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Abstract

Effective assisted living environments must be able
to perform inferences on how their occupants interact
with one another as well as with surrounding objects.
To accomplish this goal using a vision-based automated
approach, multiple tasks such as pose estimation, object
segmentation and gaze estimation must be addressed.
Gaze direction provides some of the strongest indica-
tions of how a person interacts with the environment.
In this paper, we propose a simple neural network re-
gressor that estimates the gaze direction of individuals
in a multi-camera assisted living scenario, relying only
on the relative positions of facial keypoints collected
from a single pose estimation model. To handle cases
of keypoint occlusion, our model exploits a novel confi-
dence gated unit in its input layer. In addition to the
gaze direction, our model also outputs an estimation
of its own prediction uncertainty. Experimental results
on a public benchmark demonstrate that our approach
performs on par with a complex, dataset-specific base-
line, while its uncertainty predictions are highly corre-
lated to the actual angular error of corresponding esti-
mations. Finally, experiments on images from a real
assisted living environment demonstrate that our model
has a higher suitability for its final application.

1. Introduction

The number of people aged 60 years or older is ex-
pected to nearly double by 2050 [27]. The future via-
bility of medical care systems depends upon the adop-
tion of new strategies to minimize the need for costly
medical interventions, such as the development of tech-
nologies that maximize health status and quality of life
in aging populations. Currently, clinicians use evalua-
tion scales that incorporate mobility and Instrumented
Activities of Daily Living (IADL) assessments (i.e., a
person’s ability to use a tool such as a telephone with-
out assistance) [28] to determine the health status of
elderly patients and to recommend habit changes.

Despite the potential of recent advances in many
areas of computer vision, no current technology allows
automatic and unobtrusive assessment of mobility and
IADL over extended periods of time in long-term care
facilities or patients’ homes. Patient activity analy-
sis to date has been limited to simplistic scenarios [9],
which do not cover a wide range of relatively uncon-
strained and unpredictable situations.

Vision-based analysis of mobility and characteriza-
tion of ADLs is challenging. As the examples in Figs. 1
and 2 illustrate, images acquired from assisted living
environments cover a wide scene where multiple peo-
ple can be performing different activities in a varied
range of scenarios. Moreover, it encompasses multi-
ple underlying complex tasks including: detection of
subjects and objects of interest, identification of body
joints for pose estimation, and estimation of the gaze
of the subjects in the scene.
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Figure 1. Overview of our apparent gaze estimation ap-
proach. The anatomical keypoints of all the persons present
in the scene are detected using a pose estimation model [4].
The facial keypoints of each person are then provided as in-
puts to a neural network regressor that outputs estimations
of their apparent gaze and its confidence on each prediction.

In this paper we focus on gaze estimation, which is a
critical element to determine how humans interact with
the surrounding environment. It has been applied to
design human-computer interaction methods [23] and
to analyze social interactions among multiple individ-
uals [30]. For our application, in conjunction with ob-
ject detection [10], gaze direction could define mutual
relationships between objects and their users (e.g. the
user is sitting on a chair with a book on his/her lap vs.
sitting on a chair reading the book) and classify sim-
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Figure 2. Images and layout of the instrumented assisted living facility; in color, the fields of view of the video cameras.

ple actions (e.g. mopping the floor, getting dressed,
cooking food, eating/drinking).

The contributions of the present work can be sum-
marized in three main points:

• we propose an approach that relies solely on the rela-
tive positions of facial keypoints to estimate gaze di-
rection. As shown in Fig. 1, we extract these features
using the off-the-shelf OpenPose model [4]. From the
coordinates and confidence levels of the detected fa-
cial keypoints, our regression network estimates the
apparent gaze of the corresponding subjects. From
the perspective of the overall framework for ADL
analysis, leveraging the facial keypoints is benefi-
cial because a single feature extractor module can be
used for two required tasks: pose estimation and gaze
estimation. Code is available at coviss.org/codes

• the complexity of gaze estimation varies according
to the scenario, such that the quality of predictions
provided by a gaze regressor is expected to vary case-
by-case. For this reason, our model is designed and
trained to provide an estimation of its uncertainty
for each prediction of gaze direction. To that end, we
leverage concepts used by Bayesian neural networks
for estimation of aleatoric uncertainty.

