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Q: What room is depicted in the image?

A: living room

Q: Which side of the tv is the pictures?

A: right side

“Scene” question example:

Q: Is there a plant in the bedroom?

A: yes

“Exist” question example:

Q: How many chairs are there?

A: more than 4

“Counting” question example:

Q: What is the color of the vase at the right of pictures?

A: black

“Property” question example:

“Spatial” question example:

Figure 1: An example of our VQA 360◦ dataset. We introduce VQA 360◦, a novel task of visual question answering on

360◦ images, and collect the first real VQA 360◦ dataset, in which each image is annotated with around 11 questions of five

types (marked by different colors). The bounding boxes indicate where to look to infer the answers. Best viewed in color.

Abstract

In this work, we introduce VQA 360◦, a novel task of

visual question answering on 360◦ images. Unlike a nor-

mal field-of-view image, a 360◦ image captures the en-

tire visual content around the optical center of a cam-

era, demanding more sophisticated spatial understanding

and reasoning. To address this problem, we collect the

first VQA 360◦ dataset, containing around 17,000 real-

world image-question-answer triplets for a variety of ques-

tion types. We then study two different VQA models on

VQA 360◦, including one conventional model that takes an

equirectangular image (with intrinsic distortion) as input

and one dedicated model that first projects a 360◦ image

onto cubemaps and subsequently aggregates the informa-

tion from multiple spatial resolutions. We demonstrate that

the cubemap-based model with multi-level fusion and at-

tention diffusion performs favorably against other variants

and the equirectangular-based models. Nevertheless, the

gap between the humans’ and machines’ performance re-

veals the need for more advanced VQA 360◦ algorithms.

We, therefore, expect our dataset and studies to serve as

the benchmark for future development in this challenging

task. Dataset, code, and pre-trained models are available

online.1

1http://aliensunmin.github.io/project/360-VQA/

1. Introduction

Visual question answering (VQA) has attracted signif-

icant attention recently across multiple research commu-

nities. In this task, a machine needs to visually perceive

the environment, understand human languages, and perform

multimodal reasoning—all of them are essential compo-

nents to develop modern AI systems. Merely in the past

three years, more than two dozen datasets have been pub-

lished, covering a wide variety of scenes, language styles, as

well as reasoning difficulties [2, 17, 19, 23, 35, 36, 48]. To-

gether with those datasets are over a hundred algorithms be-

ing developed, consistently shrinking the gap between hu-

mans’ and machines’ performance [4, 16, 24, 25, 26].

Despite such an explosive effort, existing work is con-

strained in the way a machine visually perceives the world.

Specifically, nearly all the datasets use normal field-of-view

(NFOV) images taken by consumer cameras. Convolutional

neural networks (CNNs) that are carefully designed for such

images [21, 37] have been necessary to extract powerful vi-

sual features. Nevertheless, NFOV images are not the only

way, and very likely not the most efficient way, for a ma-

chine to interact with the world. For example, considering

a 360◦ horizontally surrounding scene, the NFOV of a con-

sumer camera can only capture an 18% portion [42]. Such a

fact, together with the reduced price of 360◦ cameras (e.g.,
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Ricoh Theta S, Samsung Gear 360, and GoPro Omni), has

motivated researchers to dig into 360◦ vision [9, 10, 22, 40].

We could imagine every robot to be equipped with a 360◦

camera in the near future. It is thus desirable to extend VQA

to such an informative visual domain.

In this work, we make the first attempt toward VQA

on 360◦ images (VQA 360◦). Two major challenges im-

mediately emerge. First, modern deep learning algorithms

are heavily data consuming, yet so far, there is no pub-

licly available dataset for VQA 360◦. Second, 360◦ (i.e.,

equirectangular) images have intrinsic distortion and larger

spatial coverage, requiring a novel way to process visual

inputs and perform sophisticated spatial reasoning. Specifi-

cally, a machine needs to understand the spatial information

in questions, search answers across the entire 360◦ scene,

and finally aggregate the information to answer.

To resolve the first challenge, we collect the first real

VQA 360◦ dataset, using 360◦ images from real-world

scenes. Our dataset contains about 17,000 image-question-

answer triplets with human-annotated answers (see an ex-

ample in Figure 1). We have carefully taken the bias is-

sue [19, 24], which many existing VQA datasets suffer, into

account in designing our dataset. We thus expect our dataset

to benefit the development of this novel task.

