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Abstract

Detecting temporal extents of human actions in videos

is a challenging computer vision problem that requires

detailed manual supervision including frame-level labels.

This expensive annotation process limits deploying action

detectors to a limited number of categories. We propose

a novel method, called WSGN, that learns to detect ac-

tions from weak supervision, using only video-level labels.

WSGN learns to exploit both video-specific and dataset-

wide statistics to predict relevance of each frame to an

action category. This strategy leads to significant gains

in action detection for two standard benchmarks THU-

MOS14 and Charades. Our method obtains excellent re-

sults compared to state-of-the-art methods that uses similar

features and loss functions on THUMOS14 dataset. Simi-

larly, our weakly supervised method is only 0.3% mAP be-

hind a state-of-the-art supervised method on challenging

Charades dataset for action localization.

1. Introduction

Action classification (e.g. [3, 6, 11, 13, 18, 20, 33, 40]) is

an extensively studied problem in video understanding with

important applications in surveillance, human-machine in-

teraction and human behavior understanding. Recent ad-

vances in action classification can be attributed to powerful

hierarchical learnable feature representations [18, 33, 14],

introduction of large video datasets [18, 19], the use of

motion information (e.g. optical flow [33], dynamic im-

ages [1]) and 3D convolutions [38]. While recent methods

such as [6, 39] have shown to obtain good action classi-

fication performance in various benchmarks, a remaining

challenges in video understanding is to localize and classify

human actions in long untrimmed videos. Recent meth-

ods [7, 42] address localization of actions in long videos

in a supervised manner and require action labels for each

(a) Video-specific (local) frame selection

(b) Dataset-specific (global) frame selection

Figure 1. Our method makes use of both video specific (i.e. lo-

cal) and dataset specific (i.e. global) score prediction distributions

to identify the most relevant set of frames for a given video in a

weakly supervised manner for action localization and detection.

The likelihood of a frame (shown in green) for an action cate-

gory (“high-jump”) is obtained by comparing it to the other frames

from the same video (local) and frames from other training videos

(global) by using two Gaussian normalization functions.

frame. The supervised paradigm has two shortcomings.

First, frame labels are significantly more tedious and ex-

pensive to obtain than video-level labels. Second, temporal

extent of actions are not as clear as spatial extents of ob-

jects (see Figure 2 for an illustration). For instance, Sig-

urdsson et al. [31] report only 58.7% agreement for tempo-

ral boundaries of actions in MultiTHUMOS datasets among

human annotators. To address these issues, we propose a

novel weakly supervised action detection method using only

video-level labels. Our method is weakly supervised [43]
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Figure 2. Example videos for action detection contain “tennis-swing” and “hand-wave” in top and bottom rows respectively. Labeling

start and end frames of these actions requires not only a global understanding of these actions but also a local comparison of the candidate

frames with their temporal neighbors in the same video.

because it does not use any frame-level labels during train-

ing, however, it outputs accurate frame-level labels at test

time.

Our model is trained to select and classify relevant

frames for a given action using video-level labels. It selects

relevant frames using a deep neural network named frame

selection module which acts as a proxy for action localiza-

tion. At the same time, it classifies relevant frames using

another deep neural network, namely classification module.

Therefore, our model contains two modules (streams), one

for frame selection i.e., frame selection module, and one for

classifying each frame. Then our model fuses information

from both modules to make a video level prediction and

trains end-to-end using only video-level labels.

Inspired by the challenging task of predicting tempo-

ral boundaries of “hand-wave” action in the bottom row

of fig. 2, we hypothesis that accurate action prediction re-

quires not only global understanding of an action class but

also a closer look at the frames of a video and local compar-

ison between its frames. We build the frame selection mod-

ule on this idea such that it assigns a weight to each frame

prediction based on both local and global statistics. The lo-

cal one is realized by a local Gaussian function that picks

the most likely frames for an action class and ignores out-

liers within a video. The predictions that have smaller and

larger confidences with respect to the local mean prediction

for an action class are normalized (regularized) using a lo-

cal Gaussian function. This operation is local because the

selection involves analysis of predictions among the frames

of a single video. This allows us to find the most robust set

of predictions for a given action class within a video.

Similarly, the global frame selection strategy involves

picking the most relevant frames for an action class from a

video by comparing them to global action statistics that are

learned over all the videos of that action class. This strategy

selects frame predictions that are consistent with globally

learned statistics. The analysis of local and global modules

are combined to obtain a joint distribution over frames and

action classes (see fig. 1). Finally the outputs of the frame

selection and classification modules are combined.

