
SmoothFool: An Efficient Framework for Computing Smooth Adversarial

Perturbations

Ali Dabouei, Sobhan Soleymani, Fariborz Taherkhani, Jeremy Dawson, Nasser M. Nasrabadi

West Virginia University

{ad0046, ssoleyma}@mix.wvu.edu, fariborztaherkhani@gmail.com,

{nasser.nasrabadi, jeremy.dawson}@mail.wvu.edu

Abstract

Deep neural networks are susceptible to adversarial ma-

nipulations in the input domain. The extent of vulnerability

has been explored intensively in cases of �p-bounded and

�p-minimal adversarial perturbations. However, the vul-

nerability of DNNs to adversarial perturbations with spe-

cific statistical properties or frequency-domain character-

istics has not been sufficiently explored. In this paper, we

study the smoothness of perturbations and propose Smooth-

Fool, a general and computationally efficient framework

for computing smooth adversarial perturbations. Through

extensive experiments, we validate the efficacy of the pro-

posed method for both the white-box and black-box at-

tack scenarios. In particular, we demonstrate that: (i)

there exist extremely smooth adversarial perturbations for

well-established and widely used network architectures, (ii)

smoothness significantly enhances the robustness of pertur-

bations against state-of-the-art defense mechanisms, (iii)

smoothness improves the transferability of adversarial per-

turbations across both data points and network architec-

tures, and (iv) class categories exhibit a variable range of

susceptibility to smooth perturbations. Our results suggest

that smooth APs can play a significant role in exploring the

vulnerability extent of DNNs to adversarial examples. The

code is available at https://github.com/alldbi/SmoothFool

1. Introduction

Despite revolutionary achievements of deep neural net-

works (DNNs) in many computer vision tasks [22, 46, 41,

42], carefully manipulated input samples, known as adver-

sarial examples, can fool learning models to confidently

make wrong predictions [40]. Adversarial examples are po-

tential threats to almost all applications of machine learn-

ing [2, 13, 18], but the case is more severe in the context

Figure 1: Comparing smooth APs with conventional APs.

Each column from left to right shows the adversarial image

and the corresponding APs computed by DeepFool [31],

SmoothFool (σg = 75) and IGSM [23], respectively, on

ResNet-101 [14]. The predicted label for each image is de-

picted above the column. Perturbations are magnified for a

better visibility.

of computer vision, particularly, due to the complexity of

tasks [36], huge cardinality of input spaces [43], and sen-

sitivity of applications [10, 16, 45, 38]. Analyzing DNNs

as differentiable transfer functions have led to substantial

studies exploring embedding spaces and their characteris-

tics in regard to training paradigms. However, the adver-

sarial behavior has highlighted the importance of studying

the topology of decision boundaries and their properties in

high dimensional data spaces [36, 15]. Considering a white-

box scenario where the network architecture and all its pa-

rameters are known, several approaches (attacks) have been

proposed to explore the robustness of decision boundaries

in the presence of �p-bounded [40, 12, 23] and �p-minimal

[31, 1, 33, 39, 29] adversarial perturbations (APs). How-

ever, the vulnerability of DNNs to APs with specific statis-

tical properties or frequency-domain characteristics, which

lie beyond the conventional �p-norm constraints, has re-

2665

mained less explored.

In this study, we seek to explore the landscape of ro-

bustness of DNNs to APs with modified frequency-domain

characteristics. Specifically, we focus on smooth APs due to

several advantages they offer compared to the conventional

APs. First, they are more physically realizable than non-

smooth APs since printing devices are critically less accu-

rate in capturing high frequency structures due to the sam-

pling noise [37]. Also, severe differences between adjacent

pixels in the printed adversarial examples are unlikely to be

accurately captured by cameras due to their low-pass spatial

frequency response [19]. Second, the high-frequency struc-

ture of conventional APs has provoked an intensive adop-

tion of explicit [32, 26, 34] and implicit [43, 27, 35] denois-

ing methods to mitigate the adversarial effect. However,

we demonstrate that a slight modification of local statis-

tics of APs causes a vital failure of state-of-the-art defenses.

Third, smoothness significantly enhances the transferability

of APs across classifiers and data points by improving the

invariance of perturbations to translation [6]. This improves

the performance of the attack in the black-box scenario

where the parameters of the target model are not known to

the adversary. Forth, smoothness enhances plausible deni-

ability and allows the attacker to disguise APs as natural

phenomena such as shadows. In this way, the magnitude of

APs can be increased notably since imperceptibility is less

important.

We formulate the problem of constructing smooth APs

according to a general definition of smoothness and exploit

the geometry of decision boundaries to find computation-

ally efficient solutions. Our main contributions are the fol-

lowings:

• We propose SmoothFool, a geometry inspired frame-

work for computing smooth APs which exploits the

topology of decision boundaries to find efficient APs.

• We analyze various properties of smooth APs and val-

idate their effectiveness for both the white-box and

black-box attack scenarios.

• We show the susceptibility of two major group of de-

fenses against smooth APs by breaking several state-

of-the-art defenses.

• We integrate SmoothFool with previous studies on uni-

versal APs and demonstrate the existence of smooth

universal APs that generalize well across data samples

and network architectures.

