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Abstract

In this paper we introduce Principal Filter Analysis (PFA),

an easy to use and effective method for neural network

compression. PFA exploits the correlation between filter

responses within network layers to recommend a smaller

network that maintain as much as possible the accuracy

of the full model. We propose two algorithms: the first

allows users to target compression to specific network prop-

erty, such as number of trainable variable (footprint), and

produces a compressed model that satisfies the requested

property while preserving the maximum amount of spectral

energy in the responses of each layer, while the second is a

parameter-free heuristic that selects the compression used

at each layer by trying to mimic an ideal set of uncorrelated

responses. Since PFA compresses networks based on the cor-

relation of their responses we show in our experiments that it

gains the additional flexibility of adapting each architecture

to a specific domain while compressing. PFA is evaluated

against several architectures and datasets, and shows con-

siderable compression rates without compromising accuracy,

e.g., for VGG-16 on CIFAR-10, CIFAR-100 and ImageNet,

PFA achieves a compression rate of 8x, 3x, and 1.4x with an

accuracy gain of 0.4%, 1.4% points, and 2.4% respectively.

Our tests show that PFA is competitive with state-of-the-art

approaches while removing adoption barriers thanks to its

practical implementation, intuitive philosophy and ease of

use.

1. Introduction

Despite decades of research, the design of deep neural
networks (DNNs) is often an empirical process. Practition-
ers frequently make design choices, such as the number
of layers, types of layer, number of filters per layer, etc.,
based on intuition or brute-force search. Nevertheless, the
strong performance of DNNs, together with GPU advances,
have led to a growing popularity of these techniques in both
academia and industry. Recent studies have unveiled some
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intrinsic properties of DNNs. For example, there is a consen-
sus that depth can accelerate learning, and that wider layers
help with optimization [3, 31, 41, 10]. However, in practical
applications, the size of these networks is often a limiting
factor when deploying on devices with constrained storage,
memory, and computation resources.

Another observed DNN property is that the responses of
a layer exhibit considerable correlation [13], inspiring the
idea of learning decorrelated filters [9, 43]. [9, 43] propose
a modified loss function to encourage decorrelation during
training and show that accuracy improves with decorrelated
filters. However, such algorithms focus on training and do
not address network compression. Our hypothesis is that

layers that exhibit high correlation in filter responses could

learn equally well using a smaller number of filters.

Principal Filter Analysis (PFA) draws from the recent
findings by letting the user start with an over-parametrized
network and then leverages the intra-layer correlation to
reduce the network size after training. PFA analyzes a trained
network and is agnostic to the training methodology and the
loss function. Inference is performed on a dataset, and the
correlation within the responses of each layer is used to
provide a compression recipe. A new, smaller architecture
based on this recipe can then be fine-tuned.

We propose two closed-form algorithms based on spec-
tral energy analysis for suggesting the number of filters to
remove in a layer:

PFA-En uses Principal Component Analysis (PCA) [23] to
allow a user to specify the proportion of the energy in
the original response that should be preserved in each
layer; since this operation is extremely fast, the user
can alternatively provide a network property, such as
footprint (or FLOPs), and different energy thresholds
can be iteratively tested until the requested property is
satisfied.

PFA-KL is a parameter-free approach that balances the
trade-off between compression and accuracy change.
PFA-KL uses Kullback-Leibler (KL) divergence [26]
to quantify the divergence between the current set of
responses and an ideal set of uncorrelated responses in
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order to identify the number of redundant filters.

Based on the PFA recommendation, filters that produce
maximally correlated responses are removed and the network
is fine-tuned. As shown in Sec. 4.1, using popular convolu-
tional networks and datasets such as VGG-16 on CIFAR-10,
CIFAR-100 and ImageNet, PFA achieves a compression rate
of 8x, 3x, and 1.4x with an accuracy gain of 0.4%, 1.4%
points, and 2.4% respectively. Our tests show that PFA is
competitive with state-of-the-art approaches while providing
the unique advantage of being practical to implement, intu-

itive to understand, and easy to use. Since PFA exploits the
correlation of the responses, its recommendations become
specific for a given domain. This specialization makes PFA
suitable also for the task of simultaneous compression and
domain adaptation, as shown in Sec. 4.3.