In summary, our contributions are twofold: i) we pro-

pose a novel frame selection process for weakly super-

vised action localization using Gaussian normalization, ii)

our Gaussian normalization of scores using both local and

global statistics are effective for action localization. Our

contributions result in a good improvement in action local-

ization and detection in several challenging benchmarks ob-

taining results that are competitive with recent weakly su-

pervised techniques.

2. Related Work

Weakly supervised action localization Weakly supervised

action classification and localization has been studied in

prior work [4, 5, 12, 16, 22, 29, 30, 35]. In [4, 5, 12], the

authors use movie scripts to obtain action labels and their

approximate temporal boundaries from untrimmed videos

and use them as a means of supervision to train action clas-

sifiers with various discriminative clustering algorithms.

Duchenne et al. [12] propose a discriminative learning for-

mulation that simultaneously refines temporal action loca-

tions with classifier parameters. Bojanowski et al. [4, 5]

extend [12] by additionally exploiting the order of actions

in a video clip to ensure that the classifier predictions are

aligned with the orderings in the scripts.

Extended Connectionist Temporal Classification [16]

utilizes weak annotations for action classification by align-

ing each frame with a label in a recurrent network frame-

work. In contrast to [16] that learns from an ordered list

of action labels per video, our method learns to localize ac-

tion categories from weaker supervision, an unordered set

of actions. In principle, such constraints can be incorpo-

rated to our learning formulation as constraints. A sim-

ple method that implicitly learns to find relevant parts of

an object/action after randomly suppressing random parts
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of images/videos is presented by Singh et al. [35]. While

this method is shown to be useful for preventing the net-

work to focus only on discriminative segments, the final

model does not achieve a better action classification per-

formance. A more effective weakly supervised action de-

tection method that directly predicts the action boundaries

using outer-inner-contrastive loss to parameterize classifi-

cation loss in terms of temporal boundaries is presented by

Shou et al. [29]. Nguyen et al. [22] propose a loss function

comprised of two terms that minimize the video-level action

classification error and enforce the sparsity of the segment

selection.

Recently Paul et al. [23] proposed to employ an

attention-based mechanism to select relevant frames and

apply pairwise video similarity constraints in a multiple

instance framework. Liu et al. [21] also utilizes an at-

tention module along with multiple classification streams,

each can focus on different discriminative aspects of ac-

tions. As a matter of fact, our model also consists of mul-

tiple specialized streams, however it differs significantly

in terms of temporal modeling functions such as Gaus-

sian and softmax normalization functions to select relevant

frames in a weakly supervised manner. We compare to

[35, 29, 22, 23, 21] quantitatively in section 4.

Wang et al. [41] also employ a two stream method

based on [2] for video action detection and localization.

Our method differs to Wang et al. [41] as our method not

only considers local video statistics but also global-dataset-

specific score distributions which is crucial for accurate ac-

tion localization. As also observed in [22], the frame se-

lection mechanism in [41] is limited to select few examples

due to the exponential term in softmax operator. While such

a mechanism has been shown in [2] to perform well when

there are limited instances for object detection, it is not as

effective to localize actions which typically comprised of

many frames.

Weakly supervised action segmentation [25, 10] is an-

other closely related topic to weakly supervised action de-

tection. It focuses on aligning dense textual descriptions

(e.g. recipes) such as action transcripts with the frames of

the corresponding video (e.g. cooking video) by predicting

temporal boundaries between different actions. Richard et

al. [25] use context modeling with context free grammar to

perform action segmentation. Ding et al. [10] use a tem-

poral convolutional feature pyramid to find coarse ground

truth labels and a iterative refinement step using transcripts.

Weakly supervised object localization learn to localize

object instances spatially in still images from image-level

labels only. The recent work in weakly supervised object

detection propose better deep network architectures [2], ini-

tialization [36], learning strategies [8] that are less prone to

over-fitting, use of various advanced cues such as abject-

ness [9], object size [27] and co-occurrence [28].

3. Problem, approach and model

In this section we present our Weakly Supervised Gaus-

sian Network (WSGN) for action localization. In sec-

tion 3.1, we present our problem definition, and then in sec-

tion 3.2 we present a simple naive approach to weakly su-

pervised action localization. Finally, in section 3.3, we

present our approach and the methodology.