In addition, we study two models to address VQA 360◦.

On the one hand, we use equirectangular images as input,

similar to conventional VQA models on NFOV images. On

the other hand, to alleviate spatial distortion, we represent

an input 360◦ image by six cubemaps [20]. Each map has

its own spatial location and suffers less distortion (cf. Fig-

ure 2). We develop a multi-level attention mechanism with

spatial indexing to aggregate information from each cube-

map while performing reasoning. In this way, a machine

can infer answers at multiple spatial resolutions and loca-

tions, effectively addressing the algorithmic challenge of

VQA 360◦. Moreover, cubemap-based architecture is flexi-

ble to take existing (pre-trained) VQA models as backbone

feature extractors on cubemaps, effectively fusing multi-

modal information and overcoming the limited data issue.

We conduct extensive empirical studies to evaluate mul-

tiple variants of these models. The superior performance

by the cubemap-based model demonstrates the need to ex-

plicitly consider intrinsic properties of VQA 360◦, both vi-

sually and semantically. By analyzing the gap between the

machine’s and the human’s performance, we further suggest

future directions to improve algorithms for VQA 360◦.

Our contributions in this work are two-fold:

• We define a novel task named VQA 360◦. We point

out the intrinsic difficulties compared to VQA on

NFOV images. We further collect the first real VQA

360◦ dataset, which is designed to include complicated

questions specifically for 360◦ images.

• We comprehensively evaluate two kinds of VQA mod-
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Figure 2: 360◦ image and cubemaps. A equirectangular

360◦ image can be represented by six cubemaps, each cor-

responding to a spatial location, to reduce spatial distortion.

els for VQA 360◦, including one that can effectively

handle spatial distortion while performing multi-level

spatial reasoning. We then point out future directions

for algorithm design for VQA 360◦.

2. Related Work

VQA models. Visual Question Answering requires com-

prehending and reasoning with visual (image) and textual

(question) information [47]. The mainstream of model ar-

chitectures is to first learn the joint image-question repre-

sentation and then predict the answer through multi-way

classification. In the first stage, two mechanisms, visual at-

tention [1, 44, 34] and multimodal fusion [16, 4], have been

widely explored. For example, the stacked attention net-

works (SANs) [45] was developed to perform multi-round

attention for higher-level visual understanding. On the other

hand, Fukui et al. [16] proposed the Multimodal Compact

Bilinear pooling (MCB) to learn a joint representation, and

Ben et al. [4] developed a tensor-based Tucker decomposi-

tion to efficiently parameterize the bilinear interaction. Re-

cently, several work [8, 32, 33, 39] extended BERT [15]

by developing new pre-training tasks to learn (bidirectional)

transformers [43] for joint image and text representations.

Despite the variety of architectures, most of existing

methods directly apply CNNs to the whole NFOV image to

extract (local) features, which may not be suitable to 360◦

images. In this paper, we explore a different architecture to

extract CNN features from the cubemap representations of

a 360◦ image and then fuse features across cubemaps. The

cubemap-based model shares some similarity to [1, 45], yet

we apply multiple-rounds of attentions to different spatial

resolutions, one within and one across cubemaps, so as to

achieve better spatial understanding.

VQA datasets. There have been over two dozen of VQA
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datasets on NFOV images published in recent years. Most

of them aim for open-ended answering [2, 19, 30], provid-

ing for a pair of image and question with one or multiple

correct answers [6, 48]. An alternative setting is multiple-

choice answering: a set of candidate answers are provided

for each question, in which one of them is correct. Our

VQA 360◦ dataset belongs to the first category but focuses

on a very different input domain, 360◦ images.

We note that there are two emerging VQA tasks, embod-

ied QA [13] and interactive QA [18], that require a machine

to interact with the 3D environment (e.g., turn right or move

closer). Our dataset and task are different, from two aspects.

First, we work on real-world scenes, while both of them are

on synthetic ones. Second, we take 360◦ images as input

while they take NFOV images. A machine there has to take

actions to explore the environment, being less efficient.

360◦ vision. With the growing popularity of virtual re-

ality (VR) and augmented reality (AR), 360◦ images and

videos have attracted increasing attention lately. One of

the interesting problems is to automatically navigate a

360◦ video [22, 40, 42] or create a fast-forward sum-

mary [31]. Other research topics include 360◦ video sta-

bilization [29], compression [41], saliency prediction [9],

depth estimation [14], and object detection [11, 40]. Re-

cently, Chou et al. [10] study visual grounding to local-

ize objects in a 360◦ video for a given narrative, while

Chen et al. [7] explore natural language navigation in 360◦

street environments. In contrast to these tasks, VQA on

360◦ images requires further inferring the answers accord-

ing to questions, demanding more sophisticated reasoning

of the scene.

3. VQA 360◦ Dataset

We first present the proposed VQA 360◦ dataset to give a

clear look at the task and its intrinsic challenges. We begin

with the dataset construction, including image collection,

question generation, and answer annotation. We then pro-

vide detailed statistics for our VQA 360◦ dataset.

3.1. Images Collection

We focus on indoor scenes as they are usually more

dense with contents such as objects, which are suitable for

developing algorithms for sophisticated reasoning. In con-

trast, outdoor scenes, like those in [22, 31, 41, 42], capture

certain (ego-centric) activities and are of sparse contents,

which are more suitable for summarization or navigation.

We collect 360◦ images of indoor scenes from two pub-

licly accessible datasets, Stanford 2D-3D [3] and Matter-

port3D [5]. Both datasets provide useful side informa-

tion such as scene types and semantic segmentation, which

benefit question generation. There are about 23 different

scenes, including common areas in houses (e.g., bathroom,

kitchen, bedroom, etc.) and workplaces (e.g., office, con-

ference room, auditorium, etc.). To maximize the image

diversity, we discard images captured in the same room but

with different viewpoints. In total, we collect 744 images

from the Stanford 2D-3D dataset and 746 images from the

Matterport3D dataset.

All the 360◦ images are stored in the equirectangular for-

mat and resized to 1024× 512. The equirectangular projec-

tion maps latitude and longitude of a sphere to the horizon-

tal and vertical lines (e.g., a point at the top of the sphere

is mapped to a straight line in an equirectangular image),

which inevitably introduces heavy spatial distortion.

3.2. Question Generation

We design several question templates (c.f. Table 1), to-

gether with the semantic segmentation and scene types as-

sociated with each 360◦ image2, to automatically gener-

ate questions. Our templates contain five different types:

“scene”, “exist”, “counting”, “property” and “spatial”.

While imposing templates limit the diversity of questions,

the main purpose of our dataset is to promote VQA on a new

visual domain that has larger spatial coverage and complex-

ity. As illustrated in Figure 1, a 360◦ image can easily con-

tain multiple objects distributed at multiple locations. We

thus specifically design the question templates—either in-

clude spatial specifications or ask for spatial reasoning—to

disambiguate the questions and encourage machines to ac-

quire better spatial understanding. For instance, to answer

“What is the color of the vase at the right of pictures?” in

Figure 1, a machine needs to first find the pictures (right-

most), look to the right to find the vase, and return the

color3. To answer “Which side of the TV is the pictures?”,

a machine needs to detect the TV and picture, and then re-

turn their relative spatial information in the scene. Both ex-

amples require visual and spatial understanding at multiple

resolutions and locations, which are scarce in existing VQA

datasets on NFOV images (see the supplementary material

for details). On average, we create 11 questions per image.

3.3. Answer Annotations & Question Refinements

We resort to human annotators to provide precise an-

swers. We ask 20 in-house annotators to answer the ques-

tions in our dataset. To avoid synonyms words and to ease

the process, we offer candidate answers according to the

question types for annotators to select directly. Annota-

tors can also type free-form answers if none of the candi-

dates is applicable. We note that the automatically gener-

ated questions might be irrelevant to the image or lead to

ambiguous answers4. In such cases, we instruct the annota-

2We can obtain room types and objects appearing in the scenes.
3There are three vases in Figure 1. Adding spatial specifications is thus

necessary, and different specifications will lead to different answers.
4For instance, if there are two chairs with different colors, a question

“What is the color of the chair?” will lead to ambiguous answers.
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Q type Template Example Answer

Scene What room is depicted in the image? What room is depicted in the image? bedroom/...

Exist

Is/Are there (a) <obj1> ?

+ in the <scene>

+ <direc>

+ <direc> of the <obj2>

+ <direc> of the <obj2> in the <scene>

Is there a chair in the kitchen?

Is there a chair at my right side?

Is there a chair at the right side of the window?

Is there a chair at the right side of the window in the kitchen?

yes/no

Counting

How many <obj1> are ?

+ in the <scene>

+ <direc>

+ <direc> of the <obj2>

+ <direc> of the <obj2> in the <scene>

How many chairs are in the kitchen?

How many chairs are at my right side?

How many chairs are at the right side of the window?

How many chairs are at the right side of the window in the kitchen?

0/1/2/...

Property

What is the (<color>) <obj1> made of?

What is the color of the <obj1> ?

+ in the <scene>

+ <direc>

+ <direc> of the <obj2>

+ <direc> of the <obj2> in the <scene>

What is the red sofa in the bedroom made of?

What is the red sofa at my right side made of?

What is the color of the sofa at the right of the window?

What is the color of the sofa at the right of the window in the bedroom?

plastic/wood/...

red/brown/...

Spatial

Where can I find the <obj1>?

Which side of the <obj1> is the <obj2>?

+ <color>

+ <material>

Where can I find the white flowers?

Which side if the white chair is the wooden door?

in front of you/...

right side/...

Table 1: Question templates and examples. We design the following question templates and utilize the scene types and

semantic segmentation of the images to automatically generate questions.

Training Validation Test

#images 743 148 599

QA pairs 8227 1756 6962

#unique answers 51 51 53

#Scene type Q 765 150 614

#Counting type Q 1986 495 1934

#Existed type Q 2015 417 1655

#Property type Q 1355 322 1246

#Spatial type Q 2106 372 1513

Table 2: Summary of 360◦ VQA dataset. We summa-

rize the number of images, QA pairs, and unique answers in

each split of our dataset. We also provide a detailed statistic

for each type of question.

tors to slightly modify the questions—e.g., by adding spa-

tial specifications—to make them image-related or identifi-

able. We also instruct annotators to draw bounding boxes

(for a subset of image-question pairs), which indicate spe-

cific objects or locations associated with the answer. Such

information facilitates the analysis of model performances.

3.4. Dataset Statistics

Our VQA 360◦ dataset consists of 1, 490 images and

16, 945 question-answer pairs, which are split into the train-

ing, validation, and test sets with 50%, 10%, and 40% of

images, respectively. We summarize the statistics in Table 2

and show the distribution of the top 20 answers in Figure 3.

We note that each question type has at least 2 corresponding

answers in the top 20 ones. Moreover, those from the same

Figure 3: Distribution of answers. We balance our dataset

such that the answers of the same question type appear uni-

formly (e.g., “yes/no”, “0/1”, and “right side/left side”).

type have the similar number of presence (e.g., “yes/no”,

“0/1”, “right/left side”), preventing a machine from cheat-

ing by predicting the dominant answer. For question types

with a few unique answers, we make sure that the unique

answers appear almost uniformly to minimize dataset bias.

4. VQA 360◦ Models

In this section, we study two VQA models, including one

dedicated to resolving inherent challenges in VQA 360◦.

Notations and problem definitions. Given a question q

and an image i, a machine needs to generate the answer a.

One common VQA model is to first extract visual features

fi = FI(i) and question features fq = FQ(q), followed

1610



Attention Mechanism

 (a) Overall model

C
N

N
C

N
N

C
N

N

V
Q

A
  

m
o

d
e

l

V
Q

A
  

m
o

d
e

l

V
Q

A
  

m
o

d
e

l

How many tvs are in the bedroom?

A
tt

A
g

g
re

g
a

te
 &

 P
re

d
ic

ti
o

n

GRU

1
α(1)

α(2)

α(J)

fq
fi(1)

fi(2)

fi(J )

A
tt

A
tt

C
u

b
e

m
a

p
 

E
x
tr

a
c

to
r

… … … …

…

g(1)

iq

g(2)

iq

g(J)

iq

i

i(1)

i(2)

i( j)

i(J)

Aggregate & Prediction

fq

Tucker 

Fusion F
C

 (d) Fusion Aggregate

S
o

ft
m

a
x

̂a

α(1)

g(1)

iq

α(2)
g(2)

iq

α(J)
g(J)

iq

…

l(1)

l(2)

l(J)

[ ]

[ ]

[ ]

share weight

 (b) Tucker Fusion

α( j)Tucker 

Fusion

fq

g( j)

iql( j)

[ ]

𝒯([l( j), g( j)

iq
], fq)

(c) Attention Diffusion

fq

… …

M( fq)

α(1)

α(2)

α(J)

…

α(1)

α(2)

α(J)

…

Figure 4: VQA 360◦ models. We propose a cubemap-based architecture that first extracts visual features from the cubemaps

of the input 360◦ image and then performs bottom-up multi-level attention and feature aggregation.

by multimodal representations giq = G(fi, fq). The multi-

modal representations are then inputted into a classifier C(·)
of K classes, corresponding to the top K frequent answers,

to generate the answer a. Representative choices for FI(·)
and FQ(·) are CNN and RNN models [45], respectively.

4.1. Equirectangular­based Models

As the most common format to store and display a 360◦

image is the equirectangular projection into a 2D array,

we can indeed directly apply existing (pre-trained) VQA

models for VQA 360◦. We take the Multimodal Low-rank

Bilinear Attention Network (MLB) model [26] as an ex-

ample, which adopts an efficient bilinear interaction for

G(fi, fq). We first extract the visual features fi by the

pre-trained ResNet-152 [21] and adopt the Gated Recurrent

Units (GRU) [12, 28] to extract the question features fq .

We then input the resulting giq = G(fi, fq) into a fully-

connected layer with K output units to build a K-way clas-

sifier C(·). We optimize the whole network using the train-

ing set of our VQA 360◦ dataset and set K to be the number

of unique training answers (i.e., 51).

The MLB model G(fi, fq) pre-trained on the VQA-1 [2]

dataset requires fi to retain a 14 × 14 spatial resolution,

equivalent to inputting a 448 × 448 image to the ResNet.

We thus adopt a few strategies, including cropping or resiz-

ing the original 360◦ image, or inputting the original image

while resizing the output ResNet features into a 14 × 14
spatial resolution by an average pooling layer. We analyze

these strategies in Section 5.

Challenges. While the above strategies allow us to exploit

VQA models pre-trained on much larger NFOV datasets

(e.g., VQA-1 [2]), applying CNNs directly on 360◦ im-

ages suffers the inherent spatial distortion [40]. On the

other hand, adopting specifically designed spherical con-

volutions [40] prevents us from leveraging existing models

and pre-trained weights. An intermediate solution that takes

both concerns into account is thus desirable.

Moreover, existing VQA models like MLB [26] and

SAN [45] only consider a single visual resolution when per-

forming feature aggregation in G(fi, fq). For 360◦ images

that cover a large spatial range, a more sophisticated mech-

anism that involves multiple resolutions of feature aggrega-

tion is required. To this end, we propose a cubemap-based

model to simultaneously tackle the above challenges.

4.2. Cubemap­based Models

To reduce spatial distortion, we first represent a 360◦ im-

age by six non-overlapping cubemaps, {i(j)}Jj=1, via the

perspective projection (c.f. Figure 2; see the supplementary

material for details). Each cubemap corresponds to a spe-

cific portion of the 360◦ image with less distortion. Col-

lectively, the cubemaps together can recover the original

image. This representation naturally leads to a bottom-up

architecture that begins with the local region understanding

and then global reasoning (cf. Figure 4).

In the first stage, we can apply any existing VQA models,

e.g., MLB [26], to each cubemap individually, resulting in

J local multimodal representations:

g
(j)
iq = G(fi(j) , fq) , (1)

where fi(j) denotes the visual features of the j-th cubemap.

Bottom-up multi-level attention. In the second stage,

the main challenge is to effectively aggregate information

from cubemaps. While average and max pooling have been

widely used, they simply ignore the location associated with

each cubemap. We thus resort to the attention mechanism:

gi =

J
∑

j=1

α(j)g
(j)
iq , s.t. α(j) ≥ 0,

∑

j

α(j) = 1. (2)

The attention weight α(j) can be computed according to in-

formation of each cubemap, including its location, making
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aggregation more flexible. As many existing VQA models

already apply the attention mechanism within the input im-

ages [26, 45] (e.g., a cubemap in our cases), the attention to

aggregate across cubemaps is actually the second-level of

attention but on a coarse resolution.