• in cases such as self-occlusion, one or more facial key-
points might not be detected, and OpenPose assigns
a confidence of zero to the corresponding feature. To
handle the absence of detections, we introduce the
concept of Confidence Gated Units (CGU) to induce
our model to disregard detections for which a low
confidence level is provided.

2. Related Work

Ambient assisted living applications may benefit
from computer vision methods in a variety of scenarios,
including safety, well-being assessment, and human-
machine interaction [5, 21]. Our aim is to monitor the
overall health status of a patient by observing his/her

behavior, or the way he/she interacts with the envi-
ronment or with others. Summarized in Section 4.2
and detailed in [25, 6], the assisted living environment
where our research takes place has been used for studies
on automatic assessment of mobility information and
frailty [24]. Related to our system are the methods
presented in [4, 2, 36], which propose different smart
systems designed to monitor human behavior and way
of life incorporating computer vision elements.

Estimating the relative pose of subjects is crucial
to perform high level tasks such as whole body ac-
tion recognition and understanding the relationship
between a person and the environment. Appearance-
based pose estimation systems attempt to infer the po-
sitions of the body joints of the subjects present in a
scene. Traditional methods relied on models fit to each
of the individual subjects found in a given image frame
[33, 3]. More recent approaches employ convolutional
architectures [31, 4] to extract features from the entire
scene, therefore making the whole process relatively in-
dependent of the number of subjects in the scene.

At a finer level, the analysis of human facial fea-
tures may provide additional information [1] about
well-being. For example, facial expression recognition
[22, 32] can be used in sentiment analysis [15]. Facial
analysis can also provide information on gaze direction,
which is useful to better understand the interaction be-
tween a person and his/her surrounding environment
[30]. Recent contributions in this area attempt to in-
fer the orientation of a person’s head by fitting a 3D
face model to estimate both 2D [34] and 3D gaze in-
formation [35]. Other contemporary methods resort to
different types of information, which include head de-
tection, head orientation estimation, or contextual in-
formation about the surrounding environment [26]. In
the context of human-computer interaction, the work
in [20] employs an end-to-end architecture to track the
eyes of a user in real-time using hand-held devices.

However, most works and datasets on inference of
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head orientation and gaze focus on specific scenarios,
such as images containing close-up views of the sub-
jects’ heads [11, 34], with restricted background size
and complexity. More similar to our scenario of inter-
est, the GazeFollow dataset introduced in [29] contains
more than 120k images of one or more individuals per-
forming a variety of actions in relatively unconstrained
scenarios. Together with the dataset, the authors in-
troduce a two-pathway architecture that combines con-
textual cues with information about the position and
appearance of the head of a subject to infer his/her
gaze direction. A similar model is introduced in [8],
with applicability extended to scenarios where the sub-
ject’s gaze is directed somewhere outside the image.

Gaze estimation is a task with multiple possible lev-
els of difficulty, which vary according to the scenario of
observation. Even for humans, it is much easier to tell
where someone is looking if a full-view of the subject’s
face is possible, while the task becomes much harder
when the subject is facing backwards with respect to
the observer’s point of view. In modeling terms, this
corresponds to heteroscedastic uncertainty, i.e., uncer-
tainty that depends on the inputs to the model, such
that some inputs are associated to more noisy outputs
than others.