2. Related work

The field of network compression encompasses a wide
range of techniques that can be grouped into the following
families: quantization, knowledge distillation, tensor factor-
ization and network pruning.

Quantization algorithms compress networks by reducing
the number of bits used to represent each weight [51, 16, 42,
20, 52].

Knowledge distillation [22] aim to create a simpler
model that mimics the output of a more complex model.
Variations on this concept include [5, 4, 44, 7].

Tensor factorization algorithms exploit the redundancy
present in convolution layers by replacing the original ten-
sors with a sequence of smaller or sparser counterparts that
produce similar responses [14, 27, 24, 8, 35, 50, 55, 2, 39].

Network pruning is a family of techniques that com-
press networks by iteratively removing connections based on
the salience of their weights. Early work, like Optimal Brain
Damage [28] and Optimal Brain Surgeon [18], targeted fully
connected networks. Recent work can be divided into two
sub-families: sparse pruning [17, 47, 49, 48, 1, 6, 57, 11],
where individual neurons are removed, and structured prun-

ing [29, 21, 33, 36, 54], where entire filters are removed.
PFA falls within the family of structured network pruning.

Some of these techniques (e.g., [29]) require user defined
parameters that are hard to choose and whose effect on the
footprint is difficult to predict (see Sec. 4.2 for a more de-
tailed discussion). Others also require modification of the
loss function (e.g., [30]). In contrast, PFA-En has only one
and intuitive parameter, which is the proportion of the re-
sponse energy to be preserved at each layer, and PFA-KL is
parameter-free. Furthermore, instead of learning the saliency
of the filters during training by modifying the loss function,
PFA estimates it after training without requiring knowledge
of the training details. This makes PFA applicable to any
trained network, without the need to know its loss function

or training regime.
Within the structured pruning family, there are approaches

based on singular value decomposition (SVD) [53, 37, 40],
where a new set of filters are obtained by projecting the
original weights onto a lower dimensional space. Techniques
that make compression decisions based on weights, rather
than the responses, cannot take into account the specificity
of the task. PFA differs from these methods because SVD is
performed on the responses of the layers rather than on the
filter weights, and no projection is done. This is particularly
important for domain adaption applications, where a trained
network is specialized for a different task. As shown in
Sec. 4.3, PFA derives different architectures from the same
initial model when the responses are obtained from different
tasks (i.e., datasets).

Some methods also reason on the layer responses [29, 35,
39]. These techniques aim to find a smaller set of filters that
minimize the reconstruction error of the feature maps or the
response output. PFA has a different philosophy: it uses
the concept of correlation within the responses to identify
redundancy within a layer. In practice, this means that PFA
can compress all layers simultaneously, while the majority
of the techniques that use responses need to operate on one
layer at the time.

Finally, PFA is orthogonal to the quantization, tensor fac-
torization and distillation methods, and could be used as
a complementary strategy to further compress neural net-
works.

3. Principal Filter Analysis

In this section, the PFA-En and PFA-KL algorithms are
described in detail. Both algorithms share the idea of exploit-
ing correlations between responses in convolutional layers
and neurons in fully connected layers to obtain a principled
recommendation for network compression.

3.1. Definitions

PFA is inherently data driven and thus takes advantage of
a dataset {Xi} 2 R

M⇥I where Xi is the ith input data sam-
ple, M is the number of samples in the dataset, and I is the
input dimensionality. Typically, this dataset is the data used
to train the network, but it can also be a representative set
that covers the distribution of inputs likely to be encountered.
Without loss of generality, we assume that the input data
are images:{Xi} 2 R

M⇥H⇥W⇥C , where H is the image
height, W is the image width and C is the number channels.

