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Abstract

Sketch-based image retrieval (SBIR) is gaining increas-

ing popularity because of its flexibility to search natural im-

ages using unrestricted hand-drawn sketch query. Here, we

address a related, but relatively unexplored problem, where

the users can also specify their preferred styles of the im-

ages they want to retrieve, e.g., color, shape, etc., as key-

words, whose information is not present in the sketch. The

contribution of this work is three-fold. First, we propose

a deep network for the problem of style-augmented SBIR

(or s-SBIR) having three main components - category mod-

ule, style module and mixer module, which are trained in

an end-to-end manner. Second, we propose a quintuplet

loss, which takes into consideration both the category and

style, while giving appropriate importance to the two com-

ponents. Third, we propose a normalized composite evalu-

ation metric or ncMAP which can quantitatively evaluate s-

SBIR approaches. Extensive experiments on subsets of two

benchmark image-sketch datasets, Sketchy and TU-Berlin

show the effectiveness of the proposed approach.

1. Introduction

Sketch-based image retrieval (SBIR) addresses the prob-

lem of retrieving semantically relevant natural images from

a search set, given a roughly-drawn sketch as query. This re-

search direction is gaining increasing attention as a sketch

has the potential to reflect the search-requirement better

compared to describing it in texts [50]. But, free-hand

sketches can be quite different compared to natural images,

since humans tend to focus mainly on the object structure

and not on the finer details. Thus, the main challenge for the

retrieval algorithms is to bridge the significant domain gap

between the sketch query and the database images. Many

recent approaches derive a shared feature-space to address

SBIR [29][44][25].

Here, we address a related, but relatively unexplored

problem, where, while searching for a particular object cat-

egory, e.g. car-image using a sketch, the user also has the

flexibility to specify their preferred styles/attributes in the

Figure 1. (a) In SBIR, given a sketch query, the goal is to retrieve

images belonging to the same category. (b) In s-SBIR, the user

can also give one/multiple desired styles, and the goal is to retrieve

relevant images of the correct category having the desired styles.

form of ‘keywords’ (e.g., red in color) (Figure 1). Recently,

researchers have started to explore this problem in the

single-domain scenario (image-to-image retrieval) [24][49].

A variation of the s-SBIR problem is addressed in [6], but

there are significant differences, which we will discuss later.

To address style-augmented SBIR (s-SBIR), we propose

a novel deep-framework which analyzes the category and

style information of the images appropriately to retrieve

relevant images based on the hand-drawn sketch category

and the user-specified styles. The framework consists of

(1) content module to extract the content of the images and

sketches; (2) style module to extract the style of the images

such that they match with the desired user-specified styles

encoded in the keywords and (3) mixer module which com-

bines the sketch content and styles from the keywords such

that the relevant images can be directly retrieved. The con-

tributions of this work can be summarized as follows

• We propose a variant of the standard SBIR problem,

where the user-required styles can be specified in terms

of ‘keywords’.
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• The unequal importance of category and style is in-

corporated in a quintuplet loss function conditioned on

both the factors for the final retrieval.

• For s-SBIR evaluation, we propose normalized com-

posite Mean Average Precision (ncMAP), a suitable

modification of the standard evaluation metric MAP.

• Extensive experiments on two SBIR data-subsets,

namely m-Sketchy [34] and m-TU-Berlin [8] demon-

strate the effectiveness of proposed framework.

The rest of the paper is organized as follows. The re-

lated work is discussed in Section 2. The proposed method

is described in Section 3 followed by the experiments and

discussions in Section 4. The paper ends with a conclusion.

2. Related Work

In this section, we provide pointers to some of the recent

work in literature and how our work differs from them.

Sketch-based Image Retrieval: Previously, most of the

methods for SBIR used low-level features, such as color

histogram [18], elastic contours [2], as well as local fea-

tures like SIFT [26], etc. for both sketches and images and

the retrieval was performed based on feature-matching. A

mid-level or common-domain feature learning algorithm is

introduced in [30][33]. [9] uses the concatenated Bag-of-

Words (BoW) features to be the common-domain represen-

tation. Using the edge information of images, a perceptual

grouping framework has been introduced in [30].