As explained in [17], conventional deep learning
models do not provide estimations of uncertainties for
their outputs. Classification models typically employ
softmax in their last layer, such that prediction scores
are normalized and do not necessarily represent un-
certainty. For regression models, usually no infor-
mation on prediction confidence is provided by the
model. Bayesian deep learning approaches are becom-
ing increasingly more popular as a way to understand
and estimate uncertainty with deep learning models
[12, 16, 18]. Under this paradigm, uncertainties are
formalized as probability distributions over model pa-
rameters and/or outputs. For the estimation of het-
eroscedastic uncertainty in regressor models, the out-
puts can be modeled as corrupted with Gaussian ran-
dom noise. Then, as we detail in Section 3.2, a cus-
tomized loss function is sufficient for learning a regres-
sor model that also predicts the variance of this noise
as a function of the input [17], without need for uncer-
tainty labels.

3. Proposed Approach

Our method estimates a person’s apparent gaze di-
rection according to the relative locations of his/her
facial keypoints. As Fig. 1 indicates, we use OpenPose
[4] to detect the anatomical keypoints of all the per-
sons present in the scene. Of the detected keypoints,
we consider only those located in the head (i.e., the

nose, eyes, and ears) of each individual.
Let pjk,s = [xj

k,s, y
j
k,s, c

j
k,s] represent the horizontal

and vertical coordinates of a keypoint k and its corre-
sponding detection confidence value, respectively. The
subscript k ∈ {n, e, a} represents the nose, eyes, and
ears features, with the subscript s ∈ {l, r, ∅} encoding
the side of the feature points.

Aiming at a scale-invariant representation, for each
person j in the scene we centralize all detected key-
points with respect to the head-centroid hj = [xj

h, y
j
h],

which is computed as the mean coordinates of all head
keypoints detected in the scene. Then, the obtained
relative coordinates are normalized based on the dis-
tance of the farthest keypoint to the centroid. In
this way, for each detected person we form a feature
vector f ∈ R

15 by concatenating the relative vectors
p̂jk,s = [x̂j

k,s, ŷ
j
k,s, c

j
k,s]

f j =
[

p̂j
n,∅

, p̂je,r, p̂
j
e,l, p̂

j
a,r, p̂

j
a,l

]

. (1)

3.1. Network architecture using gated units

Images acquired from assisted living environments
can contain multiple people performing different activ-
ities, such that their apparent pose may vary signifi-
cantly and self-occlusions frequently occur. For exam-
ple, in lateral-views at least an ear is often occluded,
while in back-views nose and eyes tend to be occluded.
As consequence, an additional challenge intrinsic to
this task is the representation of missing keypoints. In
such cases, OpenPose outputs 0 for both the spatial
coordinates (x, y)jk,s and also the detection confidence

value cjk,s. Since the spatial coordinates are centralized

with respect to the head-centroid hj as the (0, 0) ref-
erence of the input space, a confidence score cjk,s = 0
plays a crucial role in indicating both the reliability
and also the absence of a keypoint.

ci

qi

qi
~

wc

wq

bq

Figure 3. The proposed Confidence Gated Unit (CGU).

Inspired on the Gated Recurrent Units (GRUs) em-
ployed in recurrent neural networks [7], we propose a
Confidence Gated Unit (CGU) composed of two inter-
nal units: i) a ReLU unit acting on an input feature
qi; and ii) a sigmoid unit to emulate the behavior of a
gate according to a confidence value ci. As depicted in
Figure 3, we opt for a sigmoid unit without a bias pa-
rameter, to avoid potential biases towards models that
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disregard ci when trained with unbalanced datasets
where the majority of samples are detected with high
confidence. Finally, the outputs of both units are then
multiplied into an adjusted CGU output q̃i.

For our application, a CGU is applied to each pair
coordinate-confidence (x̂j

k,s, c
j
k,s) and (ŷjk,s, c

j
k,s). To

properly exploit the full range of the sigmoid function
and thus reach output values near 0 for cjk,s = 0, we
centralize and standardize the input confidence scores
according to the corresponding dataset statistics. In
this way, our proposed network for gaze regression has
a combination of 10 CGUs as input layer.