2. Related Work

2.1. Adversarial Attack

Despite the highly non-linear nature of DNNs, they

have been observed to exhibit linear characteristics around

the actual parameters of the model and the input samples

[12, 8, 9]. In particular, Goodfellow et al. [12] showed that

the prediction of DNNs can be changed drastically by trans-

lating the input sample toward the gradient of the classi-

fication loss. Hence, they proposed the fast gradient sign

method (FGSM) as a single step attack incorporating solely

the sign of gradients to craft APs. Kurakin et al. [23] im-

proved the performance of FGSM by adopting an iterative

procedure called IGSM. Moosavi et al. [31] proposed Deep-

Fool to find approximately �p-minimal APs by iteratively

translating input samples toward the linearized approxima-

tion of the closest decision boundary. Our methodology

builds on DeepFool to find minimal smooth APs.

Some prior studies have considered smoothness in adver-

sarial attacks. Sharif et al. [37] added a total variation (TV)

loss to the main objective of the attack to enhance the phys-

ical realizability of the resulting perturbations and showed

that smoothness of APs improves their effectiveness for the

real-world applications. Fong et al. [11] demonstrated that

smoothing important regions in the input example can dete-

riorate the confidence of prediction. They utilized this ob-

servation to interpret the decisions of DNNs. Hosseini et

al. [17] proposed constructing semantic adversarial exam-

ples by randomly shifting Hue and Saturation components

of benign samples in the HSV color space. Dong et al. [6]

demonstrated that robustness of DNNs to slight translations

can be exploited to improve the trasferability of adversarial

examples. Interestingly, the final perturbations crafted us-

ing their approach exhibited low-pass frequency response.

However, their methodology is applicable for a limited level

of smoothness since the prediction of DNNs is invariant for

solely small translations of the input sample.

Fundamentally, our work differs from previous ap-

proaches since we seek to find approximately �2-minimal

APs capable of offering arbitrary levels of smoothness.

Also, our main goal is to formulate and compute smooth

APs, not to find smooth adversarial examples, since the lat-

ter can critically destroy the structure of images.

2.2. Defense Methods

Since the first observation of APs, their noisy structure

has been harnessed to find defense strategies. Several stud-

ies have incorporated explicit denoising techniques to mit-

igate the adversarial effect. Liao et al. [26] showed that

the distribution of high-level representations in DNNs pro-

vides an effective guidance to denoise adversarial examples

and proposed the high-level representation guided denoiser

(HGD). Training DNNs using adversarial examples, known

as adversarial training [12, 27, 43], has been shown to pro-

vide a relative adversarial robustness. Adversarial training

can be considered as an implicit denoising technique which

reduces the sensitivity of predictions to slight changes in

the input domain. Manifold learning is another implicit de-

2666

noising defense. A well-known example for this type of de-

fense is MagNet [28] which deploys autoencoders for map-

ping input examples onto the manifold of natural examples.

Later, we utilize these defenses to evaluate the effectiveness

of smooth APs.

3. Smooth Adversarial Perturbations

3.1. Problem Definition

Let f : Rn → R
m be a classifier mapping input sample

x ∈ [0, 1]n to m classification scores fj(x), associated with

each class j ∈ {0, . . . ,m− 1}. The class predicted by the

network can be computed as:

c(x) = argmax
j

fj(x). (1)

The problem of constructing smooth APs can be formulated

as the following optimization problem:

argmin
r

||r||2 + λΩ(r) subject to:

1. c(x+ r) �= c(x),

2. x+ r ∈ [0, 1]n,

(2)

where r ∈ R
n is the AP, Ω(.) is a measure of roughness, and

λ is a Lagrangian coefficient controlling the trade-off be-

tween roughness and magnitude of the perturbation. Gener-

ally, the roughness of perturbations can be defined based on

their local variations. Such variations have an explicit inter-

pretation in the frequency domain where the power of each

frequency component captures the specific range of varia-

tions. Considering this perspective, we use a frequency re-

sponse function H to formulate the definition of roughness

since it can denote how much each frequency component

contributes to the intended roughness. For clarity, we sub-

stitute H with Hhp to highlight the high-frequency nature of

roughness and denote Hlp = 1−Hhp as the complementary

low-pass filter which defines the equivalent smoothness. We

use the total energy of the high-frequency components of r

as a general measure of roughness, and define Ω as:

Ω(r, Hlp) :=

� +∞

−∞

R(ω)2(1−Hlp(ω))
2dω, (3)

where R is the Fourier transformation of perturbation r,

and Hlp is the frequency response of a given low-pass filter

defining the range of acceptable smoothness, and is a free

parameter of the definition.

The perturbation r in our problem is represented as a

set of spatially discrete APs for each pixel location u ∈

{0, . . . , n− 1}1, and Ω can be conveniently computed in

the spatial domain as:

Ω(r;h) = ||r − r ∗ h||22, (4)

1Here we assume the input image x is a 1D signal, and later in the

experiments we adopt all formulations for 2D images.

Figure 2: Finding smooth AP for a linear binary classifier.

