-

tion from novel domains where getting paired video dataset

is difficult e.g., drone-captured videos.

5.3. Qualitative evaluation on NEC­Drone

We qualitatively demonstrate the contribution of domain

adaptation in Figure 4, showing (i) misclassified examples

when not using domain adaptation but are correctly classi-

fied with domain adaptation (top row), (ii) examples where

video only adaptation method fails but combined instance

and video-based adaptation method succeeds. We can ob-

serve the large domain gaps in terms of the perspective and

the area occupied by the actor in the example frames. While

the typical third-person videos have a direct perspective and

almost centered actor as the major content of the video, the

videos in the proposed dataset have challenging perspec-

tives and can also be taken from far. The proposed method

addresses these domain gaps and improves performance.

With our embedding-based method, we also obtain a

common space where we can compare videos from the

source and target domains. To demonstrate it, we show the

cross-domain action category level retrieval results in Fig-

ure 5. Given a query from ‘marching’ action class of the Ki-

netics (first column of the top-left block), we show the top

nearest neighbors from the NEC-DRONE dataset. In each

block, the first and second row show the retrieval results

without and with domain adaptation respectively. We can

observe that the domain adpated model can successfully re-

trieve ‘walking’ class videos from the NEC-DRONE dataset

despite a huge domain gap. Without domain adaptation, the

retrievals contain more irrelevant videos from other classes.

6. Conclusion

We addressed the task of human action recognition from

drones in the setting where we do not have any labeled

examples of drone dataset, or we have only a few labeled

examples. We further explored a more challenging setting

where the source and the target label sets are different. To

deal with this challenging setting, we proposed to use met-

ric learning loss and unsupervised domain adaptation along

with instance-level action recognition.

Since a challenging large dataset of drone videos for hu-

man action recognition did not exist, we collected 5250

high-resolution videos from two drones with 16 prede-

fined single person and two-person actions. We empirically

showed that a large domain gap exists between third-person

video datasets and the NEC-DRONE dataset. We will re-

lease the dataset upon acceptance to the community.

Our work is among the first to show encouraging domain

adaptation results on challenging video domains. However,

we also show that we are still far from the fully super-

vised classifier performances in the target domain of drone

videos, and hence, there is much room for improvement.
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