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Abstract

We present a novel approach for person images synthesis

in this paper, that can generate person images in arbitrary

poses, shapes and views. Unlike existing methods just us-

ing keypoints’ locations in heatmaps format, we propose to

render SMPL model to UV maps, which can provide hu-

man structural information about poses and shapes. Thus,

by varying the parameters of poses, shapes and camera in

SMPL model, we can generate different person images with

various attributions in a simple way, while in most cases we

can only obtain new shapes of people by computer graphics

methods. We train an end to end generative adversarial net-

work with unlabeled data. As our SMPL parameters come

from a pretrained model, we call our overall network semi-

supervised. Our network keeps a global appearance dur-

ing the fine-tuning stage of the target person, thus we can

get a complete appearance of the target person, rather than

the inaccurate appearance caused by inferencing without

enough information. Experiments on Human3.6M Dataset

and a self-collected dataset demonstrate the excellent ef-

fectiveness of our approach on person images synthesis for

different applications.

1. Introduction

With the development of deep generative networks, im-

age synthesis [15] [4] [33] [43] becomes easier and more

realistic. The most common task in person image synthe-

sis is human pose transfer, which generates an image of the

source person’s pose with the target person’s appearance.

Many existing methods [2] [8] [20] [21] [25] [26] [40] for

human pose transfer adopt an encoder-decoder architecture

to learn the appearance of the person in an input image, with

the 2D keypoints in a heatmap format representing human

structure information as a guidance. However, 2D keypoints

only contain skeleton information without shape informa-

tion. Due to occlusion, 2D keypoints also can be inaccu-

rate, which can lead to mismatching between appearance

and human structure, and thus show an abnormal result in

generated images.

*These authors contributed equally to this work

There are still many other applications for person im-

ages synthesis. For example, we can generate person im-

ages with various weight and height for data augmentation.

We also can vary the views for a person which can be used

in Augmented Reality(AR). However, some difficulties ex-

ist such like the pose and the appearance of one person in an

image are often difficult to be totally separated and the new

pose is also hard to correspond with the unpaired appear-

ance. As inputting a single view image, when transferred

to an unseen view, the unseen part about appearance of the

original image may also be inferred inaccurate.

In this paper, we propose a two-stages method for per-

son images synthesis. First, we use a pretrained HMR [17]

model to get SMPL [24] parameters and then we can sep-

arate the human body with pose, shape and camera param-

eters, thus we can control the variety of the corresponding

component of human body. After rendering a 3D model

coming from SMPL parameters to UV maps, we concate-

nate the input images with the UV maps and train a UV-

guided appearance encoder. The UV maps with human

structure information will guide the latent code to learn

proper appearance information, and we also utilize a cross-

ing training between two images to enhance the separation

between body structure and appearance. With background

images and a decoder we can get our final generated im-

ages. All the network is trained in an adversarial way to

get a more realistic image. After obtaining a network gen-

eralized well in poses, we fine-tune the network to enroll

in the appearance information of the target person. In this

way, we can keep a global appearance of the target person

and can generate images in any unseen views with accurate

appearance. As our method needs a set of images of a spe-

cific person to enroll the person appearance into the network

for robust applications, we adopt Human3.6M [14] dataset

which is in video format. We also collect some videos about

some specific people by mobile phone to display more re-

sults about our method. We show excellent results on Hu-

man3.6M [14] and our self-collected dataset which is col-

lected by mobile phone. Our main contributions can be

summarized as follows:

i) We propose a novel framework that can separate appear-

ance, pose and shape of a person in an image, thus we
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can generate person images in arbitrary poses, shapes, and

views.

ii) We propose an end-to-end and semi-supervised network

with a UV-guided appearance encoder in a cross-training

way to separate body structure and appearance information.

iii) We enroll a global appearance for a specific person in

the network, and can generate unseen views for the input

image.

2. Related Work

Deep generative networks. Deep generative networks

have demonstrated a great progress in image synthesis, such

as Generative Adversarial Networks (GAN) [9] and Vari-

ational Autoencoder (VAE) [19]. GAN has been widely

used due to its capability of generating realistic images

with sharp details. And there also develops many vari-

ants. CGAN [28] and InfoGAN [5] use labels to enhance

the correlation between latent code and generated images.

WGAN [1] proposes to use wasserstein distance to gain a

stable training process. Works like [32] and [39] lever-

age text for image generation with GANs. Frameworks like

pix2pix [15], CoGAN [22], CycleGAN [44] are targeted at

image to image translations, while CycleGAN [44] achieves

unsupervised image translation. Works like pix2pixHD [35]

use multi-stages to improve generated images’ quality in a

coarse-to-fine way. As we aim at human pose and shape

transfer, which can be also treated as image translation, we

can make use of these basic frameworks to generate realis-

tic images.