3.1. Weakly supervised action localization problem

Let V = 〈I1, I2, · · · It, · · · , IT 〉 be a sequence of frames

where It ∈ I = R
3×H×W is the tth frame of the video

V . T denotes the video length which vary from video to

video. Assume that we are given a set of N training videos

and its video-level labels {V i,yi} where y ∈ Y = {0, 1}C

indicates the presence/absence of human action classes as a

C-dimensional ground-truth binary vector for each train-

ing video V . The qth element of the vector y is set to

one when qth human action is present in the video, oth-

erwise it is set to zero. We wish to learn a function that

predicts the presence/absence of human action classes not

at video-level but at frame-level for a testing video i.e. to

predict C-dimensional binary vector yt for each frame It.

The learning becomes weakly supervised as what is being

predicted at test time is more detailed than what is used for

training [43]. We predict frame label vector (i.e. yt) at test

time for each frame using a model that is trained with video-

level labels y. Therefore, our action localization task (i.e.

predicting yt for each frame) is weakly supervised.

Let us denote a trainable feature extractor that returns a

M -dimensional vector for each frame by f(It, θ) : I →
Ω = R

M . Here θ are the learned parameters of f . A classi-

fication network h(·, θcls) : Ω → Y takes the feature vector

f(It, θ) and returns a C-dimensional action classification

score vector. Here θcls are the trainable parameters of h.

Action classification score vector for frame It is then ob-

tained by the joint model h(f(It)). Next, we present a sim-

ple weakly supervised action localization method which we

use as a baseline in our experiments.

3.2. Naive weakly supervised action localization

When frame-level action class annotation vectors yt are

known for the frames of training videos, one can train f

and h to minimize binary cross-entropy loss at frame-level.

As we assume that no ground truth frame-level labels are

available for training, we are limited to use video-level label

vectors y to train our action localization model that predicts

yt at test time.

A simple strategy to obtain a video-level prediction ŷ

from a sequence of frames is to average frame-level predic-

tions over the whole sequence as follows:

ŷ =

T∑

t=1

1

T
σ(h(f(It, θ), θcls) (1)
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Figure 3. Illustration of our weakly supervised Gaussian action detection framework (WSGN).

where T is the number of frames in the sequence and can

vary from video to video, σ is the softmax normalization

function over predicted score vector for each frame. To

train such a model, we minimize the binary cross entropy

loss L(y, ŷ) over predicted probability vector (ŷ) and the

ground truth. During testing, we use function h(f(It)) to

label each frame. However, this method naively considers

an equal importance for each frame to obtain a video level

score prediction by simply averaging their scores. We de-

note this approach the Naive Weakly Supervised action lo-

calization. Here we hypothesize that a good model should

carefully choose the “relevant” frames for the action and

then average the scores of only those.

3.3. Our approach

Our approach is to learn another network in addition to

the “classification module” (i.e. σ(h(f(It, θ), θcls)) that can

identify the relevance of each frame for the task of video ac-

tion classification. We call this network “frame selection

module” and denote it by function g(It, V, θg) where θg
is the learnable parameter vector–see fig. 3. This network

function acts as a proxy for action localization and weighs

each frame per action class depending on the relevance of

the frame to recognize the action.

Similar to h, g function also returns a C-dimensional

weight vector for each frame It. However, g function dif-

fers to the classification module function σ ◦ h ◦ f in two

aspects. First, its objective is to find frames that are rele-

vant to each action class. Second, while the classification

module h scores each frame independent of other frames,

the frame selection module scores each frame relatively by

considering frames both from the video V and the entire

dataset. We describe the details of the relative scoring func-

tions in the following paragraphs.

The final video-level prediction is obtained by a

weighted average of all frame classification predictions

where the weights are defined by g as shown in equation 2.

Here ⊙ is the element-wise product between weights and

classification probability vectors.

ŷ =
1

T

T∑

t=1

g(It, V, θg)⊙ σ(h(f(It, θ), θcls)) (2)

The video-level prediction ŷ can now be used with a binary

cross entropy loss L(y, ŷ) and enables our action localiza-

tion method to be trained with video-level labels. During in-

ference, we simply skip this temporal averaging step and in-

stead use g(It, V, θg)⊙ σ(h(f(It, θ), θcls) to obtain frame-

level predictions and perform action localization by using

these scores. In next part, we discuss how to formulate a

good g function for the task of action localization.

