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Abstract

Even though object detection is a popular area of research

that has found considerable applications in the real world, it

has some fundamental aspects that have never been formally

discussed and experimented. One of the core aspects of

evaluating object detectors has been the ability to avoid

false detections. While major datasets like PASCAL VOC

or MSCOCO extensively test the detectors on their ability

to avoid false positives, they do not differentiate between

their closed-set and open-set performance. Despite systems

being trained to reject everything other than the classes of

interest, unknown objects from the open world end up being

incorrectly detected as known objects, often with very high

confidence. This paper is the first to formalize the problem

of open-set object detection and propose the first open-set

object detection protocol. Moreover, the paper provides a

new evaluation metric to analyze the performance of some

state-of-the-art detectors and discusses their performance

differences.

1. Introduction

Object detection research has a long history in computer

vision, dating back more than five decades [31]. The aim of

an object detector is to localize all the objects it is trained

to identify while neglecting all other regions from random

objects or scene backgrounds. Object detection approaches

have evolved from feature-based detectors, to sliding win-

dow algorithms [27], leading to region proposal methods

[7, 6, 24] and anchor box-based approaches [18, 21, 22, 16].

Especially in the past few years, advances in computation

speed, the increase of labeled training data and challenges

such as the PASCAL Visual Object Categorization (VOC)

[2] and Microsoft’s Common Objects in Context (MSCOCO)
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Figure 1: THE ELEPHANT IN OBJECT DETECTION While

current state-of-the-art detectors are trained to handle backgrounds,

their designs are not well equipped to address unknown objects,

which they often incorrectly detect as one of the existing classes with

a high confidence. (a) shows results from Faster R-CNN and (b) was

produced by RetinaNet, both of which were only trained to detect

the 20 classes from PASCAL VOC, which do not include elephants,

clocks, scissors or wrenches as present in the above images. As

we explore in this paper, different detectors such as Faster R-CNN,

RetinaNet and YOLOv2 respond to unknowns differently.

[17] have made the use of deep networks possible, which

provide significant improvements to the field.

With the popularity of deep learning techniques, the im-

portance of dataset size has increased. Challenges such as

PASCAL VOC increased their training data size between

2007 and 2012, while more recently in 2017 MSCOCO

changed its 83k/41k train/val split to 118k/5k, citing the need

for more training data by the research community. Increasing

the number of training samples can improve generalization

and, hence, enable the detectors to better capture variations

in a given object.

While the majority of real world detection applications

are only interested in a small subset of the object categories

provided in these datasets, additional categories seem to be

providing a generalization in order not to misclassify a sam-

ple as one of the classes of interest. Though detectors trained

on smaller academic datasets such as PASCAL VOC seem

to perform well on the according test sets, it is frequently ob-
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served that their performances do not translate into the real

world. As we shall see, experiments with our new evaluation

protocols show that open-set object detection is far from

being solved – despite training with a ”background” class,

which is supposed to reject everything other than the objects

of interest. We see that with current designs, unknown ob-

jects will often be mapped onto existing classes (see Fig. 1)

with high confidence.

Object detectors produce two types of errors: (a) False

Negatives, i.e., objects of interest are classified as another

object or as background, and (b) False Positives where a

background sample or an unknown object is mistaken as

one of the classes of interest. While false negatives may

be considered as a shortcoming in the network training or

the generalizability of the network or dataset, the same can-

not be said for false positives. The network is trained to

identify a small set of known objects from the infinite num-

ber of object classes in the real world. Even if the network

used a ”background” class to reject samples not of inter-

est, it is impossible for a dataset to sample instances from

each of the remaining infinite number of undesirable object

classes for training. Since these unknown objects are not

sampled during training, the expectation that they will be

rejected during testing is unrealistic. Though all detectors

are somewhat equipped to prevent false positives, the current

evaluation protocols used by datasets such as PASCAL VOC

and MSCOCO do not sufficiently test a detectors ability to

reject unknown objects and, thus, overestimate their real-

world performance. In closed-set evaluation protocols, the

rejection of random objects directly impacts precision values,

but there is no specific differentiation between false positives

arising from unknown objects and from random textures in

the background. In this work, we focus on understanding the

responses of detectors to objects that they were not trained

to detect, i.e., we propose and perform open-set evaluation.