Moreover, the variety of view-points from which a
subject might be visible in the scene, occlusions and
unusual poses lead to a vast range of scenarios where
the difficulty of the gaze estimation varies significantly.
Hence, we design a model that incorporates an uncer-
tainty estimation method, which indicates its level of
confidence for each prediction of gaze direction. From
an application perspective, this additional information
would allow us to refine the predictions by choosing
between different cameras, models, or time instants.

The gaze direction is approximated by the vector
g̃j = [g̃x, g̃y], which consists of the projection onto the
image plane of the unit vector centered at the centroid
hj . In terms of architecture design, this corresponds
to an output layer with 3 units: two that regress the
(g̃x, g̃y) vector of gaze direction, and an additional unit
that outputs the regression uncertainty σg̃.

Following ablative experiments and weight visual-
ization to identify dead units, we opt for an architec-
ture where the CGU-based input layer is followed by 2
fully-connected (FC) hidden layers with 10 units each,
and the output layer with 3 units. Thus, the architec-
ture has a total of 283 learnable parameters and can
be summarized as: (10 CGU, 10 FC, 10 FC, 3 FC).

3.2. Training strategy

While all the weights composing the fully-connected
layers are initialized as in [14], we empirically observed
better results when initializing the parameters compos-
ing CGU units with ones. Since these compose only
the input layer, initializing the weights as such does
not represent a risk of gradient explosion as no further
backpropagation has to be performed. Intuitively, our
rationale is that the input coordinate features should
not be strongly transformed in this first layer, as at this
initial point no information from additional keypoints
is accessible. Regarding regularization, we empirically
observed better results without regularization in the
input and output layers, while a L2 penalty of 10−4 is
applied to parameters of both FC hidden layers.

Regardless of the dataset, we trained our network

only on images where at least two facial keypoints are
detected. Since we are interested on estimating direc-
tion of gaze to verify whether any object of interest is
within a person’s field of view, we opt for optimization
and evaluations based on angular error. Thus, training
was performed using a cosine similarity loss function
that is adjusted based on [17] to allow uncertainty es-
timation. Let T be the set of annotated orientation
vectors g, while g̃ corresponds to the estimated orien-
tation produced by the network and σg̃ represents the
model’s uncertainty prediction. Our cost function is
then given by

Lcos(g, g̃) =
1

|T |

∑

g∈T

exp(−σg̃)

2

−g · g̃

||g|| · ||g̃||
+
log σg̃

2
. (2)

With this loss function, no additional label is needed
for the model to learn to predict its own uncertainty.
The exp(−σg̃) component is a more numerically stable
representation of 1

σg̃

, which encourages the model to

output a higher σg̃ when the cosine error is higher.
On the other hand, the regularizing component log(σg̃)
helps avoiding an exploding uncertainty prediction.

In terms of model optimization, all experiments were
performed using the Adam [19] optimizer with early
stopping based on angular error on the corresponding
validation sets. Additional parameters such as batch
size and learning rate varied according to the dataset.
Hence, we describe them in detail in Section 4.

4. Experiments and Results

We evaluate our approach on two different datasets.
The first is the GazeFollow dataset [29], on which we
compare our method against two different baselines.
The second dataset, which we refer to as the MoDiPro
dataset, comprises images acquired from an actual dis-
charge facility as detailed in Section 4.2.

4.1. Evaluation on the GazeFollow dataset

Dataset split and training details. The pub-
licly available GazeFollow dataset contains more than
120k images, with corresponding annotations of the eye
locations and the focus of attention point of specific
subjects in the scene. We use the direction vectors
connecting these two points to train and evaluate our
regressors. In terms of angular distribution, about 53%
of the samples composing the GazeFollow training set
correspond to subjects whose gaze direction lies within
the quadrant [−90◦, 0◦] with respect to the horizontal
axis. On the other hand, in only 29% of the cases their
gaze direction is within the [−180◦,−90◦] quadrant. To
compensate such bias, we augment the number of sam-
ples in the later quadrant by mirroring with respect to
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the vertical-axis a subset of randomly selected samples
from the most frequent quadrant. Finally, for train-
ing our model we split the training set into two sub-
sets: 90% for train, and 10% for validation val subset.
Training is performed using a learning rate 5 × 10−3,
batches of 1024 samples and early-stopping based on
angular error on the val subset. The test set comprises
4782 images, with ten different annotations per image.
For evaluation, we follow [29] and assess each model by
computing the angular error between their predictions
and the average annotation vector.