Red and blue dots show the �2 projection and smooth pro-

jection of x onto the decision boundary, respectively. For an

easier demonstration, x is assumed to belong to class −1.

where ∗ denotes convolution, and h is the discrete approx-

imation of Hlp in the spatial domain. In the rest of the pa-

per, our work builds on this definition of roughness (and,

equivalently, smoothness) and aims to find APs which are

relatively smooth based on any predefined h compared to

perturbations crafted by other contemporary attacks. Due

to the non-convex nature of the problem, we exploit the

geometric properties of the decision boundary of DNNs to

find a relaxed solution for the optimization problem given

in Equation 2.

3.2. Linearized solution

Based on previous findings [31, 20, 8], the decision

boundary of a differentiable classifier, f , around x can

be well approximated by a hyperplane passing through the

minimal �2 adversarial example xp corresponding to x, and

the normal vector w orthogonal to the decision boundary

at xp as H � {x : w�(x − xp) = 0}. We assume

xp and, consequently, w associated with each x is avail-

able, and later we utilize an appropriate contemporary at-

tack to compute xp and w. Having xp provides two ben-

efits. First, it allows us to linearize the closest decision

boundary around x. Second, we can reduce the problem

to a binary classification problem, where the goal of the at-

tack would be to compute the smooth perturbation r which

yields c(x + r) = c(xp). Consequently, we rewrite the

optimization problem given in Equation 2 as:

argmin
r

||r||2 + λΩ(r;h) subject to:

1. w�(x+ r)−w�xp = 0,

2. x+ r ∈ [0, 1]n.

(5)

In this setup, an efficient solution can be obtained from a

smooth projection of x onto the estimated hyperplane H .

Such a projection can be computed by translating x using

the adversarial perturbation r = ρ�w, where �w is a smooth

approximation of w, and ρ scales �w to map x + r on H

as:

ρ =
w�(xp − x)

w� �w . (6)

2667

Figure 3: A demonstration of the topology of the decision

boundary in the vicinity of data point x. U illustrates the

region where the decision boundary can be assumed to be

approximately flat. Smooth projection of x onto the esti-

mated hyperplane H often results in a solution out of U .

Figure 2 provides a simple visualization of this projec-

tion. It worth mentioning that for the linear binary classifier

choice of f , the optimal smooth perturbation has the closed-

form solution: r = −
f(x)

w� �w �w. Generally, the estimation �w
must hold two conditions to provide a valid solution for the

linearized problem. First, �w should not be orthogonal to

w. Second, the estimation should remove high-frequency

components of w in order to keep Ω(ρ�w;h) low. Without

loss of generality, we consider a low-pass filter g to esti-

mate �w by convolution as: �w = g ∗ w, since it is easy

to compute, and the only condition on g is that its cut-off

frequency should be less than the cut-off frequency of h.

The final smooth perturbation that can project x on H

can be computed as:

r =
w�(xp − x)

w�(g ∗w)
(g ∗w). (7)

In this formulation, the cut-off frequency of g is associ-

ated with λ in the optimization problem given in Equation

5 since it controls the smoothness of perturbation r. �2-

DeepFool [31] constructs adversarial examples which are

shown to be a good approximation of the �2-minimal adver-

sarial example for an input sample, and the assumption of

flat decision boundaries around the constructed examples is

believed to be practically valid [31, 29]. Therefore, we uti-

lize it to generate xp and estimate w using the first order

Taylor expansion of f at xp as:

w = ∇fc(xp)(xp)−∇fc(x)(xp). (8)

In practice, the high-frequency structure of the gradients of

DNNs increases the angle between w and �w. Consequently,

ρ in Equation 6 takes large values which often maps the in-

put sample outside the legitimate range [0, 1]n. In the next

section, we propose a smooth clipping technique to over-

come this problem.

Algorithm 1 SmoothClip

1: input: Image x, perturbation r, low-pass filter g, step size �.

2: output: Smoothly clipped perturbation rc.

3: Initialize rc ← r.

4: while max(x + rc) > 1 or min(x + rc) < 0 do

5: m0 = 1>0(−(x + rc)) ∗ g,

6: m1 = 1>0((x + rc) − 1) ∗ g,

7: ∆1 = max(x + rc − 1)m1,

8: ∆0 = min(x + rc)m0,

9: rc ← rc − �(∆1 + ∆0),

10: end while

11: return rc.

3.3. Validating Perturbations

The final adversarial example should reside inside the

valid range of the input domain. An ordinary approach to

hold this condition, especially in iterative attacks, is to clip

the resulting adversarial examples [23, 29]. The clipping

function, Clip, takes the constructed adversarial image and

truncates each pixel value independently to fall within the

valid range of the input space. However, applying this to

smooth perturbations as: rc = Clip(x + r) − x, will de-

teriorate the smoothness of perturbation. This is because

the clipping function truncates each pixel individually and

discards the local correlation between neighborhood pertur-

bations. Specifically, this issue happens at edges and high-

frequency areas of x as shown in Figure 5. A closed-form

solution for smooth clipping, which should consider neigh-

borhood correlation of perturbations (based on g), results

in a high complexity solution. We propose a simple and

iterative approach for smoothly clipping the out-of-bound

pixels. In the ith iteration, when the range of x + ri re-

mains out of the valid range, we compute masks m0 and

m1 as indicators of pixels which exceed the valid bound as:

mi
0 = 1>0(−(x+ ri)), (9)

mi
1 = 1>0((x+ ri)− 1), (10)

where 1>0(.) is an indicator function that outputs 1 for el-

ements greater than zero. To incorporate the neighborhood

correlation of perturbations, we use the exact low-pass filter

g used in Equation 7 to propagate the out-of-bound error

to the neighborhood perturbations as: mi
1 ← mi

1 ∗ g and

mi
0 ← mi

0 ∗ g. Then, using a step size � and maximum

value of the out-of-bound error, we adjust the perturbation

as:

ri+1 = ri − �max(x+ ri − 1)mi
1

−�min(x+ ri)mi
0.