Recently, hashing-based cross-modal retrieval has be-

come very popular and has been applied to SBIR as

well. However, in hashing-based image-retrieval, the im-

age search set remains exactly the same for both training

and testing. [3][10] are some of the recent literature to re-

port efficient hashing methods for SBIR. A heterogeneous

neural network based hashing method is proposed in [25],

which achieves the current state-of-the-art for SBIR on two

large-scale sketch-image datasets. This work integrates a

deep-network based image/sketch representation learning

with a non-deep framework for measuring their similarity.

A cross-paced curriculum based dictionary learning tech-

nique has been introduced in [43]. A clustering-based re-

ranking approach is proposed in [15]. Note that standard

SBIR deals in category-based retrieval and does not have

any provision to incorporate the styles specified by the user.

Attribute-based Image-to-Image Retrieval: Image-to-

image retrieval using one or more styles/attributes as addi-

tional input has gained popularity in recent literature. [24]

proposes a hashing based method where the binary attribute

vector can be used as query to retrieve required images.

The fashion-image search framework AMNet [49] retrieves

images from fashion items gallery, based on a query im-

age (a dress) and an user-defined style (pink in color). Re-

cently, [39] studies the image-retrieval problem, where in

addition to the search image, a text query describing the de-

sired modification in the retrieved image is used. All these

approaches address the attribute-based retrieval problem in

single-domain and the results are qualitative.

Fine-Grained Sketch-based Image Retrieval: Here the

goal is to retrieve images from the search set based on the

object category as well as subtle appearance details drawn

in the sketch [21][44][37]. The high-level objective of fine-

grained SBIR (FG-SBIR) is somewhat similar to the pro-

posed s-SBIR in the sense that both specify additional cri-

teria on the retrieval algorithm apart from just the category

match. Note that the proposed framework can also be inte-

grated with FG-SBIR to specify styles like color, texture or

material, which can not be done using the sketch, though in

this work, we focus on generic SBIR.

Content-Style Disentangled Representation Learning:

We take motivation from the literature in learning disentan-

gled representations [5][12] to separate the content and style

information of the input data. Although conceptually simi-

lar approaches have been used for image-to-image transla-

tion [16], style transfer [11], this is the first time such an

approach is effectively used for SBIR.

Sketch-based Image retrieval with style: Recently, [6]

proposed a variant of SBIR, where in addition to the sketch,

another image is used as query. This additional image holds

the aesthetic / style requirement of the user. Even though

similar, s-SBIR problem is significantly different from the

one addressed in this paper.

3. Proposed Approach

In this section, we formalize the problem statement and

discuss in details the proposed approach. Let the image data

be denoted as DI = {Ii,y
I
i ,a

I
i }

nI

i=1
, where Ii is the ith im-

age and yI
i is the corresponding label vector. aIi ∈ Zda rep-

resents the ground-truth style information, example, color,

shape, texture, etc. Assuming there are da number of an-

notated styles, an entry of 1 in aIi indicates the presence of

that style, otherwise it is 0. nI is the total number of images

available for training. The sketch dataset consisting of nS

samples is denoted as DS = {Si,y
S
i }

nS

i=1
.

The proposed framework (Figure 2) has three main mod-

ules, (1) category module; (2) style module and (3) mixer

module. Here, we describe all the modules and their func-

tionalities. The network details are provided in Section 4.

3.1. Category Module

In this module, given an image and sketch, the goal is to

learn a shared representation based solely on their category.

This consists of a feature generation part, followed by an

encoder-decoder structure for obtaining the same.

Feature Generation: For extracting features which can

capture the input content, we utilize a pre-trained classi-
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Figure 2. An illustration of the proposed end-to-end framework for s-SBIR. This figure is best viewed in color.

fication network, since the features extracted from such a

model is trained to capture only the category information

of the input. In this work, we fine-tune the pre-trained

VGG-19 [36] (originally trained to perform object classifi-

cation [36] on ImageNet [31]) on images and sketches sep-

arately for our datasets. Such fine-tuned networks are de-

noted as FGI and FGS , respectively. The output of the last

fully-connected layer (fc7) from both networks, xI
i ∈ RdI

and xS
j ∈ RdS are considered as the feature representations

of Ii and Sj respectively in their own domain. After fine-

tuning, the weights of FGI and FGS are freezed for the

remaining part of network training.