WSGN: Gaussian frame selection module. Here we ex-

plain the frame selection module g which is complemen-

tary to the classification module σ(h(f(It, θ), θcls)). To

this end, we design the frame selection module in a way

that it can predict the relevance of a frame by a comparative

analysis to the rest of the frames. In particular g function

consists of three components which are responsible for (i)

extracting features from sequence of frames, (ii) predicting

a C-dimensional score vector for each frame based on the

extracted features, (iii) normalizing those score vectors to

select frames. For the first component, g shares the feature

extractor f with the classification module for computational

efficiency. For the second part, g has a dedicated classi-

fier also denoted by h(·, θdet) which takes the feature f(It)
and returns a C-dimensional action selection score vector

but parameterized a different set of parameters θdet. As

the input and output dimensions of h(·, θdet) are same with

h(·, θcls), we simply use the same function structure h(·, ·)
for brevity. The frame selection score vector obtained by

h(f(It, θ), θdet) is then denoted by xt and the class-specific

score for the qth action class is then denoted by scalar x
q
t .

The objective of frame selection module g(·) is to select

relevant frames for a given action. To do so we make use

of both video-specific and dataset-wide statistical informa-

tion to find frame-action predictions that are most probable

using normalization functions. These normalization func-

tions compare predicted scores for each frame against other

frames to obtain a likelihood estimate for each prediction

h(f(It), θdet). However, the aim here is not to obtain an

estimate for the presence of action class q in frame It as

done by the classification module h(f(It), θcls) but to es-

timate a likelihood of each prediction h(f(It), θdet) with

respect to local and global score distributions. Higher the
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likelihood estimate of a prediction with respect to others,

a higher weight is given by frame selection module, to the

corresponding classification prediction in eq. (2). Using the

feature extractor f(·, θ), frame selection function h(·, θdet)
and normalization functions, our frame selection module

g(·) finds relevant frames for each action class. Next we de-

scribe three normalization functions including local (ZLoc),

global (GLoc) and softmax (SLoc) that are used with our

WSGN method.

ZLoc: Local variant of WSGN The local variant of

WSGN model uses a Gaussian normalization function to

find weights for each prediction using a likelihood estimate

over the frames of a single video. We estimate the likeli-

hood of frame selection scores x
q
t for qth class relative to

all other frames within the same video t = {1, 2, · · · , T}
using a Gaussian likelihood function as follows:

z
q
t = exp(−[

x
q
t − µq

z

s
q
z

]2). (3)

Here, µq
z and sqz are the statistical mean and the standard-

deviation of all frame selection scores for qth class obtained

by h(f(·, θ), θdet) for video V . In fact z
q
t is a probability es-

timate of x
q
t with respect to all other frame selection scores

within the video. It assigns lower probabilities to those pre-

dictions that are very different from the mean prediction. If

x
q
t is very large compared to the mean, it is considered as an

outlying prediction. This encourages our model to identify

not only the most salient frame for the action but also the

whole temporal extent of the action.

By using eq. (3), g function assigns a class-specific

weight z
q
t to each frame It which is further multiplied with

the classification prediction (i.e. from σ(h(f(It, θ), θcls))),
as indicated in eq. (2). Let us denote this normalization

operation by gzloc(·) which takes all action selection score

vectors (xt for all t = {1, 2, · · · , T}) and returns a weight

vector zt for each frame. Then the function g(It, V, θg)
would return a weight vector zt where

g(It, V, θg) = gzloc(·) ◦ h(·, θdet) ◦ f(·, θ)(It, V ). (4)

The gzloc(·) function does not have any learnable parame-

ters, thus learning the local variant of our method (denoted

by ZLoc or Zloc) involves optimizing three sets of parame-

ters θ, θcls and θdet using the sbinary cross-entropy loss.

GLoc: Global variant of WSGN. While ZLoc variant

of our WSGN method considers statistics from frames of

a single video to normalise scores, the global variant one

GLoc compares each frame frame selection score x
q
t with

the frames from all the training videos. As a direct com-

parison to all frames is computationally expensive and not

even possible within the memory of the standard GPUs, we

instead choose to use dataset-wide or global statistics with a

Gaussian function per action category over the frame selec-

tion scores. To this end we propose to learn a mean vector

(µ
q
l ) and standard deviation vector (s

q
l ) per action category

jointly along with the other network parameters. The sub-

script l of µ
q
l is used to indicate that they are learned but not

statistically computed over the scores. Both µ
q
l and s

q
l are

learned using the training samples and therefore, represen-

tative of the global dataset specific information. Our new

GLoc normalization operation is then given by eq. (5).