Human Pose Transfer. Human pose transfer usually ob-

tains appearance from the target person images and can

generate people in clothing [20] or new action sequences

with the same appearance [3] after we give source person’s

poses. Ma et al. first demonstrates human pose transfer

with the given 18 keypoints in heatmaps format. They con-

catenate the keypoints’ heatmaps with source images and

train a CNN network in an adversarial way. Zhao et al.

proceed a coarse-to-fine process to get detailed output im-

ages. Balakrishnan et al. separates appearance into person

and background, while Pumarola et al. proposes a fully un-

supervised strategy to render images with new poses. Esser

et al. trains a conditional U-Net for pose-guided image gen-

eration, conditioned on the output of a variational auto-

encoder for appearance. All of these works utilize only

poses of people, but we introduce SMPL model to control

not only poses but also shapes of the person in the images,

thus the generated images with the transferred person can

be in various shapes. Neverova et al. also leverage SMPL

model, but they don’t generate images with various human

shapes.

Appearance Generation. To obtain the accurate appear-

ance texture, the source pose needs to match the pose in the

target image. Zanfir et al. proposes to fit a 3D body model

to capture the body deformations and match the source and

the target pose. The drawback of fitting a 3D model de-

rives from high computational cost and an inaccurate result.

As optical flow [13] demonstrates pixel-to-pixel correspon-

dence between two adjacent images, appearance flow [42]

shares the same point that two images exist dense corre-

spondence with different view-points. Li et al. use appear-

ance flow to perform feature warping on the input image.

Neverova et al. render the 3D human model into meaningful

UV-coordinate maps based on DensePose [10] and warped

surface interpolation and inpainting explicitly back to the

image space. Differently, we use UV-coordinate maps ren-

dered from SMPL model to guide the image warping im-

plicitly in a simpler way without high computational cost.

Works like [26] [31] input only single image and try to

separate appearance from human body structure with weak

supervision. For lack of global appearance information,

when generating unseen views the appearance will be in-

ferred from the distribution of the datasets and cause wrong

appearance. In our work, we fine-tune the network to pre-

serve the appearance information completely and even if to

generate unseen views, the network will also perform an ac-

curate result same to the real image.

3. Method

3.1. Overall Network Architecture

Figure 1 illustrates our end-to-end semi-supervised per-

son images synthesis framework. There are two steps to

realize the synthesis. First, We train a network primarily

generalize on various poses. The network consists of a UV-

guided appearance encoder extracting latent code represent-

ing appearance from input images, and a decoder concate-

nating appearance latent code with human UV maps which

are rendered from SMPL parameters that are estimated from

HMR model [17]. To make the generated images more re-

alistic and more clear, a discriminator like patchGAN [6]

which better deals with high frequency features are also ap-

plied. Making assumption that we have dataset contains

multiple images of the same person which has the same ap-

pearance, we can leverage cross training to compel the ap-

pearance latent code independent from human motion struc-

ture. This detail is illustrated in Section3.3. In second step,

we fine-tune the network with images of a specific person

so as to extract a global appearance during cross training.

As we have a pretrained network which is generalized well

in poses, we just need to collect a few set of images of one

person that contain all views. We show that we need about

500 images, or a video with 500 frames of a specific person

with all views to achieve the accurate results in Section 4.

At the test stage, we can provide a new pose or new shape

parameters and realize the person images synthesis for dif-
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Figure 1. Network Architecture.
⊕

represents concatenate operation. The top image is the training process. The bottom image is the

testing process. At test stage, we vary the camera, pose, shape parameters to synthesize images for different applications.

ferent applications with the appearance saved in the second

step.

3.2. Human Structure Representation

In this paper we use SMPL [24] body model for human

structure representation since it has high realism and low

parameter space. SMPL parameterizes a triangulated mesh

with N = 6890 vertices with pose parameters θ ∈ R72 and

shape parameters β ∈ R10. Shape Bs(β) and pose de-

pendent deformations Bp(θ) are first applied to a base tem-

plate Tµ; then the mesh is posed by rotating each body part

around skeleton joints J(β) using a skinning function W:

M(β, θ) = M(T (β, θ), J(β), θ,W ), (1)

T (β, θ) = Tµ +Bs(β) +Bp(θ), (2)

where M(β, θ) is the SMPL function, and T (β, θ) outputs

an intermediate mesh in a T-pose after pose and shape

deformations are applied. SMPL produces realistic results

using relatively simple mathematical operations which

are fully differentiable with respect to pose and shape.

We leverage these operations, including the ones that

determine the projected points of a parameterized 3D body

to reconstruct the human body, to be a part of our network.

To better provide a proper representation for the network,

We leverage UV maps which are a surface-to-image repre-

sentation and are often used to render textures to represent

human structure information. In detail, We divide the

SMPL template into 20 parts and use Multi-Dimensional

Scaling [37] to unfold surface of each part. We place all

part’s surface on the common 2D space which is repre-
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Figure 2. The appearance encoder utilizes UV maps as a guidance

and we exchange UV maps between two different images to en-

hance the separation of appearance and pose.

sented as UV coordinates. As we assign the UV coordinate

on each vertex of the template body model, we render the

UV coordinate of 3D body model which we call them UV

maps. we use DIRT[12] as render tool. This process is

similar to that mentioned by DensePose[10]. Compared to

some traditional representation for 3D body model, like

point cloud, voxel, parameters and so on, UV maps avoid

costly computation for 3D model and the neighborhood

information about structure in UV maps can be better

captured with convolution layers.