The GazeFollow dataset is structured such that for
each image only the gaze from a specific subject must
be assessed. For images containing multiple people,
this requires identifying which detection provided by
OpenPose corresponds to the subject of interest. To
that end, we identify which detected subject has an es-
timated head-centroid that is the closest to the anno-
tated eye-coordinates EGT provided as ground-truth.
To avoid mismatches when the correct subject is not
detected but detections for other subjects on the scene
are available, we impose that gaze is estimated only if
EGT falls within a radius of 1.5 × δ around the head-
centroid, where δ corresponds to distance between the
centroid and its farthest detected facial keypoint.

We compare our method against two baselines. The
first, which we refer to as Geom, relies solely on lin-
ear geometry to estimate gaze from the relative facial
keypoints positions. Comparison against this baseline
aims at evaluating if training a network is needed to
approximate the regression f → g, instead of directly
approximating it by a set of simple equations. The sec-
ond baseline is the model introduced together with the
GazeFollow dataset in [29], which consists of a deep
neural-network that combines a gaze pathway and a
saliency pathway that are jointly trained for gaze esti-
mation. We refer to this baseline as GF-model.

Comparison against geometry-based base-
line. We refer the reader to our Supplementary Ma-
terial for a more detailed description of Geom. This
baseline is a simplification of the model introduced in
[13] for face orientation estimation, which makes min-
imal assumptions about the facial structure [13] but
additionally requires mouth keypoints and pre-defined
model ratios. In short, let ~s represent the facial symme-
try axis that is computed as the normal of the eye-axis.
We estimate the facial normal ~n as a vector that is nor-
mal to ~s while intersecting ~s at the detected nose posi-
tion. Then, the head pitch ω is estimated as the angle
between the ear-centroid and the eye-centroid, i.e., the
average coordinates of eyes and ears detections, respec-
tively. Finally, gaze direction is estimated by rotating
~n with the estimated pitch ω.

The Geom baseline requires the detection of the
nose and at least one eye. Out of the 4782 images
composing the GazeFollow test set, Geom is thus re-
stricted to a subset Set1 of 4258 images. As sum-
marized on Tab. 1, results obtained on subset Set1
demonstrate that our model Net provide gaze esti-
mations on average 23◦ more accurate than the ones
obtained with the simpler baseline. Such a large im-
provement in performance suggests our network learns
a more complex (possibly non-linear) relationship be-
tween keypoints and gaze direction. Examples avail-
able on Fig. 4 qualitatively illustrate how the predic-
tions provided by our Net model (in green) are signif-
icantly better than the ones provided by the baseline
Geom (in red).

Set1 Set2 Full
No. of images 4258 4671 4782

Geom 42.63◦ - -
Net0 19.52◦ 25.70◦ -
Net 19.41◦ 23.37◦ -
GF-model[29] - - 24◦

Table 1. Comparison in terms of angular errors between our
method and baselines on the GazeFollow test set.

Geom GF-model Net (ours) Avg. annotation

Figure 4. Examples of gaze direction estimations provided
by the different models evaluated on GazeFollow.

Comparison against GazeFollow model. Since
our network is trained on images where at least two
facial keypoints are detected, we apply the same con-
straint for evaluation. In the test set, OpenPose de-
tects at least two keypoints for a subset Set2 containing
97.7% of the 4782 images composing the full set.