Latent-space representation: The generated features xI
i

and xS
j are domain specific and thus cannot be compared

directly. Instead, we learn a shared latent Φ-space for

direct comparison. Here, we learn a multi-layer percep-

tron (MLP)-based encoder-decoder network to obtain the

Φ-space representations. We want to construct this space

such that (1) the samples from same categories of both do-

mains are close and (2) the samples from different cate-

gories are far apart while maintaining their semantic rela-

tion (semantically similar classes, e.g., car and bus should

be closer compared to semantically dissimilar classes, e.g.

car and umbrella). Such a Φ-space structure is achieved us-

ing a pre-trained word-embedding model GloVe [28].

Latent-space loss: To transform the features xI
i and xS

j to

the Φ-space, two MLP-encoders EI (for image) and ES (for

sketch) are designed and the following loss is minimized,

Llatent =
∑

m∈{I,S}

nm∑

i=1

||Em(xm
i )− h(ym

i )||2 (1)

where h(ym
i ) ∈ Rd represents the GloVe-embedding vector

representation of the category-name of the ith sample.

Reconstruction loss: We design two MLP-decoders DI and

DS for images and sketches respectively to enforce their

shared representations to retain the necessary details for re-

construction [19]. The loss used is given as

Lrecons =
∑

m∈{I,S}

nm∑

i=1

||Dm(Em(xm
i ))− xm

i ||2 (2)

Thus, the final loss function to learn the Φ-space is given by

LΦ = λ1Llatent + λ2Lrecons (3)

where, the weights for the losses λ1 and λ2 are computed

based on the retrieval accuracy on a validation set.

3.2. Style Module

In s-SBIR, the user has the flexibility to specify their pre-

ferred styles in the form of keywords (e.g., red in color,

rectangular in shape etc.). For this purpose, two style en-

coders are required, one (Ea
style) for encoding the style

from the keywords (given with the query sketch), and the

other (EI
style) for encoding the style from the images.

Encoding Style from Keywords: While training, we do

not have access to the complete query-pair, i.e. {sketch,

user-defined style-keywords} along with the ground-truth

retrieved images. Hence, we treat the image-style annota-

tions aIi as the substitute for style-requirements, for which

xI
i is the perfectly matched sample.

In many existing works [24][49], the binary style vec-

tor aIi is used directly for computation. Since binary rep-

resentations do not capture the relations within different
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styles (eg., red is closer to pink compared to blue), it re-

stricts the query style to belong to one of the styles used

in training. Here, we again use the GloVe-embeddings of

the style-keywords as its representation for better gener-

alization. Given aIi , for each style present, we obtain its

GloVe-embedding and then concatenate them to obtain the

complete style-vector pi. In case the sample is not an-

notated for all types of styles (or, the user provides only

color requirement and no other style information), we use a

globally (across the dataset) computed initialization for that

missing style. In this work, we use the mean of the GloVe-

features of all the possible values of a particular style in the

training data for initialization. Finally, pi is passed through

the encoder Ea
style to obtain the final style-annotation rep-

resentation of xI
i .

Encoding Style from Images: Since the goal is to retrieve

images having the desired styles given by the keywords, we

want to match the style encoding from the keywords to the

style extracted from the images. Thus, we aim to extract the

style information zIi from the image Ii such that it repre-

sents the ground-truth style annotation aIi of that image.

Computation of zIi is based on the intuition that image-

specific styles are embedded in the initial layers of the clas-

sification network [11][16] (VGG-19 in our case) and only

the class-specific high level information is present in the fi-

nal layers. Thus, we capture the style information from the

activation maps of the lower or middle-layers [11] of FGI .

For an input image Ii, let the activation maps for the lth

layer be denoted as Vl(Ii) ∈ RdV

l
×ηl , where dVl = Ml×Nl

and Ml, Nl are the height and width of the activation map

respectively. ηl is the number of convolution filters in the

lth layer. The image-specific style in the lth layer is cap-

tured as the Gram matrix Gl(Ii) ∈ Rηl×ηl formed by the

activations of the layer as [11],

Gl(Ii) =
1

dVl × ηl
VT

l (Ii).Vl(Ii) (4)

We obtain zIi by concatenating this representation Gl(Ii)
(after vectorization) obtained from several layers l ∈ L =
{1, 2, ..., L}. The value of L can be set experimentally.