We apply Tucker fusion T (·, ·) [4] to compute the atten-

tion weights according to the cubemap feature g
(j)
iq , loca-

tion indicator l(j), and question feature fq: Tucker fusion

has been shown effective and efficient in fusing information

from multiple modalities. The resulting α(j) is as follows,

α(j) = softmax{T ([l(j), g
(j)
iq ], fq)} , (3)

where [·, ·] means concatenation. The softmax is performed

over j ∈ {1, · · · , J}. We use a one-hot vector l(j) to encode

the cubemap location. In this way, the attention weights can

zoom into the cubemap location mentioned in the question.

Attention diffusion. The attention weighs by (3); however,

do not explicitly consider spatial relationship across cube-

maps. For a question like “Is there a chair at the right side

of the window?”, we would expect the model to first attend

to the cubemap that contain the window, and then shift its

attention to the cubemap at the right. To incorporate such a

capability, we learn a diffusion matrix M(fq) conditioned

on the question fq: the entry M(fq)u,v indicates how much

attention to be shifted from the cubemap v to u. The result-

ing formula for gi in (2) becomes:

gi =

J
∑

u=1

(

J
∑

v=1

M(fq)u,vα
(v)

)

g
(u)
iq , s.t.

J
∑

u=1

M(fq)u,v = 1.

(4)

Answer prediction. The resulting feature gi in (4) or (2)

then undergoes another Tucker fusion to extract higher-level

image-question interactions before inputted into the classi-

fier C(·). We can also replace g
(j)
iq in (4) or (2) by the con-

catenation of g
(j)
iq and l(j) to incorporate location cues into

gi. This strategy is, however, meaningless to average or max

pooling—it simply results in an all-one vector. We illustrate

the overall model architecture in Figure 4. More details are

included in the supplementary material.

5. Experimental Results

5.1. Setup

Variants of cubemap-based models. The cubemap-based

model can take any existing VQA model as the backbone.

We choose the MLB model [26], a bilinear multimodal fu-

sion and attention model. We experiment with other VQA

backbones [4, 38] in the supplementary material to demon-

strate the applicability of the cubemap-based models.

We remove the fully-connected layer of the original

MLB model to extract multimodal features. We apply the

pre-trained MLB model to each cubemap of size 448 ×
448, and consider the following three different aggregation

schemes before performing the final answer prediction.

• CUBEMAP-AVGPOOL: apply average pooling on g
(j)
iq .

• TUCKER: attention weights by Tucker fusion in (3).

• TUCKER&DIFFUSION: attention weights by Tucker

fusion followed by the diffusion in (4).

Variants of equirectangular-based models. We consider

four ways to apply MLB on the equirectangular images.

• CENTRAL-CROP: resize the shorter size of the image

to 448 to preserve the aspect ratio and then crop the

image to 448× 448 to extract ResNet features.

• RESIZE: resize the image into 448 × 448 without any

cropping and extract ResNet features.

• RESNET-AVGPOOL: resize the shorter size of the im-

age to 448 and apply an average pooling layer on the

ResNet output to obtain 14× 14 resolution features.

• DIRECT-SPLIT: split an equirectangular image into

2×3 patches, resize each to 448×448 and apply MLB,

and then apply TUCKER&DIFFUSION to aggregate in-

formation for predicting the answer.

Note that the DIRECT-SPLIT and TUCKER&DIFFUSION

models have the same architecture but different inputs.

Baselines. We provide Q-TYPE PRIOR, a model that out-

puts the most frequent answer of each question type.

Implementation details. We first pre-train the backbone

MLB model on the VQA-1 [2] dataset, which contains over

100, 000 NFOV images and 300, 000 question-answer pairs

for training. Then, we plug the pre-trained model in all

the compared models and fine-tune the models on our VQA

360◦ training set for 150 epochs. We optimize our models

with the ADAM [27] optimizer and select the model with

the best performance on the validation set.

Evaluation metric. We use the top-1 accuracy for evalua-

tion. We report two types of accuracy: the average accuracy

i) over all the questions, and ii) over question types.

5.2. Analysis and Discussions

Table 3 summarizes the results on VQA 360◦ test set.

The cubemap-based model with TUCKER&DIFFUSION for

attention weights performs favorably against other models,

demonstrating the effectiveness of multi-level and diffused

attention on top of cubemaps representation for VQA 360◦.

In the following, we discuss several key observations.