Let T[`]
i 2 R

1⇥H[`]
⇥W [`]

⇥C[`]

be the output tensor pro-
duced by a given layer ` of a network on the ith input sam-
ple. Any operation in the network is considered a layer (e.g.,
batch normalization, ReLU, etc.). In this work, we analyze
the output of convolutional and fully connected layers.

For a convolutional layer `, let W
[`] 2
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R
f
[`]
h

⇥f [`]
w

⇥C[`−1]
⇥C[`]

be the set of C [`] trainable fil-
ters with a kernel of size f

[`]
h ⇥ f

[`]
w ⇥ C [`�1]. Therefore,

we can formally express T[`]
i produced by the convolutional

layer as T
[`]
i = W

[`] ⇤ T
[`�1]
i with T

[0]
i = Xi, where ⇤

denotes the convolution operator. We omit the bias term to
improve readability.

We define the response vector a[`]i 2 R
C[`]

of a given
layer ` with respect to an input Xi to be the spatially max-
pooled and flattened tensor T[`]

i (i.e., max-pooling over the
dimensions H [`] and W [`]). For fully-connected layers,
W

[`] 2 R
C[`−1]

⇥C[`]

, with C [`] being the number of neu-
rons in layer `. The output tensor is T[`]

i = W
[`]
T

[`�1]
i , and

since no pooling is required, we define the response vector
as a[`]i = T

[`]
i 2 R

C[`]

.

Let A[`] = [a
[`]
1 , . . . ,a

[`]
M ]> 2 R

M⇥C[`]

be the matrix
of responses of a generic layer ` given a dataset with M
samples. Given A

[`] we can compute its covariance matrix
2 R

C[`]
⇥C[`]

, and extract its eigenvalues λ
[`] 2 R

C[`]

,
sorted in descending order and normalized to sum to 1.

3.2. Compression recipes

The set λ[`] provides insight into the correlation of the
responses produced by layer `. The closer λ[`] is to a uni-

form distribution, the more decorrelated the response of the

filters and the more uniform their contribution to the overall

response energy. Conversely, the closer λ[`] is to a Dirac
�-distribution, the more correlated the filters. Our hypothesis
is that layers that exhibit high correlation could learn equally
well using a smaller number of filters.

We present two strategies that use λ
[`] and produce a

recipe with the goal of maximizing compression by reducing
correlation. Let a recipe Γ = {�[`]}, with �[`] 2 (0, 1], be
the set of compression factors applied to each of the L layers
included in the analysis. For example, �[3] = 0.6 means that
we keep 60% of the filters in layer 3.

Up to now the recipes only indicate how many filters
each layer should have. Once the correct number of filters
has been determined, we continue to choose which filters
should be kept. We call this filter selection and we outline it
in Sec. 3.2.1.

PFA-En: energy-based recipe. PCA can be used
for dimensionality reduction by performing a linear mapping
to a lower dimensional space that maximizes the variance
of the data in this space. This can be accomplished by
extracting the eigenvectors and eigenvalues of the covariance
matrix. The original data is then reconstructed using the
minimum number of eigenvectors that correspond to the
eigenvalues that sum up to the desired energy factor ⌧ .
Inspired by this strategy, we propose to keep the minimum
set of filters such that a fraction of response energy greater

or equal to a user defined energy, ⌧ , is preserved. We
define the energy at a given compression ratio for a layer as

E(�[`]) =
Pd�[`]

·C[`]e
k=1 �

[`]
k , and we propose to re-architect

the network according to the following recipe:

Γ
?
E(⌧) = {min �[`]} s.t. E(�[`]) � ⌧, 8`. (1)

The parameter ⌧ provides the user with the ability to guide
the compression ratio.