To achieve an semi-supervised training, we use a pre-

trained HMR [17] model to estimate SMPL pose param-

eters and shape parameters, rather than using groundtruth

3D body model, which may be more accurate but will cause

higher computation and introduce more restrictions for in-

put data.

3.3. UV­guided Appearance Encoder

Figure 2. demonstrates our UV-guided appearance en-

coder and the cross training process. The encoder Eapp

generates a latent code capp representing appearance infor-

mation with a person image and its corresponding UV maps

as inputs. The mapping function can be defined as:

capp = Eapp(xi, uvi; θ) (3)

where xi is the i-th input image, and uvi is the correspond-

ing i-th UV maps with 2 channels respectively represent-

ing u map and v map and has the same resolution with xi.

We utilize a ResNet50 [11] network to learn Eapp and θ is

the learned parameters. In the encoder, as we supply corre-

sponding UV maps, the learned latent appearance code will

be enhanced to consider the relationships between the UV

maps and the image. When supplying another UV maps,

the network will implicitly align with a proper appearance.

[29] also concatenates the input image with its correspond-

ing UV maps, but they explicitly operate a spatial trans-

former network for texture mapping, which is a complicated

and costly process. To obtain more information about the

whole person, they also add an inpainting autoencoder that

needs multi-view images for supervision, while we don’t

need multi-view data for inpainting as we have multi frames

for fine-tuning. To enforce a latent code independent from

human pose, we also adopt a cross training. We train two

different frames xi and xj about the same person at the

same time. The two images separately pass by HMR model

and generate uvi and uvj , then c
app
i and c

app
j are generated

by the appearance encoder. The encoding process is formu-

lated as:

uvi = EHMR(xi), uvj = EHMR(xj)

c
app
i = Eapp(xi, uvi), c

app
j = Eapp(xj , uvj)

(4)

Then we exchange uv and capp for two images and utilize

a decoder to resynthesize the final images x̂i and x̂j . As

the person’s appearance does not vary across the two im-

ages, and the differences between the two images are just

caused by human pose information, the capp tends to learn

the common features that represent appearance information

after exchanging. After obtaining appearance latent code,

we apply fully connected layer and reshape it to the same

size with the UV maps, and then concatenate the appear-

ance latent code and UV maps in channels as the decoder’s

input. Simultaneously, to exclude background from appear-

ance latent code, we supply the background for each input

image. The decoder outputs the foreground and a mask in

binary value, then we add the background to foreground ac-

cording the mask to get the final image. The final generated

images xi and xj are described as below:

fgi,maski = D(uvi, c
app
j )

x̂i = (1−maski) ∗ bgi +maski ∗ fgi

fgj ,maskj = D(uvj , c
app
i )

x̂j = (1−maskj) ∗ bgj +maskj ∗ fgj

(5)

3.4. Global Appearance Enroll

To achieve an accurate person images synthesis, we

adopt fine-tune methods to enroll a global appearance into

the network. After the first training stage where we use data

with abundant poses, the network can generalize well in var-

ious poses. Then we fine-tune the network with a few of im-

ages of a specific person containing complete views. During

training, the network parameters will try to fit all the appear-

ance appeared in the training dataset, thus the appearance

encoder will capture a global appearance about the specific

person. In the test stage, we input a single view image and

even if synthesising an unseen view we can still obtain a

correct appearance because of our enrolled global appear-

ance. As pretrained network contains pose information, we

can realize a short-time training and can still generalize well

for various human pose and shape synthesis.
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3.5. Loss Functions

To obtain a clear and realistic image, we use a com-

bination of three loss functions, a L1 reconstruction loss

called LL1, an adversarial loss called Ladv , a perceptual

loss called Lperceptual.

L1 Reconstruction Loss. We compute pixel-wise L1 dis-

tance between the generated image and the groundtruth im-

age. It guides the network to capture the low frequency de-

tails of images. As we find during experiments, compared

to L2 loss, L1 loss provides faster convergence and better

stability. It is defined as:

LL1 = ||x̂− x||1 (6)

Adversarial Loss. GAN loss are added to capture the high

frequency details of images, to deal with images blurry. It

is defined as:

Ladv = Ex[logD(x)] + Ex,uv[log(1−D(G(x, uv)))]
(7)

Perceptual Loss. We also apply perceptual loss, as the

L2 distance of multi-scale features extracted by a pre-

trained CNN about two images can encourage image struc-

ture similarity, which is illustrated in [16]. We adopt a

ResNet18 [11] pretrained on ImageNet [7] to extract the

multi-scale features ϕi of totally n scales. It is defined as:

Lperceptual =

n∑

i=1

||ϕi(x̂)− ϕi(x)||
2

2 (8)

Joint Loss. The three loss functions are governed by a co-

efficient λ and the joint loss is defined as:

L = λ1LL1 + λ2Ladv + λ3Lperceptual (9)

4. Experiments

4.1. