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Abstract

Even though object detection is a popular area of research
that has found considerable applications in the real world, it
has some fundamental aspects that have never been formally
discussed and experimented. One of the core aspects of
evaluating object detectors has been the ability to avoid
false detections. While major datasets like PASCAL VOC
or MSCOCO extensively test the detectors on their ability
to avoid false positives, they do not differentiate between
their closed-set and open-set performance. Despite systems
being trained to reject everything other than the classes of
interest, unknown objects from the open world end up being
incorrectly detected as known objects, often with very high
confidence. This paper is the first to formalize the problem
of open-set object detection and propose the first open-set
object detection protocol. Moreover, the paper provides a
new evaluation metric to analyze the performance of some
state-of-the-art detectors and discusses their performance
differences.

1. Introduction

Object detection research has a long history in computer
vision, dating back more than five decades [31]. The aim of
an object detector is to localize all the objects it is trained
to identify while neglecting all other regions from random
objects or scene backgrounds. Object detection approaches
have evolved from feature-based detectors, to sliding win-
dow algorithms [27], leading to region proposal methods
[7, 6, 24] and anchor box-based approaches [ 18, 21, 22, 16].
Especially in the past few years, advances in computation
speed, the increase of labeled training data and challenges
such as the PASCAL Visual Object Categorization (VOC)
[2] and Microsoft’s Common Objects in Context (MSCOCO)
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Figure 1: THE ELEPHANT IN OBJECT DETECTION While
current state-of-the-art detectors are trained to handle backgrounds,
their designs are not well equipped to address unknown objects,
which they often incorrectly detect as one of the existing classes with
a high confidence. (a) shows results from Faster R-CNN and (b) was
produced by RetinaNet, both of which were only trained to detect
the 20 classes from PASCAL VOC, which do not include elephants,
clocks, scissors or wrenches as present in the above images. As
we explore in this paper, different detectors such as Faster R-CNN,
RetinaNet and YOLOv?2 respond to unknowns differently.

[17] have made the use of deep networks possible, which
provide significant improvements to the field.

With the popularity of deep learning techniques, the im-
portance of dataset size has increased. Challenges such as
PASCAL VOC increased their training data size between
2007 and 2012, while more recently in 2017 MSCOCO
changed its 83k/41k train/val split to 118k/5k, citing the need
for more training data by the research community. Increasing
the number of training samples can improve generalization
and, hence, enable the detectors to better capture variations
in a given object.

While the majority of real world detection applications
are only interested in a small subset of the object categories
provided in these datasets, additional categories seem to be
providing a generalization in order not to misclassify a sam-
ple as one of the classes of interest. Though detectors trained
on smaller academic datasets such as PASCAL VOC seem
to perform well on the according test sets, it is frequently ob-
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served that their performances do not translate into the real
world. As we shall see, experiments with our new evaluation
protocols show that open-set object detection is far from
being solved — despite training with a ”background” class,
which is supposed to reject everything other than the objects
of interest. We see that with current designs, unknown ob-
jects will often be mapped onto existing classes (see Fig. 1)
with high confidence.

Object detectors produce two types of errors: (a) False
Negatives, i.e., objects of interest are classified as another
object or as background, and (b) False Positives where a
background sample or an unknown object is mistaken as
one of the classes of interest. While false negatives may
be considered as a shortcoming in the network training or
the generalizability of the network or dataset, the same can-
not be said for false positives. The network is trained to
identify a small set of known objects from the infinite num-
ber of object classes in the real world. Even if the network
used a “background” class to reject samples not of inter-
est, it is impossible for a dataset to sample instances from
each of the remaining infinite number of undesirable object
classes for training. Since these unknown objects are not
sampled during training, the expectation that they will be
rejected during testing is unrealistic. Though all detectors
are somewhat equipped to prevent false positives, the current
evaluation protocols used by datasets such as PASCAL VOC
and MSCOCO do not sufficiently test a detectors ability to
reject unknown objects and, thus, overestimate their real-
world performance. In closed-set evaluation protocols, the
rejection of random objects directly impacts precision values,
but there is no specific differentiation between false positives
arising from unknown objects and from random textures in
the background. In this work, we focus on understanding the
responses of detectors to objects that they were not trained
to detect, i.e., we propose and perform open-set evaluation.

Our Contributions: (a) In Sec. 2, we categorize cur-
rent detectors based on their approaches to handle back-
ground/unknown objects and generalize our finding to the
currently popular detection algorithms. (b) In Sec. 3, we
formalize object detection as an open-set problem. (¢) We
propose the first open-set object detection protocol that bet-
ter approximates the real world in Sec. 3.1. (d) We propose
an evaluation metric for open-set object detection that allows
better comparison of performance than mAP. (e) In Sec. 4,
we highlight the shortcomings of current state-of-the-art
object detectors. (f) Finally, we attempt to provide an under-
standing toward choosing an operating point when applying
a detector to the real world in Sec. 5.

2. Dividing Detectors by Classifier Type

A core concept common in all object detectors is that
they consider a specific region R of an image and attempt to
provide the probability p; for each of the N known classes

C1,...,Cy being present in that area. These specific areas
are known by different names such as windows, crops, region
proposals or anchor boxes. They may also be generated by
different algorithms such as sliding window [27], selective
search [7] or region proposal networks [24]. Because there
are so many potential regions, it is critical that the systems
are good at rejecting regions that do not contain objects
of interest. While it is one of the key challenges for object
detectors to avoid misdetections in these specific image areas,
little research on improving this aspect has been performed.
To address detection/classification of objects while rejecting
non-object regions or unknown objects, there has been only
a small range of designs. We broadly divide these into the
following categories:

Multi-Class Classifiers without Background Many
early-stage detectors such as OverFeat [27] treated object
detection as a sliding window-based image classification
problem. These systems are trained to identify objects of N
different classes C1, . . . , C'ny and for each generated window
they provide an estimate of the probability p; for presence
of each object category such that Zf\; p; = 1. In some
approaches, from the various sampled windows R, the win-
dow with the maximum classification score is used, which
allows to detect only a single object in the image. In others,
different crops where the same class is predicted with the
maximum score and that have a significant bounding box
overlap are combined to provide one detection. While an
advancement when first introduced, these systems implic-
itly assume that all inputs map to one of the known classes,
which results in many false detections. Consequently, these
approaches are no longer used.

Multi-Class Classifiers with Background Most two-
stage detectors such as Fast R-CNN [6] and Faster R-CNN
[24] classify a region R into NV + 1 classes. The additional
class, called the background class C}, is trained from non-
object windows and pj is interpreted as representing the
probability of R not belonging to any of the N classes such
that p, + vazl p; = 1. Some one-stage detectors such as
SSD [18] also belong to this category. We note that during
evaluation all of these systems use each probability indepen-
dently and do not consider the maximum over py, p1, . .., PN
because even for objects of known classes, the background
probability p; is higher than that of the correct class — a
supporting experiment is in the supplemental material.

One vs. Rest Classifiers Detection algorithms in this
category utilize one-versus-rest classifiers. The idea here
is that a region contains the known object or it does not.
Hence, the detectors do not explicitly provide a probability
pp for R being not of any known class. But at the same
time it is not guaranteed that Zf\il pi = 1, and often the
models do not even estimate probabilities. Some of the early
approaches such as DPM [4], SPPnet [9] and R-CNN [7]
fall under this category. For each known class, these models
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use an SVM-based one-versus-rest classifier to provide the
score that the object belongs to this class. Another variation
of one-versus-rest classifiers can be seen in the current state-
of-the-art one-stage detector RetinaNet [16], which uses
binary cross-entropy to identify the presence of a known
object. This approach is inspired by the observation that
a region may contain more than one object, e.g., a person
sitting on a chair with a cat on the lap. In such cases, giving
a high probability to just one of the classes would not be
justified, but instead the probabilities of several classes could
approach 1. Therefore, such detectors give an independent
probability to each of the objects and do not force them to
sum to 1. If none of the known objects is present, the detector
is expected to provide low probabilities to each of the known
classes. Unfortunately, one-vs-rest classifiers generally have
unbounded open space risk [26] and unknown samples will
often confidently be classified as one of the known classes.