In this work, we use L = 2 (VGG-layers ‘conv1 1’,

‘conv2 1’), hence the concatenated Gl-vector is of 20480-

d, which is then reduced to 1024-d after PCA. This repre-

sentation is then applied as input to the encoder EI
style, such

that the ouput encoding matches with Ea
style(pi) obtained

from aIi . Thus our style-space loss is formulated as

Lstyle = ||Ea
style(pi)− EI

style(z
I
i )||

2

2

+ λa
style||θ

a
style||

2 + λI
style||θ

I
style||

2 (5)

Here λa
style and λI

style are the two hyper-parameters which

are set empirically and θastyle and θIstyle are the learnable

parameters for the style encoders.

3.3. Mixer module

Given a sketch with desired keywords, the goal of s-

SBIR is to retrieve the relevant images from the correct

category with the desired styles. To achieve this, we pro-

pose the mixer network Nmixer such that it transforms the

concatenated input of sketch category information ES(x
S
j )

and style obtained from the keywords Ea
style(pi) to form

a composite representation s
c,a
j in a latent space Ψ. Sim-

ilarly, the concatenated vector of image-category EI(x
I
i )

and extracted image-style EI
style(z

I
i ) is transformed using

the same network Nmixer, such that this composite image-

representation i
c,a
i can be compared directly with s

c,a
j for

retrieval. Here, with slight abuse of notations, the super-

script c and a denotes the category and style of the input.

Though the images retrieved in this Ψ-space should have

the correct category and user-specified styles, still the im-

portance of the two components are different. An user

would prefer an image from the correct category (even with

different styles) over images from an incorrect category

(even with the same styles). Keeping this in mind, the mixer

network Nmixer is designed using the following criteria

d(sc,aj , ic
+,a+

∗ ) < d(sc,aj , ic
+,a−

∗ )

< d(sc,aj , ic
−,a+

∗ ) < d(sc,aj , ic
−,a−

∗ ) (6)

Here, i
c+,a+

∗ represents the images (in the Ψ-space) belong-

ing to the same category c as the input sketch and having

the same style a. Similarly, i
c−,a−

∗ represents all the im-

ages from some class other than c and having a different

style than a and so on. d(m,n) represents the Euclidean

distance between the vectors m and n.

To impose the above condition (6), we

construct a quintuplet set [14], Q =

{sc,aj , i
c+,a+

j , i
c+,a−

j , i
c−,a+

j , i
c−,a−

j }Nj=1
, based on the

image category and styles. N is the total number of

quintuplet-instances selected. We formulate the loss

function to learn the parameters of Nmixer (θmixer) subject

to the condition (6)

Lmixer = min
∑

j∈Q

αj + βj + γj + λ||θmixer||
2

2, s.t.

max(0,m1 + d(sc,aj , i
c+,a+

j )− d(sc,aj , i
c+,a−

j )) < αj ,

max(0,m2 + d(sc,aj , i
c+,a−

j )− d(sc,aj , i
c−,a+

j )) < βj ,

max(0,m3 + d(sc,aj , i
c−,a+

j )− d(sc,aj , i
c−,a−

j )) < γj

where αj , βj , γj ≥ 0 are the slack variables and m1, m2

and m3 are the margins set experimentally. λ is a regular-

ization parameter.

3.4. Proposed Normalized Composite MAP

The standard metric used for SBIR evaluation is Mean

Average Precision (MAP) [43][25], which considers only
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the category of the input sketch and the database images.

Since the styles of the retrieved examples are not consid-

ered in this evaluation, this cannot be directly used for s-

SBIR approaches. Even for single modality, style-guided

retrieval approaches are demonstrated through qualitative

results only [24][49]. Here, we propose a generalization of

the standard MAP, termed normalized composite-MAP (or

ncMAP) for evaluation of such approaches which can be

used for both single and cross-modal applications. Note that

the proposed ncMAP reduces to MAP if we consider only

the categories.