PFA-En has the advantage of being tightly connected
to well-established dimensionality reduction techniques
based on PCA, is simple to implement, and uses a single,
highly intuitive parameter. Furthermore, since evaluating the
size of a model (or its FLOPs) obtained at different energy
thresholds is easy and fast, it is straightforward to replace
the parameter ⌧ with the desired footprint F (or FLOPs)
after compression by solving iteratively the optimization:
Γ
?
foot(F) = argmax⌧ foot(Γ

?
E
(⌧))  F , where foot(·)

is a function that returns the footprint of a model given a
recipe. Being able to specify a target footprint instead of an
energy threshold gives PFA-En an even greater appeal for
practical use cases.

PFA-KL: KL divergence-based recipe. We propose an al-
ternative formulation to obtain a recipe Γ

?
KL, based on the

KL divergence. This formulation is a heuristic that frees PFA
from the use of any parameter. As previously mentioned,
a set λ[`] similar to a uniform distribution implies an un-
correlated response of the filters in layer `. Therefore, the
further λ[`] is from a flat distribution the more layer ` can be
compressed.

Let us define u[`] 2 R
C[`]

⇠ [[1, C [`]] as the desired uni-
form (i.e., flat) distribution (no correlation between filters),
and d = Dirac() as the worst case distribution (all filters
are perfectly correlated). We can measure the dissimilarity
of the actual set, λ[`], from the desired distribution, u[`],
as the empirical KL divergence KL(λ[`],u[`]). The upper
bound of which is given by uKL = KL(d,u[`]), while the
lower bound is 0. Note that the KL divergence is not sym-
metric, however, since d has only one point of support, uKL

can only be computed in one direction. Also note that one
could replace the KL divergence with any dissimalarity mea-
sure between distributions, such as �2 or the Wasserstein
metric [45].

Intuitively, when the actual set of eigenvalues is identical
to the ideal distribution (i.e., no correlation found) then we
would like to preserve all filters. Conversely, when the actual
set of eigenvalues is identical to the worst case distribution
(i.e., all filters are maximally correlated) then one single filter
would be sufficient. The proposed KL divergence-based
recipe is a mapping  : [0, uKL] 7! (0, 1]; a divergence
close to the upper bound results in a strong compression and
a divergence close to the lower bound results in a milder
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compression:

Γ
?
KL =

n

 
�

KL(λ[`],u[`]), uKL

�

o

, 8`. (2)

In this work, we use a simple linear mapping  (x, uKL) =
1� x/uKL. Other mappings were explored, leading to differ-
ent degrees of compression; however, we have observed that
a linear mapping produces good results that generalize well
across networks.

3.2.1 Filter selection

The recipes produced by PFA-En and PFA-KL provide the
number of filters, F [`] =

⌃

�[`] · C [`]
⌥

, that should be kept
in each layer, but do not indicate which filters should be
kept. Once a new compressed architecture is created the
question becomes how to initialize it. One option is to ini-
tialize it at random. In this case, it does not matter which
filters are chosen. An alternative is to select which filters
to keep and use their values for initialization, with the intu-
ition (verified in our experiments) that the use of previously
trained filters will improve convergence and, for the same
given training budget, lead to better accuracy than random
initialization. We do this by removing those filters in each
layer that are maximally correlated. For each filter in a given
layer we compute the `1-norm of the Pearson’s correlation
coefficients [38] with all the other filters , and remove the
filter with the largest norm. If more filters need to be re-
moved, we update the coefficients by removing those that
correspond to the previously selected filter, and iterate until
the desired number of filters has been removed. In the rare,
but theoretically possible, case in which two filters have the
same `1-norm we choose the one with the highest individual
correlation coefficient.