Limited language bias. The top row (Q-type prior) in Ta-

ble 3 examines the dataset bias, which predicts the most

frequent answer of each question type. The inferior results

suggest a low language bias in our dataset. Specifically, for

“exist” type questions that only have two valid answers each

(i.e, “yes” or “no”), using language prior is close to random

guess. Machines need to rely on images to answer.
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Model Variants Overall avg Avg by type Scene Exist Counting Property Spatial

Q-TYPE PRIOR - 33.50 31.71 25.41 55.47 33.56 21.99 22.14

Equirectangular-based CENTRAL-CROP 53.39 54.07 60.66 75.00 47.10 50.16 37.45

Equirectangular-based RESIZE 54.21 55.77 68.46 75.66 47.31 51.48 35.96

Equirectangular-based RESNET-AVGPOOL 54.47 56.14 69.34 76.81 46.32 50.96 37.25

Equirectangular-based⋆ RESNET-AVGPOOL 54.15 55.55 67.48 77.17 46.17 49.04 37.90

Equirectangular-based DIRECT-SPLIT 54.77 56.59 71.36 75.75 46.68 49.56 39.62

Cubemap-based CUBEMAP-AVGPOOL 54.60 56.23 69.17 76.22 46.79 51.72 37.26

Cubemap-based TUCKER 57.71 59.07 69.89 77.23 46.53 48.24 53.47

Cubemap-based TUCKER&DIFFUSION 58.66 60.26 72.01 76.34 46.84 50.12 55.98

Cubemap-based⋆ TUCKER&DIFFUSION 54.09 55.54 67.65 76.16 45.91 48.60 39.39

Table 3: Quantitative results on the VQA 360◦ test set. The ⋆ models are trained from scratch on the VQA 360◦ training

set without pre-training on the VQA-1. The best result of each column is marked by the bold black color.

Equirectangular-based models. As shown in Table 3,

the RESNET-AVGPOOL model outperforms the CENTRAL-

CROP and RESIZE, indicating the poor applicability of crop-

ping and resizing to 360◦ images. Since 360◦ images have

large spatial coverage, in which objects might be of small

sizes, resizing will miss those small objects while central

cropping will lose 50% of the image content.

Cubemaps v.s. Equirectangular input. One major issue

of applying existing VQA models directly to the 360◦ im-

ages is the spatial distortion. This is justified by the fact

that all the equirectangular-based models are outperformed

by all the cubemap-based models (except the CUBEMAP-

AVGPOOL one) on the overall performance. Specifically, by

comparing the DIRECT-SPLIT and TUCKER&DIFFUSION,

whose main difference is the input, the 3 ∼ 4% perfor-

mance gap clearly reflects the influence of distortion. By

looking into different question types, we also observe con-

sistent improvements by applying cubemaps.

Pre-training. Comparing the models with ⋆ (trained from

scratch) and without ⋆ (with pre-training), the pre-trained

weights (from the VQA-1 dataset) benefits the overall per-

formance, especially for the cubemap-based models.

Attention. Applying cubemaps resolves one challenge of

VQA 360◦: spatial distortion. We argue that a sophisticated

way to aggregate cubemaps features to support spatial rea-

soning is essential to further boost the performance. This is

shown from the improvement by TUCKER&DIFFUSION or

TUCKER, compared to CUBEMAP-AVGPOOL: the former

two apply attention mechanisms guided by questions and

cubemap locations for multi-level attention. Specifically,

TUCKER&DIFFUSION outperforms CUBEMAP-AVGPOOL

by a notable 3.4% at Avg. by Q type, mostly from the “spa-

tial” question type. TUCKER&DIFFUSION with spatial dif-

fusion also outperforms TUCKER in all the question types.

Location feature. Concatenating l(j) with g
(j)
iq in (2)

and (4) enables our model to differentiate cubemaps. Ta-

ble 4 compares the TUCKER&DIFFUSION and TUCKER

with/without l(j). The location indicator leads to consistent

improvement, especially on the “spatial” type questions.

Model Avg. Avg. by Q type Spatial

TUCKER (w/o) 53.81 53.81 36.09

TUCKER (w/) 57.71 59.07 53.47

TUCKER&DIFFUSION (w/o) 54.91 56.51 39.13

TUCKER&DIFFUSION (w/) 58.66 60.26 55.98

Table 4: Comparison of w/ and w/o location feature.