We propose to assign two separate scores for each re-

trieved image, one based on its category and the other based

on its style. The score for the kth retrieved image ik against

a query sq is given by

scorecat(sq, ik) = 1, if category(sq) = category(ik)

= 0, otherwise

Let us assume the style given by the keywords is represented

as a binary vector aSq ∈ Zda , where da is the total number

of styles. An entry of 1 indicates that style is desired, oth-

erwise, it is 0. Given that the style annotations for the kth

image is aIk, we assign another score, scorestyle(a
S
q ,a

I
k),

scorestyle(a
S
q ,a

I
k) = cosine similarity(aSq ,a

I
k)

Hence for a given sketch and style-keywords as query, for

each kth retrieved image, we assign the composite score as

cδw(sq,a
S
q , ik,a

I
k) = w ∗ scorecat(sq, ik)

+ (1− w) ∗ scorecat(sq, ik) ∗ scorestyle(a
S
q ,a

I
k)

where w is the weighting factor which controls the impor-

tance of category-match over styles. cδw reaches maximum

value to 1, if both the category and style of the retrieved im-

age matches with that of the query. It reduces to zero when

category is not matched, even though the style-requirement

is matched. Hence, the composite precision at kth retrieved

image is assigned as cPw = 1

k

k∑
r=1

cδw(sq,a
S
q , ir,a

I
r). We

compute the composite average precision (cAPw) over top-

K retrieved images as

cAPw@K =
1

TP

K∑

r=1

[scorecat(sq, ir)∗cPw(sq,a
S
q , ir,a

I
r)]

TP is the total correct retrieved elements (category-wise) in

top-K. Finally, the composite-MAP (cMAPw) is measured

over the entire query set Q as,

cMAPw@K =
1

|Q|

|Q|∑

q=1

cAPw(sq,a
S
q ,K)

Figure 3. Illustration of proposed evaluation metric: Given a

sketch query of car and preferred color as red, the cAPw score

for the second retrieved image set is more than the first set, though

standard AP, which considers only the category, is same for both.

We further normalize this cMAP with cMAP ideal, which

is evaluated using the ideal retrieved list based on the

ground-truth categories and styles. Thus, ncMAPw@K =
cMAPw@K

cMAP ideal
w

@K
. The highest value of this proposed metric is

1, irrespective of the dataset. Figure 3 illustrates how the

proposed ncMAP takes into consideration both the cate-

gory and style information. All the results reported in terms

of ncMAP in this paper use w = 0.8.

3.5. Testing

Given a query sketch with the desired style-keywords

in the form of aSq and a set of images, we obtain the

respective feature representations from FGS and FGI -

subnetworks as sq and I = {i1, ..., in}, respectively.

We further obtain the Φ-space representations of the

query sketch and image set. The representation of the

query style is computed as Ea
style(pq) and of the im-

age styles as EI
style(z

I
1), ..., E

I
style(z

I
n). In this case,

pq (from aSq ) and zIi , i = 1, ..., n are obtained as de-

scribed in Section 3.2. Then, we find the compact

category-style representations of the samples in Ψ-space us-

ing the mixer network as Nmixer(ES(sq), E
a
style(pq)) and

Nmixer(EI(ik), E
I
style(z

I
k)), for k ∈ {1, ..., n}. Finally,

we use the Euclidean distance between the query and image

samples in the Ψ-space to get the retrieved images.

3.6. Difference with [6]

The work in [6] studies a similar problem as s-SBIR,

though there are significant differences. The style compo-

nent in the style query accompanying the sketch in [6] is

provided as an image, the aesthetic component of which is

the required style. In contrast, s-SBIR has the flexibility

to provide the style-requirement (single / multiple) in terms

of simple keywords, which eliminates the need to find an

image reflecting all the requirements.
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Styles Values Total

color black, blue, brown, ... 11

texture spots, stripes, ... 3

shape round, columnar, ... 4

material metal, wooden, ... 3

structure bipedal, quaduped,... 4

Table 1. Few examples of image styles in the datasets used.