(11)

This iterative algorithm terminates when all pixels in x+ri

reside within the valid range. We refer to this algorithm as

SmoothClip, and Algorithm 1 summarizes its functionality.

3.4. General Solution

In a general case for a non-linear classifier f , there is no

guarantee that perturbations computed by Equation 7 cause

2668

Figure 4: Visual demonstration of increasing smoothness of APs. Each set of images, from left to right, show adversarial

examples and smooth APs computed for samples from ImageNet, CIFAR-10, and MNIST datasets on ResNet-101, ResNet-

18, and LeNet architectures, respectively. Samples are from ‘coucal’, ‘dog’, and ‘6’ classes and misclassified as ‘robin’,

‘bird’, and ‘0’.

Figure 5: An example of applying a normal clipping on a

smooth AP. Left: a benign sample correctly classified as

‘strawberry’ by VGG16. Middle: an adversarial example

classified as ‘pineapple’. Right: the perturbation after nor-

mal clipping.

input samples to pass the actual non-linear boundary. Fig-

ure 3 demonstrates a visualization of this fact. To overcome

this problem, we adopt an iterative procedure. In each itera-

tion, using the closest adversarial example, xi
p, correspond-

ing to the sample xi, we linearize the decision boundary and

compute the smooth projection of xi on the approximated

hyperplane using Equation 7.

Afterward, we smoothly rectify the resulting perturba-

tion, r, and repeat this procedure until c(xi) �= c(x0), as

detailed in Algorithm 2. Here, the smoothness of the final

perturbation depends on the smoothness in each iteration.

Consider rtot = xi − x0 =
�i

j=0 r
j , where i is the total

number of iterations, and rj is the jth smooth AP. It can

be shown that the roughness of the overall perturbation is

bounded as: Ω(rtot;h) ≤ i2 maxj Ω(r
j ;h). To compute

an AP with the desired level of roughness defined by h, we

select g such that ∀j : Ω(rj ;h) � ||rj ||22, i.e., the cut-

off frequency of g should be smaller than h. In practice,

maxj Ω(r
j ;h) � i−2, i.e., even for a significantly smooth

choices of g the algorithm converges in few iterations.

4. Experiments

4.1. Setup

We evaluate our attack on three datasets including the

test set of MNIST [25], the test set of CIFAR-10 [21], and

Algorithm 2 SmoothFool

1: input: Image x, low-pass filter g.

2: output: Smooth perturbation r.

3: Initialize x0
← x, i ← 0.

4: while cf (x
0) = cf (x

i) do

5: rp = DeepFool(xi),

6: xp = xi + rp,

7: wi = ∇fc(xp)(xp) − ∇fc(x)(xp),

8: �wi = g ∗ wi,

9: ri =
wi�(xi

p − xi)

wi� �wi
�wi,

10: ri
←SmoothClip(xi, ri, g),

11: xi+1
← xi + ri,

12: i ← i + 1,

13: end while

14: return xi
− x0.

10, 000 samples from the validation set of ILSVRC2012 [5]

(10 images per each class). For the MNIST dataset, a two-

layer fully-connected network (FC2) and a LeNet [24] ar-

chitecture are used. For the CIFAR-10 dataset, we use a

VGG-F [3] and ResNet-18 [14] architectures. For the Im-

ageNet dataset, we consider VGG16 and ResNet-101. The

accuracy of each model on benign samples is shown in Ta-

ble 2. We set the step size � of the SmoothClip to 1, 0.5, 0.1
for MNIST, CIFAR-10, and ImageNet respectively, which

results in a fast and reasonable performance.

Defining smoothness. We define smoothness based on the

Gaussian blur function since it is practical and the cut-off

frequency can be easily modified by the standard deviation.

We assume h and g to be Gaussian blur filters with isotropic

standard deviations σh and σg , respectively. In this setup,

selecting any σg>σh will minimize the roughness defined

by h. Increasing σg improves the smoothness of APs but

reduces the performance of the attack. To implement the

Gaussian kernel, we set the kernel width to 5σ.