4. Experiments

4.1. Quantitative comparison

To evaluate PFA, we apply it to several architectures
and datasets, and we compare results to the state of the
art. We compare PFA to another method, the filter pruning
approach (FP)[29], that like PFA belongs to the family of
structured pruning algorithms. We also extend the compar-
ison to other families even if algorithms in those families
tend to be more complex and computationally demanding.
We compare against sparse pruning algorithms, such as the
network slimming approach (NS) [30], and the variational
information bottleneck approach (VIB) [11]. We also pro-
vide a comparison against a tensor facorization method: the
filter group approximation approach (FGA) [39].

For the comparison, we focus on the compression ratio
and the accuracy change, measured in percentage points
(pp), obtained by the compressed architectures. This enables
comparing various techniques in the same plot, even if the

accuracy of each original architecture is slightly different
because of different training strategies used. In App. B and
C, we provide the exact accuracy of the full and compressed
models, footprint, FLOPs, and all the hyper-parameters used
to train the models.

Ablation studies and random compression. In this set of
experiments we assess the impact of the PFA compression
strategies separately from the impact of the initialization of
the pruned network, i.e., the filter selection strategy. In addi-
tion, we try to understand how PFA compares to randomly
compressed networks and how close its solution is to the
optimal architecture (empirically defined).

In order to be able to repeat this experiment many times
we adopt a small convolutional network that we refer to
as SimpleCNN (see App. C.1 for the exact specification of
the network and the training hyper-parameters). Results are
shown on CIFAR-10 and CIFAR-100 [25]. The full model
is obtained by training using 10 random initializations – we
choose the initialization that leads to the highest test accuracy
and perform inference on the training set to obtain the re-
sponses (A[`]) at each layer needed for the PFA analysis. We
analyze all layers in parallel (one-shot, as opposed to an iter-
ative approach which would also be applicable to PFA and
likely to lead to even better results, but it would not be a fair
comparison with all other state-of-art algorithms) to obtain
PFA recipes. PFA-En is computed for the following energy
values: ⌧ 2 {0.8, 0.85, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99},
whereas PFA-KL is parameter-free and is computed once
per baseline network.

To evaluate different initialization strategies (i.e., random
vs filter selection), after creating the compressed architec-
ture according to a PFA recipe we perform two types of
fine-tuning. First, we retrain from scratch with 10 different
random weight initializations. Second, we retrain 10 times
using filter selection, and fine-tune the compressed network
starting from the weights of the selected filters. We report
the mean and standard deviation of the accuracy of each of
these 10 models. It is important to note that the retraining
is done without hyper-parameter tuning (we use the same
parameters used to train the full model). While this is a
sub-optimal strategy, it removes any ambiguity on how well
the parameters were tuned for the full model compared to the
compressed networks. In practice, one could expect to attain
even better results if parameter sweeping was performed on
the compressed networks.

An empirical upper bound of the accuracy at different
footprints is obtained by randomly choosing how many fil-
ters to remove at each layer, and by repeating this process a
sufficient number of times. The best result at each footprint
can be considered an empirical upper bound for that archi-
tecture and footprint. On the other hand, the result averaged
across all random searches is representative of how easy
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Figure 1. Results of different SimpleCNN compressed networks. Accuracy change in the y axis is reported in percentage points (error bars
show the standard deviation of multiple runs). Note how: (1) all PFA solutions lie close to the upper bound while random pruning severely
degrades accuracy; (2) in most cases filter selection strategy is better than random initalization.

(or difficult) it is to randomly compress a network without
hurting its accuracy. In these experiments we trained 300

randomly pruned architectures for each footprint.
Results are reported in Fig. 1. The first notable remark

(for both datasets and initialization strategies) is the consid-
erable gap between the upper bound (up-facing triangles)
and the average random search (crosses): this indicates, un-
surprisingly, that random pruning is not an effective strategy.
The second remark is that there exist smaller architectures
derived from the base model that can perform even better
than the full model. We attribute this result to the potential
of a smaller model to generalize better.