The results of our evaluation are summarized in
Tab. 1, while qualitative examples are provided in
Fig. 4. As reported in [29], gaze predictions provided
by the GF-model present a mean angular error of 24◦

on the test set. Our Net model provides an mean an-
gular error of 23.37◦ for 97.7% of these images, which
strongly indicates that its performance is on par with
GF-model network despite relying solely on the rela-
tive position of 5 facial keypoints to predict gaze.

Impact of using Confidence Gated Units
(CGU). To verify the benefits of applying our pro-
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posed CGU blocks to handle absent keypoint detec-
tions, i.e., keypoints with 0 confidence score, we eval-
uated the performance of our model with and without
feeding the confidence scores as inputs. We refer to the
latter case as the Net0, where the CGU blocks com-
posing the input layer are replaced by simple ReLU
units initialized in the same way as described in Sec-
tion 3.2. Results summarized in Tab. 1 indicate an
error decrease of 2.3◦ when providing confidence scores
to an input layer composed of CGUs. In addition to
experiments summarized in Tab. 1, we also evaluated
a model where the CGU units are replaced by simple
additional ReLU units to handle confidence scores. For
the 1536 images where OpenPose detects less than 4 fa-
cial keypoints, a significant decrease on angular error is
observed when using CGU units: 30.1◦ mean error, in
comparison to 30.9◦ provided by the model with solely
ReLU based input layer.

Quality of uncertainty estimations. In addition
to the overall mean angular error, we also evaluate how
accurate are the uncertainty estimations provided by
our Net model for its gaze direction predictions. As
depicted in Fig. 6, significantly lower angular errors
are observed for gaze predictions accompanied by low
uncertainty network predictions. Uncertainties lower
than 0.1 are observed for 80% of the test set, a subset
for which the gaze estimations provided by our Net
model are on average off by only 16.5◦.

Moreover, the high correlation between uncertainty
predictions and angular error (ρ = 0.56) is clearly
depicted by the plots provided in Fig. 5. For each
sample in these plots, the radial distance corresponds
to its predicted uncertainty σi, while the angle cor-

responds to predicted direction of gaze g̃, i.e αi =
tan−1(−g̃y/g̃x). For both train and test sets, the asso-
ciated colormap shows that lower errors (in dark blue)
are observed for predictions with lower uncertainty,
with increasingly higher errors (green to red) as the
uncertainty increases (farther from the center).

Figure 6. Cumulative mean angular error according to un-
certainty predicted by our model for each sample.

Performance according to keypoint occlu-
sions. Furthermore, the central and the right-most
scatter plots in Fig. 5 also allow an analysis on how
the performance of our model and its uncertainty pre-
dictions vary according to specific scenarios. For most
cases, the number of detected keypoints (k) indicates
specific scenarios: k = 2 is mostly related to back-
views, where nose and two other keypoints (both eyes
or a pair eye-ear) are missing; k = 3 and k = 4 are
mostly lateral-views; k = 5 are frontal-views, where all
keypoints are visible. Since images are 2D projections
from the environment, back- and frontal-views are the
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ones more affected by the information loss implicit in
the image formation process, while for lateral-views es-
timation of gaze direction tends to be easier.

An analysis of the scatter plots demonstrates that
the predictions provided by our model reflect these ex-
pected behaviors. For samples with k = 2 (back-view),
both uncertainty predictions and angular error tend to
be higher, while for most cases of k = 3 and k = 4
the predictions are associated with lower uncertainty
and higher angular accuracy. Predictions for k = 5 are
spread, indicating that the model’s uncertainty predic-
tions are not just defined by the amount of available
keypoints but also reflect the intrinsic uncertainty of
determining the head orientation from frontal views.

4.2. Results on the assisted living dataset

This work is part of a project that focuses on el-
derly patients with partial autonomy but in need of
moderate assistance, possibly in a post-hospitalization
stage. Thus, it is critical to evaluate the performance
of our gaze estimation model on data from real as-
sisted living environments. To that end, we also eval-
uate our approach on videos acquired in an assisted
living facility situated in the Galliera Hospital (Gen-
ova, Italy), in which the patient, after being discharged
from the hospital, is hosted for a few days. The facil-
ity is a fully-equipped apartment where patients may
be monitored by various sensors, including localization
systems, RGB-D, and two conventional video cameras,
arranged as shown in Fig. 2.

Dataset split and training details. We com-
piled a dataset, which we call MoDiPro, consisting of
1,060 video frames collected from the two video cam-
eras. For CAM1, 530 frames were sampled from 46
different video sequences; for CAM2, 530 frames were
sampled from 27 different video sequences. To limit
storage while discarding minimal temporal informa-
tion, the resolution of the acquired frames was limited
to 480× 270 pixels, at 25 fps. In most frames multiple
subjects are simultaneously visible, with a total of 22
subjects performing different activities.

As exemplified also in Fig. 7, cameras CAM1 and
CAM2 cover different parts of the environment. Im-
ages acquired with CAM2 present significant distor-
tion, which increases the complexity of the task. We
randomly split the available sets of images into camera-
specific training, validation and test subsets. Since
frames composing the same video sequence can be
highly correlated, we opt for a stratified strategy where
video sequences are sampled. That is, all frames avail-
able from a certain video sequence are assigned to ei-
ther train, val or test subsets. Aiming at an evaluation
that covers a wide variety of scenes, the proportions

CAM1

CAM2

CAM1

CAM2
Net (ours) GF-model

Figure 7. Examples of results for our gaze direction estima-
tion approach in the MoDiPro dataset.

chosen in terms of total number of frames are: 50%
for training, 20% for validation, 30% for testing. Fine-
tuning experiments are performed using learning rates
1×10−5, while 1×10−4 is adopted when training mod-
els only on MoDiPro images. Batches with 64 samples
are used, with early-stopping based on angular error on
the val subset. Moreover, all results reported on Tab. 2
and discussed below correspond to average values ob-
tained after train/test on 3 different random splits.

To assess the cross-view performance of our method,
we train our Net model with 7 different combinations
of images from the MoDiPro and GazeFollow datasets.
As summarized in Tab. 2, models Net#0-2 are trained
in CAM1-only, CAM2-only, and both MoDiPro cam-
eras. Net#3 corresponds to the model trained only on
GazeFollow frames (GF for shortness), while Net#4-6
are obtained by fine-tuning the pre-trained Net#3 on
three possible sets of MoDiPro frames.

Train Test
Model GF Cam1 Cam2 Cam1 Cam2 Mean

Net#0 X 16.16◦ 39.12◦ -
Net#1 X 29.56◦ 26.37◦ -
Net#2 X X 18.52◦ 23.02◦ 20.94◦

Net#3 X 27.64◦ 26.98◦ 27.31◦

Net#4 X X 16.17◦ 27.36◦ -
Net#5 X X 27.56◦ 24.01◦ -
Net#6 X X X 17.82◦ 20.15◦ 19.05◦

GF-model X 43.49◦ 60.82◦ 52.15◦

Table 2. Performance of our method on the MoDiPro
dataset for different combinations of training/testing sets.

Performance according to camera view.
Cross-view results obtained by Net#0 on CAM2 and
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Net#1 on CAM1 demonstrate how models trained
only on a camera-specific set of images are less robust
to image distortions, with significantly higher angular
errors for images composing unseen subsets. Trained
on both CAM1 and CAM2, the model Net#2 demon-
strates a more consistent performance across views. In
comparison with the camera specific models, a 3◦ lower
angular error on CAM2 is obtained at cost of only 1.4◦

error increase on CAM1.