Comparisons. For σg � 1, the proposed approach con-

verges to DeepFool [31]. Hence, we use it as a baseline

to compare magnitude of the generated perturbations. For

the second baseline, we develop an attack based on [37]

2669

Figure 6: a, b, c) Fooling rate of the attack versus smoothing factor σg on MNIST, CIFAR-10 and ImageNet, respectively. d)

Magnitude of perturbations vs. σg on ImageNet.

by replacing the classical TV loss term with the roughness

penalty Ω(r;h) from Equation 4 to provide a fair compari-

son framework as:

argmin
r

�
− Jc(f(x+ r), yx) + λsΩ(r;σh)

�
, (12)

where Jc is the cross-entropy loss function, and yx denotes

the ground truth label of sample x. We refer to this method

as the iterative smooth (IS) attack, and optimize it using

gradient descent with a initial step size (learning rate) of

10−3, and decay of 0.5 per each 100 iterations. We set λs

to 0.1, 0.01 and 0.05 for MNIST, CIFAR-10, and ImageNet,

respectively, which results in the most possible smooth per-

turbations for σh=1. We consider this attack as the second

baseline. We also compare the proposed method to the se-

mantic adversarial examples given in [17], and refer to it

as the color-shift (CS) attack, and consider it as the third

baseline. We set the number of random trails of the CS al-

gorithm to 100. Since CS adds perturbations in the HSV

color space, we compute the average magnitude of pertur-

bations for this attack in the HSV space to provide a fair

comparison (the magnitude of APs in RGB color space is

observed to be approximately 10 times greater).

Evaluation metrics. We measure the fooling rate of the at-

tack and average smoothness of constructed APs. The fool-

ing rate is defined on the set of correctly classified benign

samples since it provides a more robust measure to evaluate

the attack. For the sake of brevity of explaining results, we

define σA%
g as the maximum value of σg (minimum among

network architectures) that results in a A% fooling rate.

In order to evaluate the smoothness of constructed APs,

we measure the expected roughness Ω = EDs
[Ω(rx,h)],

where rx is the AP constructed for x, and Ds is the set of

successfully attacked samples. This measure is sensitive to

the magnitude of perturbations. Thus, we develop a second

measure by normalizing Ω over the total power of pertur-

bations as: Ωn =EDs
[Ω(rx,h)/||rx||

2
2]. Indeed, Ωn rela-

tively measures how much of the total power of the APs is

occupied by high-frequency components according to h.

4.2. General Performance

Figure 6 (a-c) shows the fooling rates of SmoothFool

versus σg . We observe that the pair (σ100%
g ,σ20%

g) for

Execution time (sec.)

Dataset Net. DF IS CS SF1 SF2 SF3

MNIST
1 0.02 1.43 - 0.03 0.07 0.43

2 0.02 1.94 - 0.03 0.13 0.47

CIFAR-10
3 0.06 8.25 0.03 0.07 0.11 0.38

4 0.12 10.43 0.06 0.13 0.16 0.51

ImageNet
5 0.41 24.53 0.19 0.55 0.59 1.13

6 0.87 29.47 0.24 0.94 1.22 1.49

Table 1: Comparing the execution time of the algorithm to

other attacks. SF1, SF2 and SF3 are SmoothFool with dif-

ferent smoothing levels σg1 , σg2 and σg3 which are set to be

{1, 3, 5}, {1, 5, 10}, and {1, 10, 20} for MNIST, CIFAR-10

and ImageNet, respectively. Numbers in the second column

are associated with corresponding network architectures in

Table 2.

Figure 7: Examples of extremely smooth adversarial per-

turbations computed for ResNet-18 and CIFAR-10 dataset

with σg = 200.

MNIST, CIFAR-10 and ImageNet is (4.1, 7.8), (8.4, 124.4)
and (19.3, 165.3), respectively. As expected, the fooling

rate is highly dependent on the smoothing factor σg . How-

ever, the fooling rate remains high for significantly large

(compared to the size of the input image) values of σg on

ImageNet and CIFAR-10. For instance, σ50%
g for CIFAR-10

is 32.8 which is approximately equal to the width of input

images and shows that it is possible to fool the classifier on

50% of samples solely by adding a carefully selected con-

stant value to all pixels of each color channel. The magni-

tude of smooth APs versus smoothness is depicted in Figure

6 (d). Increasing smoothness results in larger magnitudes of

APs since the projection of �w onto w will become smaller.

However, smoothness of perturbations allows larger magni-

tudes since they are not as perceptible when compared to

the noisy structure of contemporary APs.

We observe in Table 2 that SmoothFool with σg = 2

2670

Dataset Network
Acc.

(%)

F.Rate (%) Ω × 103 @ σh=1 Ωn × 103 @ σh=1 Ex[||rx||2] @ σg

IS CS DF IS CS SF DF IS CS SF DF IS CS SF

MNIST
1-FC2 98.6 98.0 - 783 591 - 334 511 308 - 63 1.17 2.81 - 1.76

2-LeNet 99.1 94.1 - 890 677 - 352 532 338 - 68 1.23 3.18 - 2.32

CIFAR-10
3-VGG-F 93.1 85.4 93.4 288 203 184 114 891 216 163 57 0.19 3.14 4.42 1.60

4-ResNet-18 93.3 87.8 89.1 310 206 199 127 959 287 175 65 0.21 3.63 4.93 1.60

ImageNet
5-VGG16 71.5 57.8 91.1 111 89 104 29 871 358 238 51 0.25 4.90 7.71 0.58

6-ResNet-101 77.3 62.6 92.7 108 83 95 16 827 300 207 36 0.28 4.82 7.56 0.55

Table 2: Comparing SmoothFool (SF) to DeepFool (DF) [31], iterative smooth (IS) [37, 7], and color-shift (CS) [17] attacks.

To satisfy smoothness based on σh=1, σg is set to 2 for all datasets. Fooling rates of SF and DF are >99.9% on all datasets.
.