l
q
t = exp(−[

x
q
t − µ

q
l

s
q
l

]2) (5)

This normalization function is denoted by ggloc(·) which

takes the class selection score vector xt as input. The

weight vector returned by global GLoc approach is denoted

by lt = g(It, θg) where

g(It, θg) = ggloc(·, µl, sl) ◦ h(·, θdet) ◦ f(·, θ)(It). (6)

In contrast to local Gaussian approach (ZLoc), in GLoc, we

learn parameter vectors µl and sl in addition to θ, θcls and

θdet. The weight lt is estimated not from a single video

but all the training samples. If the frame selection score

x
q
t is more likely w.r.t. global score distribution, then l

q
t

will be higher and the prediction from the classification path

σ(h(f(It, θ), θcls)) for class q is highly weighted.

SLoc: Softmax variant of WSGN. For completeness, we

also propose to use a commonly used normalization func-

tion, softmax but apply it to normalize the video specific

scores x
q
t over the frames of a video but not over the feature

channels so that the sum of the frame selection scores are

normalized to 1 for a video:

s
q
t =

ex
q

t

∑
i=1

ex
q

i

(7)

This normalization function is then denoted by gsloc.

WSGN: Complete model. We make use of all

three normalization function, namely the local ZLoc,

global GLoc and softmax-based SLoc variants in our

WSGN. To integrate the predictions from three streams,

we propose a simple averaging strategy, i.e. g =
avg(gzloc(·), ggloc(·), gsloc(·)) ◦ h(·, θdet) ◦ f(·, θ), where

avg denotes element-wise averaging over three normaliza-

tion functions. The combined class-specific frame selection

weight for frame It can simply be obtained by the aver-

age of weights i.e. 1

3
(zqt + l

q
t + s

q
t ). Now we can finally

combine the predictions of classification module denoted by

σ(h(f(It, θ), θcls)) and the frame selection module by g(·).
A visual illustration of our method is shown in fig. 3. For

action detection and localization, we use the score returned

by g(It, V, θg)⊙ σ(h(f(It, θ), θcls) for each frame.
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4. Experiments

4.1. Datasets

We evaluate our WSGN method on two standard ac-

tion localization benchmarks, namely the Charades [32] and

THUMOS14 [17].

Charades [32] is composed of 9,848 indoor videos with an

average length of 30 seconds, comprising 157 action classes

from 267 different people that are recorded in their homes

and performing everyday activities. Each video is anno-

tated with action labels and duration which allow evaluation

for action localization. We use a standard evaluation proce-

dure introduced in [30] for action localization using fixed

train (7985) and validation (1863) splits. As done in [30],

we predict a score for 157 classes for 25 equally spaced

time-points in each video and then report action localiza-

tion mAP.

THUMOS14 [17] dataset consists of very long videos (av-

erage length is 3.5 minutes) having 20 human action classes

for action detection task. In this dataset, we follow the eval-

uation procedure in the previous work [35, 29] to provide a

fair comparison. Concretely, we use the validation set con-

taining 200 untrimmed videos for training and evaluate our

model on the test set containing 213 videos.

4.2. Implementation details

Features and networks: We use two convolutional neural

networks; namely the VGG16 [34] and ResNet34 [15] that

are pretrained for ImageNet classification task [26] for Cha-

rades dataset. These are trained end-to-end. We use Ima-

geNet pre-trained I3D (I3D-I) and UntrimmedNet [41] fea-

tures for THUMOS14 experiments. Furthermore, we eval-

uate our methods using I3D networks [6] that is pretrained

for video action classification on Kinetics dataset [19] (de-

noted by (I3D-K)) for both THUMOS14 and Charades

experiments to obtain competitive state-of-the art results.

These are only fine-tuned and not trained end-to-end. For

all these networks, we take the output before the classifica-

tion layer and include a dropout layer with a dropout rate of

0.5 for image classification networks and a dropout rate of

0.8 for I3D networks. These serve as our feature extractor

network f(, θ). As the feature classification networks (i.e.

h(, θcls) and h(, θdet)), we use a simple two layered neural

network to produce classification scores (hidden layer size

is set to the input feature size).