Objectness-Based Classifiers One-stage detectors from
the YOLO family [21, 22, 23] belong to this category. Be-
fore providing a probability score for each of the object
categories, these detectors provide an objectness score, i.e.,
they assess if the region includes any known object. All
class scores are considered to be mutually independent and
classifiers are trained with either sigmoid or binary cross
entropy loss. The authors of [21, 22, 23] present their ob-
Jjectness score as a probability of one of the known objects
being present in the respective anchor box. However, as we
will see later, this objectness score is high in the presence of
many other unknown objects as well. Thus, their model is
better interpreted as a “generic objectness” score rather than
the claimed “known objectness” score.

Discussion While object detection is a problem inher-
ently intended to handle unknown objects by detecting only
the known objects, existing systems have not been formally
formulated as open-set, and neither have they been evaluated
under real-world open-set conditions where really unknown
objects need to be ignored. While both training a back-
ground class or treating the problem as one-vs-rest classifica-
tion helps in rejecting some unknowns, neither formulation
provides bounded open-space risk as defined in [25]. The
remainder of this paper will help to analyze the impact of
ignoring the open-space risk possessed by the above families
of detection algorithms.

3. Formalizing Open-Set Object Detection

A scenario where a system is tested on instances belong-
ing to classes different from what it was trained on is defined
as open-set. Since, by definition, detectors are only supposed
to detect objects they were trained to identify while rejecting
others, we see object detection as a general open-set problem.
While it is easy to draw a parallel to the prior definition of
the open-set classification problem [26], we introduce the
additional category mixed unknown, whose determination is
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Figure 2: MISDETECTIONS DUE TO UNCOMMON IMAGING
OF KNOWN OBIJECTS In (a) we demonstrate how uncommon
imaging conditions such as snow or rain can cause misclassification
of a known object. Similarly, in (b) we demonstrate how different
scenes cause a misdetection of a simple background as a known
object, all with high confidence scores.

crucial and unique to the practical open-set object detec-

tion problem. In order to explain the need for this additional

subcategory, we explain all the types of object classes that
are present in the infinite space of labeled objects Y. These

classes can be broadly categorized into [19]:

o K ={#,...,Zp} CY: The known objects or objects
of interest that the detector is trained to detect. These can
be separated into known knowns K g, the data similar to
that used in training, and unknown knowns K, which
can be defined as novel views of known objects and are
typically seen in test sets. These views may originate due
to environmental conditions, distortions in imaging condi-
tions or deformation of the known object, as provided in
Fig. 2. This problem has been a subject of various chal-
lenges and datasets [29]. While unknown knowns are a
part of general open-set object detection, analyzing them
is not the core subject of this paper.

e U =Y \ K: The unknown objects of classes the detector
needs to reject. Since Y is infinite and K is finite, U is
also infinite. The set U is a combination of two subsets:
1. U C U: The background, garbage, undesirable, or

known unknown objects. These are the objects the
detector should learn to ignore during training, e.g.,
grass, trees and sky in Fig. 1. Since U is infinitely
large, only the small subset Ui can be used during
training.

2. Uy =Y\ (KgkUKyUUgk) = U\ Ug: The unknown
unknown or previously unseen objects, which belong
to the rest of the infinite space from U. Samples from
these object classes are not available during training,
but only occur at test time, see Fig. 1 for an example.

The above breakdown provided by Miller et al. [19]

misses one important aspect required for practical open-set

object detection, i.e., the category of mixed unknown Uy,.

In bounding box-based detection datasets, not every pixel in

the image is labeled, but known objects K are labeled only

with bounding boxes. When creating an open-set protocol,
one could identify only certain unknown objects as Ux and
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