In addition, error comparisons between models
Net#0-2 and Net#4-6 demonstrate that pre-training
the model on the GF dataset before fine-tuning on
MoDiPro images leads to consistently lower mean an-
gular errors, with an optimal performance of 17.82◦ for
CAM1 and 20.15◦ for CAM2. This corresponds to an
overall average error 1.9◦ lower than the model Net#2
not pre-trained on GF, while more than 7◦ better than
the model Net#3 trained solely on GF. In terms of
camera-specific performance, for CAM1 optimal per-
formances with error below 17◦ are obtained when not
training on CAM2. On the other hand, predictions for
CAM2 are significantly better when training is per-
formed using additional CAM1 and/or GazeFollow im-
ages. We hypothesize the distortions characteristic of
CAM2 images easily lead to overfitting, thus the ad-
vantage of training on additional sets of images. As a fi-
nal remark we may notice that overall Net#6 provides
the best an most stable result across the two views.

Comparison against GF-model. Finally, we
compare the predictions provided by our Net models
to the ones obtained by the publicly available version
of GF-model1. As summarized in Tab. 2, gaze predic-
tions provided by GF-model on the MoDiPro dataset
are remarkably worse in terms of angular error than
the ones predicted by any of our Net#0-6 models, in-
cluding the Net#3 also trained only on GF images.

Closer inspection of GF-model predictions sug-
gests two disadvantages of this model with respect to
ours when predicting gaze on images from real assisted
living environments: i) sensitivity to scale; ii) bias to-
wards salient objects. Images composing the GazeFol-
low typically contain a close-view of the subject of in-
terest, such that only a small surrounding area is cov-
ered by the camera-view. In contrast, images from as-
sisted living facilities such as the ones in the MoDiPro
dataset contain subjects covering a much smaller re-
gion of the scene, i.e., they are smaller in terms of pixel
area. Our Net model profits from the adopted repre-
sentation of keypoints, with coordinates centered at the
head-centroid and normalized based on the largest dis-
tance between centroid and detected keypoints. More-

1This version provides 25.8◦ mean angular error on the Gaze-
Follow test set, in comparison to the 24◦ reported in [29]

over, visual inspection of GF-model predictions re-
veals examples such as the two bottom ones in Fig. 7:
in the left, while our model correctly indicates that the
subjects look at each other, GF-model is misled by
the saliency of the TV and possibly the window; in the
right, the saliency of the TV again misguides the GF-
model, while our model properly indicates that the
person is looking at the object she is holding.

4.3. Runtime Analysis

Our network requires on average 0.85ms per call on
a NVIDIA GeForce 970M, with one feedforward execu-
tion per person. The overall runtime is thus dominated
by OpenPose, which requires 77ms on COCO images
with a NVIDIA GeForce 1080 Ti (as reported in [4]).

5. Conclusion

This paper presents a gaze estimation method that
exploits solely facial keypoints detected by a pose es-
timation model. Our end goal is to assist clinicians
assessing the health status of individuals in an assisted
living environment, providing them with automatic re-
ports of patients’ mobility and IADL patterns. Thus,
we plan to combine gaze estimations with a seman-
tic segmentation model to identify human-human and
human-object interactions. Exploring a single feature
extraction backbone for both pose and gaze estimation
also reduces the complexity of the overall model.

Results obtained on the GazeFollow dataset demon-
strate that our method estimates gaze with accuracy
comparable to a complex task-specific baseline, with-
out relying on any image features except the relative
positions of facial keypoints. In contrast to conven-
tional regression methods, our proposed model also
provides estimations of uncertainty of its own predic-
tions, with results demonstrating a high correlation be-
tween predicted uncertainties and actual gaze angular
errors. Moreover, analysis of performance according
to the number of detected keypoints indicates that the
proposed Confidence Gate Units improve the model’s
performance for cases of partial absence of features.

Finally, evaluation on frames collected from a real
assisted living facility demonstrate that our model has
a higher suitability for IADL analysis in realistic sce-
narios, where images cover wider areas and subjects
are visible at different scales and poses.
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