4. Experimental Evaluation

For training and testing s-SBIR approaches, we need

the ground-truth styles of the images. Because of the un-

availability of such large-scale datasets, we propose a new

split for two standard SBIR datasets, namely Sketchy and

TU-Berlin, whose object categories are a subset of Ima-

geNet [31]. A part of the ImageNet image instances are

annotated with styles (color, shape, material etc.) [24] and

we select those categories from both datasets for which

instance-level annotations are available. We now give a

brief description of the modified datasets used for this work.

The m-Sketchy Database: The original dataset [34] is a

collection of around 75, 000 sketches and 12, 500 images

from 125 object categories. For our experiment, we use the

Sketchy extension [25] which has 73, 000 images. To eval-

uate s-SBIR approach, we construct a modified Sketchy or

m-Sketchy dataset, which has 31, 378 sketches and 31, 900
images from 53 categories (∼600 samples / class).

The m-TU-Berlin Dataset [8]: The original dataset con-

tains sketch data from 250 object categories and for each

category, 80 sketch samples are available. We use additional

204, 489 natural images, provided by [48] as the image

data [25][43]. The modified m-TU-Berlin contains 7600
sketches and 8587 images from 95 classes (80 sketches /

class and ∼45-150 images / class).

The ground-truth image styles [24] are 25-d vectors with

values representing negative (−1), unsure (0), positive (+1)

and missing (2) styles/attributes. We consider negative, un-

sure, missing as negative (0) in this work. Table 1 demon-

strates sample styles and their values.

We use 10% of sketch-image data in m-Sketchy and m-

TU-Berlin for testing and the rest for training. We construct

the test set for s-SBIR by augmenting the query sketches

with possible styles obtained from the images belonging to

the same category as the sketch in the training data. Figure 4

depicts a pictorial description of the test set construction

process. Once constructed, this augmented test set is fixed

and all the evaluations are performed on this new test-set

for fairness. We implement our framework using Tensor-

flow [1]. The detailed network architecture is summarized

in Table 2. For training, Adam optimizer is used with learn-

ing rate 1e − 3, momentum 0.9 and batch size 32. All the

hyper-parameters are set based on the accuracy on the vali-

dation set, which is constructed as 10% of the training data.

Figure 4. Flowchart depicting the test set construction for s-SBIR.

Network Description I/p, O/p (O/p-d)

FGI VGG-19 w/o final softmax Ii, x
I
i (4096-d)

FGS VGG-19 w/o final softmax Sj , xS
j (4096-d)

Em fc:2, N1:1024, N2:200, ReLU xm
i , Em(xm

i ) (200-d)

Dm fc:2, N1:1024, N2:4096, ReLU
Em(xm

i ),
Dm(Em(xm

i )) (4096-d)

EI
style

fc:2, N1:500, N2:200, ReLU zIi , EI
style

(zIi ) (200-d)

Ea
style

fc:2, N1:200, N2:200, ReLU pi, E
a
style

(pi) (200-d)

Nmixer fc:1, N1:200, ReLU

{EI(x
I
i ), E

I
style

(zIi )},

i
c,p
i (200-d) or,

{ES(x
S
j ), E

a
style

(pi)},

s
c,p
j (200-d)

Table 2. Architecture of the proposed s-SBIR framework. For

each sub-network, the description is reported in the format {type

and number of layers, number of nodes in ith layer (Ni), ac-

tivation function}. The final column describes the input (I/p),

output (O/p), and the dimension of output (O/p-d) for each sub-

network. m ∈ {I, S} for image and sketch respectively.

Baselines: Since, there exists no baseline to directly com-

pare with s-SBIR, we develop different baselines to address

the same problem and use them to compare and analyze the

proposed framework.

Baseline 1: We choose the first baseline to be the pro-

posed category module (CM), which can be used for stan-

dard SBIR to show that as expected, the retrieved images,

even though they are of the correct category, are arranged in

a random manner with respect to style.