VGG-F ResNet-18

Class
σg σg

20 60 100 20 60 100

airplane 75.0 29.5 25.0 67.3 34.7 28.2

automobile 58.7 10.8 6.5 33.3 6.6 2.2

bird 93.4 65.2 52.1 65.1 41.8 32.5

cat 100 58.3 43.7 65.3 21.1 17.3

deer 87.2 60.0 49.0 78.0 40.2 36.0

dog 78.7 48.9 40.4 75.1 55.5 52.7

frog 88.8 51.1 46.6 68.9 44.8 41.3

horse 74.5 29.0 23.6 70.3 25.9 22.2

ship 79.0 32.5 25.5 81.4 35.1 29.6

truck 73.9 32.6 21.7 68.5 31.4 22.8

all 83.8 45.8 37.6 67.2 33.0 27.9

Table 3: Per-class fooling rate (%) of SmoothFool for three

values of σg on the CIFAR-10 dataset. Bold and underlined

values show the fooling rate on classes with highest and

lowest robustness against smooth APs, respectively.

on all datasets, crafts significantly smoother (based on Ω

and Ωn with σh = 1) APs compared to the baseline at-

tacks for the smoothness, while the magnitudes of APs are

solely 1.8x larger than the state-of-the-art �2-minimal APs

crafted by DeepFool. In addition, the execution time of

the algorithm detailed in Table 1 shows that the proposed

method computes APs (with fooling rate > 99%) at least

20x faster than the IS method (with fooling rate � 65% on

ImageNet). Figure 4 shows some examples of smooth APs

computed for different levels of smoothness. We observe

that each class responds differently as the smoothness of

APs increases. Table 3 shows the per-class fooling rate of

the attack on CIFAR-10. Smooth perturbations at σg = 100
fool the VGG-F classifier on more than 50% of samples

of the ‘bird’ class, while they are approximately not effec-

tive for the ‘car’ class. This shows that some classes are

severely sensitive to smooth perturbations while other ex-

hibit lower sensitivity. The network architecture has a direct

effect on this observation since the most sensitive class to

smooth APs for each specific value of σg is different among

network architectures.

Figure 7 demonstrates some examples of extremely

smooth APs on CIFAR-10, showing a similar behavior (in

RGB color space) as color-shifted adversarial examples

[17]. However, as the method in [17] randomly shifts Hue

and Saturation of benign samples, it often generates odd ad-

versarial examples such as ‘blue apples’ or ‘red lemons’

Fooling rate under defense (%)

Defense IGSM DF CS SF1 SF2 SF3

Adv. 32.6 15.6 64.5 58.6 70.7 78.0

PGD 21.0 12.3 61.4 57.2 67.3 72.8

Ens. 18.7 14.0 62.2 54.5 62.8 73.6

SAT 22.8 37.2 21.0 11.5 42.9 53.4

HGD 9.3 11.2 46.9 43.7 57.2 66.2

MagNet 10.7 8.9 25.1 46.4 65.5 52.6

Table 4: Evaluating attacks under different defense strate-

gies on a ResNet-18 trained on CIFAR-10. SF1, SF2, and

SF3 denote the proposed algorithm with σg of 1, 3, and 5,

respectively.

which are no longer adversarial examples since the con-

ceptual evidence of objects is destroyed. However, since

SmoothFool finds relatively small smooth perturbations, the

whole concept of an object will not change drastically after

the attack.

Performance under white-box defenses. Here, we eval-

uate the effectiveness of smooth perturbations against de-

fense methods. First, we evaluate the attack under defenses

based on adversarial training on FGSM (Adv.) [12], projec-

tile gradient descent (PGD) [27] and ensemble (Ens.) [43]

adversarial examples. We consider an additional defense of

training on adversarial examples computed by the proposed

SmoothFool with σg = 1, and refer to it as Smooth Adver-

sarial Training (SAT). Second, we consider the high-level

guided denoiser (HGD) [26] as a denoising based defense

and MagNet [28] as a defense which evaluates adversarial

examples using a learned distribution of natural samples. In

all experiments, we assume that attacks have zero knowl-

edge about the defense models.

Table 4 shows the performance of SmoothFool under

defenses. Results suggest that increasing the smoothness

of APs elevates the chance of bypassing defense methods.

Such a characteristic had been observed before in adversar-

ial examples constructed by spatial transformations [44, 4].

Smooth APs with σg = 5 successfully bypass HGD de-

fense and defenses based on adversarial training on more

than 60% of samples. Similarly, the CS attack shows sig-

nificant robustness against all defenses except MagNet. A

reasonable explanation is that although the CS attack gen-

2671

Figure 8: Smooth universal APs crafted for VGG16 archi-

tecture (best viewed in color).

erates relatively smooth APs compared to conventional at-

tacks, changing the Hue and Saturation of images consider-

ably pushes samples outside the distribution of natural sam-

ples leaned by MagNet. SmoothFool bypasses MagNet by

a notable margin which indicates the closeness of generated

samples to the distribution of natural images. However, for

large values of σg , the magnitude of smooth APs takes large

values, and thus, degrades the fooling rate of SmoothFool

against MagNet defense. Furthermore, we observe that SAT

defense provides a relative robustness against smooth APs

constructed by σg = 1, but is susceptible to smoother per-

turbations. This suggest that the frequency components of

APs can play a crucial role in bypassing adversarial training

defenses trained on examples constructed by APs of differ-

ent frequency components.