Our Contributions: (a) In Sec. 2, we categorize cur-

rent detectors based on their approaches to handle back-

ground/unknown objects and generalize our finding to the

currently popular detection algorithms. (b) In Sec. 3, we

formalize object detection as an open-set problem. (c) We

propose the first open-set object detection protocol that bet-

ter approximates the real world in Sec. 3.1. (d) We propose

an evaluation metric for open-set object detection that allows

better comparison of performance than mAP. (e) In Sec. 4,

we highlight the shortcomings of current state-of-the-art

object detectors. (f) Finally, we attempt to provide an under-

standing toward choosing an operating point when applying

a detector to the real world in Sec. 5.

2. Dividing Detectors by Classifier Type

A core concept common in all object detectors is that

they consider a specific region R of an image and attempt to

provide the probability pi for each of the N known classes

C1, . . . , CN being present in that area. These specific areas

are known by different names such as windows, crops, region

proposals or anchor boxes. They may also be generated by

different algorithms such as sliding window [27], selective

search [7] or region proposal networks [24]. Because there

are so many potential regions, it is critical that the systems

are good at rejecting regions that do not contain objects

of interest. While it is one of the key challenges for object

detectors to avoid misdetections in these specific image areas,

little research on improving this aspect has been performed.

To address detection/classification of objects while rejecting

non-object regions or unknown objects, there has been only

a small range of designs. We broadly divide these into the

following categories:

Multi-Class Classifiers without Background Many

early-stage detectors such as OverFeat [27] treated object

detection as a sliding window-based image classification

problem. These systems are trained to identify objects of N
different classes C1, . . . , CN and for each generated window

they provide an estimate of the probability pi for presence

of each object category such that
∑N

i=1
pi = 1. In some

approaches, from the various sampled windows R, the win-

dow with the maximum classification score is used, which

allows to detect only a single object in the image. In others,

different crops where the same class is predicted with the

maximum score and that have a significant bounding box

overlap are combined to provide one detection. While an

advancement when first introduced, these systems implic-

itly assume that all inputs map to one of the known classes,

which results in many false detections. Consequently, these

approaches are no longer used.

Multi-Class Classifiers with Background Most two-

stage detectors such as Fast R-CNN [6] and Faster R-CNN

[24] classify a region R into N + 1 classes. The additional

class, called the background class Cb, is trained from non-

object windows and pb is interpreted as representing the

probability of R not belonging to any of the N classes such

that pb +
∑N

i=1
pi = 1. Some one-stage detectors such as

SSD [18] also belong to this category. We note that during

evaluation all of these systems use each probability indepen-

dently and do not consider the maximum over pb, p1, . . . , pN
because even for objects of known classes, the background

probability pb is higher than that of the correct class – a

supporting experiment is in the supplemental material.

One vs. Rest Classifiers Detection algorithms in this

category utilize one-versus-rest classifiers. The idea here

is that a region contains the known object or it does not.

Hence, the detectors do not explicitly provide a probability

pb for R being not of any known class. But at the same

time it is not guaranteed that
∑N

i=1
pi = 1, and often the

models do not even estimate probabilities. Some of the early

approaches such as DPM [4], SPPnet [9] and R-CNN [7]

fall under this category. For each known class, these models
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use an SVM-based one-versus-rest classifier to provide the

score that the object belongs to this class. Another variation

of one-versus-rest classifiers can be seen in the current state-

of-the-art one-stage detector RetinaNet [16], which uses

binary cross-entropy to identify the presence of a known

object. This approach is inspired by the observation that

a region may contain more than one object, e.g., a person

sitting on a chair with a cat on the lap. In such cases, giving

a high probability to just one of the classes would not be

justified, but instead the probabilities of several classes could

approach 1. Therefore, such detectors give an independent

probability to each of the objects and do not force them to

sum to 1. If none of the known objects is present, the detector

is expected to provide low probabilities to each of the known

classes. Unfortunately, one-vs-rest classifiers generally have

unbounded open space risk [26] and unknown samples will

often confidently be classified as one of the known classes.