Training details: We use a learning rate of 10−4 for

ResNet34, and I3D and a learning rate of 10−3 for VGG

and trained for a maximum of 80 epochs. We use a batch

size of 128 videos and 32 sub-batches and a weight decay

of 0.0005. Because some videos are very long, we sample

every 5th frame and perform a temporal data augmentation

(vary the start of the sampled sequence from 1st to 15th

frame). Only for THUMOS14, during inference, we use all

VGG16 Resnet34 I3D-K

Supervised 9.0 10.1 18.7

Naive W. Sup. (eq. (1)) 5.2 5.2 13.7

WSGN - SLoc 6.0 7.1 14.9

WSGN - ZLoc 8.7 9.0 16.8

WSGN - GLoc 8.5 9.3 17.2

WSGN - SLoc + GLoc 8.7 9.4 18.2

WSGN - ZLoc + GLoc 8.8 9.4 18.2

WSGN - Complete 8.9 9.7 18.3

Table 1. Action localization performances in mAP(%) for super-

vised and weakly supervised methods with different base networks

on Charades by using only RGB input. WSGN - SLoc: Soft-

max normalization, WSGN - ZLoc: local Gaussian normalization,

WSGN- GLoc: global parametric Gaussian normalization. 2

frames, however we set the mini-batch size to one to make

sure we fit videos in GPU memory of (4×16GB). We use

standard, data augmentation at video frame level (flipping,

random cropping, etc.) but apply the same augmenting op-

eration for the entire video to obtain a temporally smooth

video after data augmentation.

4.3. Ablation study on Charades dataset.

In this section we compare several baselines and vari-

ants of weakly supervised models presented in section 3 on

Charades dataset. We experiment with three network archi-

tectures, namely VGG16, Resnet34 and I3D-K. For I3D-K,

we use bi-linear interpolation to obtain frame-wise feature

representation and fine-tune with video level annotations.

We analyze the impact of different normalization func-

tions i.e. ZLoc, GLoc and SLoc of our WSGN. We compare

our method with (1) RGB-based naive weakly supervised

baseline (Naive) which corresponds to eq. (1). (2) We also

report results for weakly supervised action localization only

with Softmax normalization denoted by SLoc, (3) weakly

supervised action localization only with local Gaussian nor-

malization denoted by ZLoc (4) weakly supervised action

localization only with global parametric Gaussian normal-

ization denoted by GLoc. Our complete model shown

in Figure 3 is denoted by WSGN-Complete. We also report

results for fully Supervised case where we train a model us-

ing frame level annotations. In this case, we minimize the

a combinations of losses L(y, ŷ) +
∑

t
1

T
L(yt, ŷt) where

ŷ = 1

T

∑
t σ(h(f(It, θ), θcls) and ŷt = σ(h(f(It, θ), θcls).

Results are shown in Table 1.

Several interesting observations can be listed based on

these results. First, we obtain considerable improvements

in action localization using our WSGN-Complete method

over naive approach (improvement of 3.7 mAP for VGG16,

4.5 mAP for Resnet34, and 4.6 mAP for I3D). Interest-

ingly, our method seems to gain more when much richer

network architectures are used as the best improvement over

Naive Weak Supervision (eq. (1)) is obtained with I3D net-

work. Secondly, as an individual method, global Gaussian-

542



based WSGN-GLoc seems the most effective one. Local

Gaussian-based normalization method (ZLoc) is also as ef-

fective as GLoc method. Because SLoc uses softmax selec-

tion, its output is sparse and thus it could select only few

important frames rather than entire coverage of an action.

This leads to relatively low performance for Sloc. Combi-

nation of both ZLoc and GLoc is considerably more effec-

tive. Combination of all normalization methods seems to

be the most beneficial in this dataset for action localization.

Our weakly supervised results are surprisingly as good as

the fully supervised method on all three network architec-

tures indicating the effectiveness of our novel frame selec-

tion module. We conclude that WSGN weakly supervised

action localization is effective on Charades dataset across

wide variety of base network architectures.

4.4. Ablation study on THUMOS14.

In this section we evaluate our method on THUMOS14

dataset using ImageNet pretrained I3D (I3D-I). We extract

features from both RGB and optical flow streams follow-

ing the protocol used in [6] and then use bi-linear interpo-

lation to obtain frame-wise feature representation and fine-

tune with video level annotations. We evaluate varying the

detection IoU threshold using the standard evaluation pro-

tocol as in [17]. As our method is only weakly supervised,

to generate action detection boundaries i.e. start and end

of each action, we make use of two heuristics. First, we

threshold scores to find candidate frames and then generate

candidate segments using those consecutive frames that has

a score greater than the threshold. It should be noted, be-

cause we use local/global Gaussian normalization, returned

scores are already managed to get rid of outliers and very

small scores. Secondly, we use only those candidate seg-

ments that are longer than one second for evaluation. We

report results in Table 2.