Black-box performance and ablation on smoothing

functions. Here, we evaluate the black-box performance

of smooth APs. Since our algorithm computes �2-minimal

perturbations, we scale smooth APs to have the maximum

�∞-norm of 16 for pixel values in range 255 based on the

conventional setting for black-box attacks on ImageNet [6].

We consider two additional smooth functions including lin-

ear and uniform kernels to evaluate the effect of smoothing

functions on fooling rates and transferability of APs. The

uniform kernel of size k has all values equal to 1
k2 . The

linear kernel of size k has the maximum value of 4
k2 at the

center and minimum value of zero at edges. Other values

are the linear interpolation of the min. and max. values.

Table 5 presents the results for this experiment. The fool-

ing rate of attacks is 100% when the source and target mod-

els are the same. This suggests that the type of smooth-

ing functions does not constrain the performance of APs.

Hence, a broad range of smoothing functions can be de-

ployed for generating smooth APs. Transferability of ad-

versarial examples consistently improves as the smoothness

of perturbations increases. This demonstrates that smooth-

ness increases the transferability of adversarial examples for

black-box attacks which validates the results reported by

Dong et al. [6].

Universal adversarial perturbations.

We integrate the proposed approach with the universal

adversarial perturbations (UAP) [30] to explore the possi-

bility of finding smooth UAPs. The implementation detail

Net. Smoothing Param. VGG16 ResNet101 Inc-V3

- - 100 12.6 8.9

V
G

G
1
6

Gaussian
σ = 5 100 15.8 13.6
σ = 10 100 20.7 15.3

Linear
k = 25 100 17.7 11.6
k = 50 100 23.5 14.1

Uniform
k = 25 100 16.8 12.0
k = 50 100 21.8 14.6

- - 15.2 100 15.0

R
es

N
et

1
0
1 Gaussian

σ = 5 17.0 100 18.8
σ = 10 19.9 100 22.5

Linear
k = 25 19.8 100 16.9
k = 50 22.8 100 19.7

Uniform
k = 25 18.6 100 17.3
k = 50 21.0 100 22.1

Table 5: Transferability of smooth perturbations for black-

box attack. Columns show source networks and attack pa-

rameters, and rows show the target models.

σg VGG16 RNet101 RNet152 DNet161 Inc-V3

0 78.3 64.8 63.4 52.9 54.6

1 79.6 66.0 66.8 53.2 57.8

5 82.2 69.9 70.3 57.6 58.6

10 84.5 68.7 69.1 55.9 61.6

Table 6: Transferability of universal smooth APs computed

for VGG16 accross data points and network architectures.

and the integrated algorithm is available in the Supplemen-

tary. We compute smooth UAPs for VGG16 and then evalu-

ate their transferability on four networks including ResNet-

101, ResNet-151, DenseNet-161, and Inception-V3. Table

6 demonstrates the performance of smooth UAPs versus

smoothness. Increasing smoothness enhances the transfer-

ability of APs across both the data points and network archi-

tectures. The transferability on 3 networks deteriorates for

σg > 5. We attribute this observation to the theoretical fact

that increasing smoothness also increases the magnitude of

APs. Hence, with the same threshold for the maximum �∞-

norm of smooth UAPs, there always exist a σg after which

the transferability decreases.

5. Conclusion

In this study, we explored the vulnerability extent of

DNNs to smooth APs by proposing SmoothFool, a frame-

work for computing �2-minimal smooth APs. The method-

ology is developed based on a broad definition of smooth-

ness and can be extended to pose any frequency-domain

constraint on perturbations. Through extensive experi-

ments, we validated the effectiveness of smooth APs on

deep classifiers robustified by two major group of defense

strategies. Smoothness of perturbations improves the trans-

ferability of adversarial examples across network archi-

tectures and data points. Furthermore, we observed that

class categories exhibit variable susceptibility to smooth

perturbations. Our results suggest that APs with modified

frequency-domain characteristics can provide a new and

powerful tool for evaluating the adversarial vulnerability.

2672

References

[1] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In 2017 IEEE Symposium on Security

and Privacy (SP), pages 39–57. IEEE, 2017.

[2] N. Carlini and D. Wagner. Audio adversarial examples: Tar-

geted attacks on speech-to-text. In 2018 IEEE Security and

Privacy Workshops (SPW), pages 1–7. IEEE, 2018.

[3] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[4] A. Dabouei, S. Soleymani, J. Dawson, and N. M. Nasrabadi.

Fast geometrically-perturbed adversarial faces. In IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

2019.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[6] Y. Dong, T. Pang, H. Su, and J. Zhu. Evading defenses to

transferable adversarial examples by translation-invariant at-

tacks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4312–4321, 2019.

[7] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,

C. Xiao, A. Prakash, T. Kohno, and D. Song. Robust

physical-world attacks on deep learning visual classification.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1625–1634, 2018.

[8] A. Fawzi, S. M. Moosavi Dezfooli, and P. Frossard. The

robustness of deep networks-a geometric perspective. IEEE

Signal Processing Magazine, 34, 2017.