PFA-En (squares) and PFA-KL (circles) are consistently
better than the mean random search and very close to the
empirical upper bound. The use of filter selection (green)
improves in all approaches (even random search) compared
to random initialization (brown). Notably, when using PFA
with filter selection the accuracy for footprints above 40%
becomes even better than that of the full model.

Interestingly, at the 30% footprint mark a random ini-
tialization for PFA-En appears to be better than the use of
filter selection. It is possible that when keeping an extremely
small number of filters, the starting point provided by the
filter selection becomes a local minimum that is difficult to
escape. For thin layers in relatively small architectures (like
SimpleCNN), a random initialization may give more room
for exploration during the learning phase.

Overall, we have found that the filter selection strategy
converges faster during training and performs consistently
better across different architectures and datasets, hence,
from now on we will only report results using PFA with
filter selection.

CIFAR-10 and CIFAR-100. We repeated the experiments
above on known architectures and compared our results with
state-of-the-art techniques.

The architectures used are VGG-16 [46] (version pro-
posed by [56] for CIFAR) and ResNet-56 [19], with padding
in the skip-connections (refer to App. C.2 for the training
hyper-parameters and for a detailed explanation on how we
handle skip-connections with padding). We compare the
results of PFA with those reported by FP, VIB1, FGA2, and
NS (after a single iteration for a direct comparison with the
other methods).

As shown in Fig. 2, results are consistent irrespective
of the architecture and dataset: PFA is comparable to or
does better than more complex techniques that require
more computational resources such as NS and FGA. At
comparable footprints, VIB achieves a slightly higher
accuracy than PFA (around 1 pp), but again at higher
computational cost.

ImageNet. For the experiments on ImageNet [12], we train
and compress one baseline for each architecture. We retrain
the models obtained by PFA 3 times (using the same hy-
per parameters used to train the full model) and report the
mean and standard deviation of the Top-1 accuracy (we also
provide the Top-5 accuracy in the App. B).

The architectures used are VGG-16 [32] (fully con-
volutional) and ResNet-34, with projection in the skip-
connections (refer to App. C.3 for a detailed explanation

1Error of the original full models kindly provided by the authors of VIB.
2Number of trainable variables kindly provided by the authors of FGA.
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(a) VGG-16 on CIFAR-10 (b) ResNet-56 on CIFAR-10

(c) VGG-16 on CIFAR-100 (d) ResNet-56 on CIFAR-100

Figure 2. Results for VGG-16 and ResNet-56 on CIFAR-10 and CIFAR-100. Accuracy change in the y axis is reported in percentage points.
Note how the accuracy obtained by PFA is comparable to the state of the art, and how PFA works across different architectures.

(a) VGG-16 on ImageNet (b) ResNet-34 on ImageNet

Figure 3. Results on ImageNet. Accuracy change in the y axis is reported in percentage points. On VGG-16 PFA is comparable to FGA. On
ResNet-34, PFA is better than FP but FGA, in this specific experiment, achieves an even stronger compression.

on how we handle skip-connections with projections).

Results are shown in Fig. 3. On VGG-16, PFA achieves
better accuracy than FGA3, at comparable model sizes, until
a size of 50% of the full model, after which FGA maintains a
better accuracy. On ResNet-34 PFA achieves both a better ac-
curacy and stronger compression than FP. In this experiment,
FGA is extremely efficient and outperforms other techniques,
which is different than what we observed in previous exper-
iments, where PFA performed comparably (VGG-16 with

ImageNet) or better (VGG-16 with CIFAR-100) than FGA.

We have shown that PFA works consistently across differ-
ent architectures and datasets. In general, PFA is comparable
to the state of the art even without training hyper-parameters
search, and contrary to most state-of-the-art algorithms it
does not require tuning of its own parameters.