We observe a similar trend to Charades dataset where all

variants of our WSGN is effective than Naive Weak Super-

vision (eq. (1)) method. Interestingly, even if our supervised

results are far better than our weakly supervised method,

obtained results are very encouraging. The improvement

we obtain over Naive Weak Supervision (eq. (1)) method

is comparatively greater than the gap between supervised

performance and our WSGN (SLoc + ZLoc + GLoc). We

conclude that our method is very effective for weakly su-

pervised action detection in THUMOS14 dataset.

4.5. Comparison to prior state­of­the art.

We compare with several weakly supervised action de-

tection methods that have been evaluated on THUMOS14

dataset [37, 35, 41, 29, 22, 23, 21] in Table 3. In particular,

some very successful recent methods such as STPN [22],

W-TALC [23] and Comp [21] use I3D pretrained on Ki-

netics (I3D-K). Therefore, we report results with I3D-K

Method 0.1 0.2 0.3 0.4 0.5

Supervised 59.7 51.9 47.4 40.1 32.8

Naive W. Sup. (eq. (1)) 42.9 36.6 28.0 20.9 14.2

WSGN - SLoc 45.3 38.9 31.0 23.5 16.3

WSGN - ZLoc 54.5 47.8 38.8 28.9 20.0

WSGN - GLoc 45.2 38.8 30.2 22.4 14.6

WSGN - SLoc + GLoc 48.4 42.5 34.1 26.0 18.0

WSGN - ZLoc + GLoc 54.7 48.6 39.4 29.4 20.7

WSGN - Complete 55.3 47.6 38.9 30.0 21.1

Gap 4.4 4.3 8.5 10.1 11.7

Improvement 12.4 11 10.9 9.1 6.9

Table 2. Action detection performance on THUMOS14 dataset

using I3D-I for variants of our weakly supervised WSGN ac-

tion detection method. We change IoU threshold from 0.1 to

0.5 and report results. WSGN - SLoc: Softmax normalization,

WSGN - ZLoc, local Gaussian normalization, WSGN- GLoc:

global parametric Gaussian normalization. The Gap between the

supervised results and our WSGN (SLoc + ZLoc + GLoc) is

shown. The improvement obtained over Naive Weak Supervision

(eq. (1)) method is also shown.

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Supervised faster-rcnn [7] 59.8 57.1 53.2 48.5 42.8 33.8 20.8
W

ea
k

S
u

p
er

.
LAF [37] 12.4 11.0 8.5 5.2 4.4 – –

Hide-and-seek [35] 36.4 27.8 19.5 12.7 6.8 – –

UntrimmedNets [41] 44.4 37.7 28.2 21.1 13.7 – –

AutoLoc [29] – – 35.8 29.0 21.2 13.4 5.8

STPN [22] (I3D-K) 52.0 44.7 35.5 25.8 16.9 9.9 4.3

W-TALC [23] (I3D-K) 55.2 49.6 40.1 31.1 22.8 7.6

Comp- [21] (I3D-K) 57.4 50.8 41.2 32.1 23.1 15 7.0

Our (I3D-K) 55.3 48.8 37.2 30.2 21.1 13.8 8.2

Our+CASL (I3D-K) 57.9 51.2 42.0 33.1 25.1 16.7 8.9

W-TALC [23] (UNTF) 49.0 42.8 32.0 26.0 18.8 – 6.2

WSGN (UNTF) 51.1 44.4 34.9 26.3 18.1 11.6 6.5

Table 3. Action detection performance on THUMOS14 dataset

for various weakly supervised state-of-the-art methods. We also

show results for supervised state-of-the-art method [7] as a refer-

ence. We also compare with s.o.a. W-TALC [23] with Untimmed-

Net [41] features (UNTF).