Baseline 2: For this baseline, CSfused, we perform s-SBIR

based on score level fusion of category-based and style-

based similarities of the style-augmented sketch query with

the database images. Given a query sketch sq and a set of

natural images I = {i1, ...in}, we compute their category-

similarity scores simcat ∈ Rn based on their respec-

tive Φ-space representations. In addition, given the query

style-keyword aSq , we obtain the style-similarity scores

simstyle ∈ Rn, using Ea
style(pq) and EI

style(z
I
k), k =

1, ..., n. Finally, the fused score is computed for each im-
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Model

Datasets

m-Sketchy m-TU-Berlin

MAP ncMAPw MAP ncMAPw

B1 - CM 0.7325 0.7569 0.6647 0.6722

B2 - CSfused 0.6113 0.7084 0.6679 0.6919

B3 - CStriplet 0.3758 0.4943 0.4325 0.5212

B4 - CSKron−fusion 0.7182 0.7320 0.6111 0.6598

B5 - CSfbiliear−fusion 0.7377 0.7818 0.6599 0.7150

Proposed 0.7481 0.7925 0.6806 0.7400

Table 3. Evaluation of s-SBIR on m-Sketchy and m-TU-Berlin.

age in I using a convex combination of both scores as,

simfused = αsimcat + (1 − α)simstyle. This is used to

retrieve the relevant images for the query. We have taken

α = 0.8 as the fusion weight.

Baseline 3: For this baseline CStriplet, we employ a triplet

loss on the combination of category and style. The required

triplet loss is formulated as follows

Ltriplet = min
∑

j∈Q

αj + λ||θmixer||
2

2,

s.t. max(0,m1 + d(sc,aj , i
c+,a+

j )− d(sc,aj , i
c∗,a∗

j )) < αj

i
c∗,a∗

j essentially considers any combination of category and

style (except i
c+,a+

j ) as a negative sample against s
c,a
j . Here

we give equal weightage to the category and style.

Baseline 4 and 5: For the last two baselines, we use

variants of how to combine the content and style infor-

mation using the mixer module. As described in Sec-

tion 3.3, the category-style mixer network essentially fuses

the category and style information into a single composite

representation in Ψ-space. The proposed framework uses

concatenation-based fusion. In Baseline 4, we employ the

Kronecker-product-based fusion as used in sketch-image

hashing [35] and this is denoted as CSKron−fusion. For

Baseline 5, we fuse the content and style using the popular

factorized bi-linear pooling widely used in visual question-

answering [46] etc. This is denoted as CSfbiliear−fusion.

The performance of the proposed framework along with

the different baselines in terns of MAP and ncMAPw is

reported in Table 3. We make the following observations -

(1) Except B3, the other baselines gives primary importance

to the category, so their MAP is better as compared to B3;

(2) B3 gives equal importance to category and style which

results in poor MAP, which also results in poor ncMAPw;

(3) The relative increase from MAP to ncMAPw is much

less for B1 signifying that even though the retrieved

categories are correct, the styles are random as expected.

Qualitative results: Figure 5(b) shows the top-10 re-

trieved images for few sketch queries with single desired

style. We observe that the desired style is pushed to the top

results while still maintaining the correct category.

Figure 5. Qualitative results on m-Sketchy dataset. (a) Top-10 re-

trieved images using the proposed category module for SBIR. (b)

and (c) shows the top-10 retrieved results for sketch query and a

single style criteria, when the style is (b) present; (c) not present

in the search set. Figure best viewed in color.

We also experimented with query styles which are not

present in the search set (In Figure 5(c)). For this experi-

ment, for a given query and desired style, e.g. truck images

with desired color yellow, we remove all the truck images

annotated as yellow in color from the search set and then

perform retrieval. The results show that the top-retrieved

images resemble perceptually similar colors (orange, red)

to yellow, compared to very different ones (black) present

in the dataset. This result corroborates our idea that us-

ing GloVe-feature representation of individual styles in-

stead of the binary representation [24] provides a seman-

tically meaningful style-space. A similar experiment has

also been performed for query {jellyfish-sketch, orange}.

Figure 6 shows some qualitative retrieval results when

the input sketch is augmented with multiple (in this case

two) styles. Even though there are multiple styles, the pro-

posed framework is able to combine them with the category

information in an effective manner to retrieve images of the

correct category with a combination of the desired styles. In

our experiments, we have used either single or two-styles,

but the proposed framework can seamlessly be extended for

more than two styles as well.