3Number of trainable variables kindly provided by the authors of FGA.
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On the complexity and scalability of PFA The complexity
of PFA (excluding the inference step), with respect to number
of filters and dataset size, is dominated by the the PCA
analysis which, for a given layer, is O(mn2 + n3), with n
being the number of filters, and m the number of samples.
For example, for ImageNet, m=1.2M, and assuming a VGG-
16 architecture with layers of size n = 64, 128, 256, 512,
and 4096, the time to compute PFA per layer is roughly
1.24s, 2.8s, 4.6s, 9.3s, and 127.5s respectively (single CPU
@ 2.30GHz). The complexity of the filter selection depends
only on the layer size. In the worst case the complexity is
O(rn2), where r is the number of filters to remove.

Considering that PFA has to run only once at the end of
the training step, the time consumed by PFA is negligible
compared to the whole training time. In exchange for this
negligible additional time, PFA provides the long-term bene-
fit of a smaller footprint and faster inference, which, in the
lifetime of a deployed network, including re-training when
new data becomes available, will quickly surpass the time
initially required by PFA.

Once the eigenvalue set λ[`] is computed for all layers,
generating PFA recipes with different energy values is ex-
tremely fast. Hence, the threshold in the PFA-En strat-
egy can conveniently be replaced with the target model
size or FLOPs. PFA-En can then be computed iteratively
with decreasing energy thresholds until the requested size
is achieved. This seemingly small change in the interaction
with the user is a great benefit since it is often difficult to re-
late algorithms parameters to practical characteristics (such
as the size) of the final model.

4.2. Discussion

All state-of-the-art techniques analyzed achieve great re-
sults in term of maintaining accuracy and reducing mem-
ory footprint and FLOPs. In general, even without training
hyper-parameter search, PFA yields competitive results. We
believe, however, that the biggest advantage of PFA is its
simplicity and efficacy compared to other techniques.

Often state-of-the-art algorithms are not adopted because
of the high friction required for their application. For exam-
ple, VIB requires the user to modify the network to perform
a sampling step during the forward pass, FGA requires an
optimization problem to be solved for each layer to decom-
pose a convolutional layer into a group of smaller operations
that approximate the output of the full layer, and NS requires
the training protocol to be modified to induce sparsity in
the full model. PFA is based on an intuitive idea: remove
filters that produce correlated responses. This makes its
implementation, application and adoption straightforward.

PFA does not need to modify any loss function, unlike NS
and VIB, a potential second barrier to adoption. This makes
it attractive because known hyper-parameters can be used
for the full model, and also makes PFA deployable as a

service: given a full model and a dataset, PFA can provide an
initialized smaller model (without needing to know the loss
function). Furthermore, while intuitively one might expect
that techniques that modify the loss function should obtain
better results (since the compression aspect is included in
the optimization) our experiments did not show a consistent
benefit compared to PFA.

All state-of-the-art techniques analyzed require user de-
fined parameters that need additional tuning and are difficult
to relate the FLOPs or the size of the compressed model. FP
needs a threshold to decide if the `1-norm of a filter is small
enough to be pruned. This process is non-trivial and requires
the user to choose the compression thresholds based on a
pre-analysis that provides insight on the sensitivity of each
layer to pruning. NS has two crucial parameters: the weight
of the sparsity regularizer, and the percentage of filters to
be pruned. The weight has a direct impact on the induced
sparsity, however, there is no intuitive way to set this pa-
rameter and it needs to be tuned for each architecture and
dataset. In addition, setting the same percentage of filters
to be pruned at each layer for the whole network ignores
the relative effect of those filters on the accuracy and the
footprint of the network. VIB requires a parameter to control
the influence of the information bottleneck term, which is
related to the compression achieved. FGA requires a param-
eter that defines the compression ratio for each layer. In both
algorithms, the tuning is different depending both on the
network-dataset combination and the layer depth. From the
results there seems to be no intuitive way to set this param-
eter other than by trial and error. In contrast, PFA requires
a single intuitive parameter (for example the desired model
size in PFA-En), or it is parameter-free (PFA-KL).