and UntimmedNet [41] features (UNTF). Additionally, we

make use of CASL loss presented in [23] to further im-

prove our results. Our method trained with the CASL loss

outperforms all other methods. Also our method without

CASL loss is better than recent effective methods such as

STPN [22] which relies on feature attention over frame

features similar to us. Indeed, the idea of co-activity loss

presented in W-TALC [23] is effective and complimentary

to our method. In-fact, state-of-the art methods such as

recently presented [21] might be complimentary to us as

well. We leave the use of diversity loss [21] for future

work. We obtain better results with UNTF features com-

pared to [23]. Especially, for IoU of 0.1, our method is

only 1.9 mAP behind state-of-the-art faster-rcnn-temporal-

localization [7]. However, supervised methods perform

way better than weakly supervised methods for larger IoU

thresholds. This is not surprising as the task becomes dif-

ficult with larger IoUs. Nevertheless, we obtain somewhat
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Method Network Input Loc.
S

u
p
er

v
is

ed

Temporal Fields [30] VGG16 RGB 9.0

Two Stream++ [33] VGG16 RGB+OF 10.9

Temporal Fields [30] VGG16 RGB+OF 12.8

Super-Events [24] I3D RGB 18.6

Super-Events [24] I3D RGB+OF 19.4

W
k
.

S
u
p
.

WSGN (ours) VGG16 RGB 8.9

WSGN (ours) ResNet34 RGB 9.7

WSGN (ours) I3D RGB 18.3

Table 4. Comparison to the state-of-the action localization meth-

ods on Charades dataset. All other methods may use frame anno-

tations of Charades dataset during the training process, hence fully

supervised. Our method is only “Weakly Supervised” (WS).

Figure 4. Dissecting the model outputs for action detection.

encouraging results even compared to state-of-the-art super-

vised methods for smaller IoU thresholds while obtaining

some encouraging results even for very large IoU of 0.7–

see Table 3.

To the best of our knowledge, no prior weakly supervised

method have evaluated on challenging Charades dataset for

action localization. Therefore, we only compare with su-

pervised methods, which actually used frame level anno-

tations. Results are reported in Table 4. Notably, our

method obtains competitive results compared to fully su-

pervised methods using both VGG16 and I3D architectures.

Effective Temporal Fields [30] method obtains 9.0 mAP us-

ing VGG16 and RGB stream while our weakly supervised

method is slightly worse (8.9 mAP). Similarly, our WSGN

with I3D feature extractor performs only 0.3 mAP worse

than supervised Super-Events [24] method. This is an indi-

cation of the impact of our novel Gaussian normalization-

based frame selection module. However, our results are 1.1

mAP lower than Super-Events [24] when used with both

RGB and optical flow (although we don’t use optical flow

for Charades dataset). We conclude that our weakly super-

vised method is effective for video action localization (Cha-

rades dataset) and detection (THUMOS14 dataset).

4.6. Analysis of localization components.

Our WSGN method has several computational outputs

that predicts categorical information. For example the ac-

tion classification score h(, θcls) ◦ f(, θ), and action selec-

tion score h(, θdet) ◦ f(, θ). The global normalization func-

tion outputs ggloc(), the local normalization outputs gzloc()
and softmax normalization outputs gsloc() also returns C-

dimensional weights. Overall, the frame selection module

g(·) outputs C-dimensional weight vector for each frame by

taking average of all normalization functions. Finally, both

classification and frame selection module g(·) outputs are

multiplied to get the frame-wise final prediction which we

use for action localization. We perform an analysis on these

outputs and report action detection performance in Figure 4

using THUMOS14 dataset.

First, we see that all normalization outputs do not per-

form as good as classification output h(, θcls) ◦ f(, θ). This

is not surprising as the goal of normalization is simply

frame selection for each action. However, the classification

module outputs performs satisfactorily and already obtains

better results than Naive Weak Supervision (eq. (1)) method

indicating in-fact the addition of frame selection module it-

self helped to improve the classification parameters as well.

This indirectly indicates that, our frame selection module

g(·) help to improve the video representation f(·, θ). The

best results are obtained by the final output indicating the

advantage of having two separate functions for frame selec-

tion and classification.

5. Conclusion

In this paper we propose a weakly supervised action lo-

calization method where both frame selection and classi-

fication are learned jointly with a deep neural network in

an end-to-end manner. We show that accurate action lo-

calization require both video-level and dataset-wide frame

comparison. As demonstrated in our experiments, com-

bination of both local and global strategies result in bet-

ter performance and obtains state-of-the-art results in two

challenging datasets. Importantly our method further nar-

rows down the gap between the supervised and weakly su-

pervised paradigms. For future work we plan to extend

our weakly supervised localization method from temporal

to spatio-temporal domain by exploring higher dimensional

normalization strategies.
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