Model Overall Scene Exist Counting Property Spatial

Human 84.05 88.95 91.79 71.58 89.97 85.25

Machine 59.80 68.89 77.12 49.65 45.81 61.97

Table 5: Results of human evaluation. We also include

the machine’s performance on the same 1,000 questions to

analyze the humans’ and machines’ gap.

Human Evaluation. We conduct a user study on our VQA

360◦ dataset. We sample 1, 000 image-question-answer

triplets from the test set and ask at least two different users

to answer each question. To ease the process, we give users

five candidate answers, including the correct answer and

four other answers that are semantically related to the ques-

tion. There are a total of 50 unique users participating in the

user study. We note that the annotators labeling our dataset

are not involved in the human evaluation to avoid any bias.

We summarize the results of human evaluation and

the machine’s prediction5 in Table 5. Humans achieve a

84.05% overall accuracy, which is at the same level as many

existing VQA datasets [2, 6, 46] and is much higher than an-

other dataset on indoor images [35], justifying the quality of

our VQA 360◦ dataset. Among the five question types, hu-

mans perform relatively poorly on “counting”, which makes

sense due to the complicated contents of 360◦ images and

the possible small objects. Overall, there is about ∼ 25%
performance gap between human and machines. The gap

is larger especially on “counting”, “property”, and “spatial”

types, suggesting the directions to improve algorithms so as

to match humans’ inference abilities.

5We use our best cubemap-based model TUCKER&DIFFUSION.
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Q: Which side of the window is the painting? GT: right side / Pred: right side

0.089 0.035 0.655 0.0500.132 0.039

Q: What room is depicted in the image? GT: hallway / Pred: hallway

0.214 0.036 0.248 0.2370.248 0.017

Q: Where can i find the bed? GT: at your left side/ Pred: at your left side

0.033 ~0.000 0.043 0.3840.540 ~0.000

Q: Which side of the door is the white board? GT: left side/ Pred: right side

0.025 ~0.000 0.086 0.6400.028 ~0.000

Figure 5: Visualization of attention. We use the cubemap-based model TUCKER&DIFFUSION as it performs the best. The

digits below the cubemaps indicate the attention across cubemaps. The heat maps indicate the attention within cubemaps.

Qualitative results. We present qualitative results in Fig-

ure 5. Besides showing the predicted answers, we visualize

the attention weights across cubemaps (by the digits) and

within cubemaps (by the heat maps). The cubemap-based

model with TUCKER&DIFFUSION can zoom in to the cube-

maps related to the questions, capture the answer regions,

and aggregate them to predict the final answers. Take the

question “Which side of the window is the painting?” for

example (the top-left one of Figure 5). The model puts high

attention on the cubemaps with windows and pictures and

is able to infer the relative location. For the question “What

room is depicted in the image?” (the top-right of Figure 5),

the model distributes attention to all cubemaps except the

top and bottom ones to learn information through them. We

also show a failure case in the bottom-right of Figure 5. The

question asks “Which side of the door is the whiteboard?”.

However, the model mistakenly recognizes the window as

the white board and incorrectly answers “right side”.

6. Discussion and Conclusion

We introduce VQA 360◦, a novel VQA task on a chal-

lenging visual domain, 360◦ images. We collect the first

VQA 360◦ dataset and experiment with multiple VQA

models. We then present a multi-level attention model to

effectively handle spatial distortion (via cubemaps) and per-

form sophisticated reasoning. Experimental results demon-

strate the need to explicitly model intrinsic properties of

360◦ images, while the noticeable gap between humans’

and machines’ performance reveals the difficulty of reason-

ing on 360◦ images compared to NFOV images.

We surmise that the gap may partially be attributed to

the hand-crafted cubemap cropping. On one end, objects

appear around the cubemap boundaries may be splitted.

On the other end, it requires specifically designed mecha-

nisms (e.g., attention diffusion (4)) to reason the spatial re-

lationship among cubemaps. These issues likely explain the

human-machine gap at the “counting” and “spatial” ques-

tions. Thus, to advance VQA 360◦, we suggest developing

image-dependent cropping that detects objectness regions

from the equirectangular images. We also suggest develop-

ing a back-projection-and-inference mechanism that back-

projects the detected objects into the 360◦ environment and

performs reasoning accordingly. Besides, the current ques-

tions are generated (or initialized) by templates. A future

work is to include more human efforts to increase the ques-

tion diversity. We expect our dataset and studies to serve as

the benchmark for the future developments.
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