4.1. Analysis

In this section, we report the analysis on the m-Sketchy

dataset, unless mentioned explicitly.

Standard Category-based SBIR: Here, we compare the
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Figure 6. Top-5 results for s-SBIR using the proposed framework

on m-Sketchy data when multiple desired styles are given as query.

category module of the proposed approach with standard

SBIR approaches, which consider only the category of the

query sketch and the retrieved images. Note that the pro-

posed category module is a generic one and can poten-

tially be replaced with a better module, while still main-

taining the style and mixer modules intact. We compare the

proposed category module with state-of-the-art cross-modal

hashing [25][3] approaches on the full Sketchy dataset us-

ing the same split [25] as used by the other algorithms.

Method
feature

MAP
dim.

GF-HOG [13] 3500 0.157
SHELO [32] 1296 0.161

previous LKS [33] 1350 0.190
SBIR Siamese-CNN [29] 64 0.481

methods SaN [45] 512 0.208
GN Triplet [34] 1024 0.529
3D Shape [40] 64 0.084

Siamese-AlexNet 4096 0.518
Triplet-AlexNet 4096 0.573

CMFH [7] 0.190
CMSSH [4] 0.211

Cross-modal SCM-Seq [47] 0.671
Hashing SCM-Orth [47] 4096 0.616
methods CVH [20] 0.624

(128-bits) SePH [23] 0.640
DCMH [17] 0.656

DSH [25](32-bits) 0.653
DSH [25](128-bits) 0.783

Cross-modal CCA [38] 0.705
feature XQDA [22] 0.550

learning PLSR [41] 4096 0.462
(continuous- CVFL [42] 0.675

value) Proposed 200 0.7968

Table 4. Comparison of our Category Module with state-of-the-art

cross-modal hashing approaches on Sketchy for SBIR.

The results are reported in Table 4. We observe that on

Sketchy data, the proposed model outperforms the state-

of-the-art DSH [25] with much smaller feature dimension.

This is surprising given the simple architecture of the pro-

posed category module (CM ), since the main focus of this

work is the integration of style information. Note that our

CM does not use any privileged information about the data,

such as edge maps [25].

Latent space variations: We formed the latent space for

Figure 7. t-SNE plot of extracted color features from images,

where each image is annotated with only one color.

SBIR using the category-name embeddings extracted from

pre-trained GloVe [28] model. Effectively, this makes the

Φ-space similar to the label-space of training data which is

used in few recent SBIR work [25]. We perform an exper-

iment using these two variations of label/category encod-

ing to form the Φ-space and observe their effects on the

category-based SBIR in the latent Φ-space. We obtain a

MAP of 0.7076 and 0.7325 using one-hot encoding of la-

bels and Glove-embeddings respectively. Furthermore, us-

ing Glove-embeddings as latent-space results in a semanti-

cally meaningful retrieved set, where even the incorrectly

retrieved objects are semantically related to the query ob-

ject, even though they are not exactly same. This is re-

flected in the visual results shown in Figure 5(a). Against

a query of sketch bee or church, the model has wrongly

retrieved images of ant or castle, which have strong vi-

sual (shape/structure-wise) as well as semantic similarity

with the query objects. However, using one-hot encoding

of labels may lack this inter-category semantic relationship.

Effective style-space construction: Here, we analyse the

effectiveness of the lower and middle-layer VGG-features

of an image for style extraction. For ease of visualization

and understanding, we choose those images which are an-

notated with single value of a particular style, color. We

observe from the t-SNE [27] plot of the extracted image

style-features in Figure 7 that the features form nice clus-

ters in the style-space (or color-space), which justifies the

usefulness of the style extraction approach.

5. Conclusion

Here, we have introduced the problem of s-SBIR, where

the user has the flexibility of specifying any desired style

of the retrieved images. We have proposed an end-to-end

deep framework, which uses a category module, style mod-

ule and mixer module to appropriately disentangle and mix

the category and style information for s-SBIR. We have

also proposed a composite metric to evaluate s-SBIR ap-

proaches. Extensive experiments and analysis on subsets of

two widely-used sketch-image datasets show the effective-

ness of the proposed framework.
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