Objectness-Based Classifiers One-stage detectors from

the YOLO family [21, 22, 23] belong to this category. Be-

fore providing a probability score for each of the object

categories, these detectors provide an objectness score, i.e.,

they assess if the region includes any known object. All

class scores are considered to be mutually independent and

classifiers are trained with either sigmoid or binary cross

entropy loss. The authors of [21, 22, 23] present their ob-

jectness score as a probability of one of the known objects

being present in the respective anchor box. However, as we

will see later, this objectness score is high in the presence of

many other unknown objects as well. Thus, their model is

better interpreted as a “generic objectness” score rather than

the claimed “known objectness” score.

Discussion While object detection is a problem inher-

ently intended to handle unknown objects by detecting only

the known objects, existing systems have not been formally

formulated as open-set, and neither have they been evaluated

under real-world open-set conditions where really unknown

objects need to be ignored. While both training a back-

ground class or treating the problem as one-vs-rest classifica-

tion helps in rejecting some unknowns, neither formulation

provides bounded open-space risk as defined in [25]. The

remainder of this paper will help to analyze the impact of

ignoring the open-space risk possessed by the above families

of detection algorithms.

3. Formalizing Open-Set Object Detection

A scenario where a system is tested on instances belong-

ing to classes different from what it was trained on is defined

as open-set. Since, by definition, detectors are only supposed

to detect objects they were trained to identify while rejecting

others, we see object detection as a general open-set problem.

While it is easy to draw a parallel to the prior definition of

the open-set classification problem [26], we introduce the

additional category mixed unknown, whose determination is
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Figure 2: MISDETECTIONS DUE TO UNCOMMON IMAGING

OF KNOWN OBJECTS In (a) we demonstrate how uncommon

imaging conditions such as snow or rain can cause misclassification

of a known object. Similarly, in (b) we demonstrate how different

scenes cause a misdetection of a simple background as a known

object, all with high confidence scores.

crucial and unique to the practical open-set object detec-

tion problem. In order to explain the need for this additional

subcategory, we explain all the types of object classes that

are present in the infinite space of labeled objects Y . These

classes can be broadly categorized into [19]:

• K = {~x1, . . . , ~xM} ⊂ Y : The known objects or objects

of interest that the detector is trained to detect. These can

be separated into known knowns KK , the data similar to

that used in training, and unknown knowns KU , which

can be defined as novel views of known objects and are

typically seen in test sets. These views may originate due

to environmental conditions, distortions in imaging condi-

tions or deformation of the known object, as provided in

Fig. 2. This problem has been a subject of various chal-

lenges and datasets [29]. While unknown knowns are a

part of general open-set object detection, analyzing them

is not the core subject of this paper.

• U = Y \K: The unknown objects of classes the detector

needs to reject. Since Y is infinite and K is finite, U is

also infinite. The set U is a combination of two subsets:

1. UK ⊂ U : The background, garbage, undesirable, or

known unknown objects. These are the objects the

detector should learn to ignore during training, e.g.,

grass, trees and sky in Fig. 1. Since U is infinitely

large, only the small subset UK can be used during

training.

2. UU = Y \(KK ∪KU ∪UK) = U \UK : The unknown

unknown or previously unseen objects, which belong

to the rest of the infinite space from U . Samples from

these object classes are not available during training,

but only occur at test time, see Fig. 1 for an example.

The above breakdown provided by Miller et al. [19]

misses one important aspect required for practical open-set

object detection, i.e., the category of mixed unknown UM .

In bounding box-based detection datasets, not every pixel in

the image is labeled, but known objects K are labeled only

with bounding boxes. When creating an open-set protocol,

one could identify only certain unknown objects as UK and
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