Lastly, compared to techniques based on weight analysis,
such as FP, PFA is based on the responses of a layer. This
means that different datasets used for the PFA analysis leads
to different and specialized models, as we will describe
in Sec. 4.3, which makes PFA a suitable candidate for the
task of simultaneous compression and domain adaptation.

4.3. Simultaneous compression and domain adap-
tation using PFA

By compressing networks based on their responses, rather
than their weights, the compressed networks become special-
ized for the target domain at hand: depending on the dataset
used to generate the responses the compressed architecture
will change. In this section, we show some examples of how
PFA modifies the same original architecture differently to
adapt to different target datasets, while taking advantage of
the original training.

Let us denote the initial domain used for training as DA;
in this test DA is CIFAR-100. We denote the domain used
for PFA as DZ . We generate different DZs by randomly
sampling classes out of the original 100 classes contained
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(a) Domain adaptation from CIFAR-100 (b) PFA recipes starting from CIFAR-100

Figure 4. Domain adaption from CIFAR-100. (a) PFA fine matches the accuracy of Full fine while using architectures more than 4x smaller.
PFA fine significantly outperforms the full model trained from scratch Full scratch. The vertical percentage labels show the PFA compression
ratio. In (b) recipes for VGG-16 trained on CIFAR-100 using PFA-KL with data from different target domains. Note how PFA exploits the
knowledge of the target domain, creating different recipes adapted to the task complexity.

in CIFAR-100. We generate two targets DZ of 10 classes
each (R1 and R2), and four targets DZ of 2 classes each (S1,
S2, S3, and S4). Refer to App. A for a detailed explanation
of the target domains used, as well as experiments adapting
from CIFAR-10 to the same DZ .

For each adaptation DA ! DZ we run the following
experiments using a VGG-16 model:

• Full scratch: Train from scratch on domain DZ .

• Full fine: Train from scratch on domain DA and fine-
tune on DZ .

• PFA scratch: Train from scratch on domain DA, run
PFA-KL on domain DZ and train the compressed archi-
tecture from scratch on DZ .

• PFA fine: Train from scratch on domain DA, run PFA-
KL on domain DZ and train the compressed architec-
ture using filter selection on DZ .

The results in Fig. 4(a) show how the PFA fine strategy
(red bars) performs similarly to the full fined tuned model
(Full fine, green bars), while obtaining models more than 4
times smaller. Moreover, the PFA fine strategy significantly
outperforms the full model trained from scratch on the target
domain (Full scratch, blue bars).

The compressed architectures generated by PFA,
Fig. 4(b), are different depending on the complexity of the
final task. Note how PFA obtains architectures with more fil-
ters for the 10 class subsets (R1 and R2) than for the 2 class
subset (S1, S2, S3, and S4). Even among the 2 class subset,
there is a small variation in the final architecture, reflecting
the different level of difficulty to distinguish between the
two target classes.

These results show how by analyzing the responses rather
than the weights, PFA is able to compress a network while
specializing it to different domains.

5. Conclusions

Two effective, and yet easy to implement techniques for
the compression of neural networks using Principal Filter
Analysis are presented: PFA-En and PFA-KL. These tech-
niques exploit the correlation of filter responses within layers
to compress networks without compromising accuracy. PFA
can be applied to the output response of any layer with no
knowledge of the training procedure or the loss function.
Our tests show that PFA is competitive with state-of-the-art
approaches while removing adoption barriers thanks to its
practical implementation, intuitive philosophy and ease of
use. PFA-KL is parameter free, and PFA-En has only a sin-
gle intuitive parameter: the energy to be preserved in each
layer or a desired network characteristic (such as a target
model size or FLOPs).

The flexibility of PFA makes it applicable to a wide va-
riety of architectures that we would like to investigate in
future: recurrent neural networks, models with attention,
and even word embedding.
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