[9] A. Fawzi, S.-M. Moosavi-Dezfooli, P. Frossard, and

S. Soatto. Empirical study of the topology and geometry

of deep networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[10] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox. Ad-

versarial examples for semantic image segmentation. arXiv

preprint arXiv:1703.01101, 2017.

[11] R. C. Fong and A. Vedaldi. Interpretable explanations of

black boxes by meaningful perturbation. In 2017 IEEE in-

ternational conference on computer vision (ICCV), pages

3449–3457. IEEE, 2017.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-

ence on Learning Representations (ICLR), 2015.

[13] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and

P. McDaniel. Adversarial examples for malware detection.

In European Symposium on Research in Computer Security,

pages 62–79. Springer, 2017.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[15] M. Hein and M. Andriushchenko. Formal guarantees on the

robustness of a classifier against adversarial manipulation. In

Advances in Neural Information Processing Systems (NIPS),

pages 2266–2276, 2017.

[16] J. Hendrik Metzen, M. Chaithanya Kumar, T. Brox, and

V. Fischer. Universal adversarial perturbations against se-

mantic image segmentation. In Proceedings of the IEEE In-

ternational Conference on Computer Vision (ICCV), pages

2755–2764, 2017.

[17] H. Hosseini and R. Poovendran. Semantic adversarial exam-

ples. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 1614–

1619, 2018.

[18] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and

P. Abbeel. Adversarial attacks on neural network policies.

arXiv preprint arXiv:1702.02284, 2017.

[19] S. T. Jan, J. Messou, Y.-C. Lin, J.-B. Huang, and G. Wang.

Connecting the digital and physical world: Improving the

robustness of adversarial attacks. In The Thirty-Third AAAI

Conference on Artificial Intelligence (AAAI’19), 2019.

[20] S. Jetley, N. Lord, and P. Torr. With friends like these, who

needs adversaries? In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 10772–10782, 2018.

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[23] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-

ples in the physical world. arXiv preprint arXiv:1607.02533,

2016.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[25] Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten

digit database. AT&T Labs [Online]. Available: http://yann.

lecun. com/exdb/mnist, 2, 2010.

[26] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu. De-

fense against adversarial attacks using high-level representa-

tion guided denoiser. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[27] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and

A. Vladu. Towards deep learning models resistant to ad-

versarial attacks. In International Conference on Learning

Representations (ICLR), 2018.

[28] D. Meng and H. Chen. Magnet: a two-pronged defense

against adversarial examples. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 135–147. ACM, 2017.

[29] A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard. Sparse-

fool: a few pixels make a big difference. arXiv preprint

arXiv:1811.02248, 2018.

[30] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and

P. Frossard. Universal adversarial perturbations. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1765–1773, 2017.

[31] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-

fool: a simple and accurate method to fool deep neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2574–2582, 2016.

2673

[32] S.-M. Moosavi-Dezfooli, A. Shrivastava, and O. Tuzel. Di-

vide, denoise, and defend against adversarial attacks. arXiv

preprint arXiv:1802.06806, 2018.

[33] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,

and A. Swami. The limitations of deep learning in adversar-

ial settings. In Security and Privacy (EuroS&P), 2016 IEEE

European Symposium on, pages 372–387. IEEE, 2016.

[34] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer.

Deflecting adversarial attacks with pixel deflection. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 8571–8580, 2018.

[35] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-

GAN: Protecting classifiers against adversarial attacks using

generative models. In International Conference on Learning

Representations (ICLR), 2018.

[36] A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Gold-

stein. Are adversarial examples inevitable? In International

Conference on Learning Representations (ICLR), 2019.

[37] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Ac-

cessorize to a crime: Real and stealthy attacks on state-of-

the-art face recognition. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 1528–1540. ACM, 2016.

[38] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li,

A. Rahmati, F. Tramer, A. Prakash, and T. Kohno. Physical

adversarial examples for object detectors. In 12th {USENIX}
Workshop on Offensive Technologies ({WOOT} 18), 2018.

[39] J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fool-

ing deep neural networks. arXiv preprint arXiv:1710.08864,

2017.

[40] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199, 2013.

[41] F. Taherkhani, H. Kazemi, A. Dabouei, J. Dawson, and N. M.

Nasrabadi. A weakly supervised fine label classifier en-

hanced by coarse supervision. In Proceedings of the IEEE

International Conference on Computer Vision, pages 6459–

6468, 2019.

[42] F. Taherkhani, H. Kazemi, and N. M. Nasrabadi. Matrix

completion for graph-based deep semi-supervised learning.

In Thirty-Third AAAI Conference on Artificial Intelligence,

2019.

[43] F. Tramr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,

and P. McDaniel. Ensemble adversarial training: Attacks

and defenses. In International Conference on Learning Rep-

resentations (ICLR), 2018.

[44] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song.

Spatially transformed adversarial examples. arXiv preprint

arXiv:1801.02612, 2018.

[45] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial examples for semantic segmentation and object

detection. In Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), 2017.

[46] Y. Zhang, K. Lee, and H. Lee. Augmenting supervised neu-

ral networks with unsupervised objectives for large-scale im-

age classification. In International Conference on Machine

Learning (ICML), pages 612–621, 2016.

2674

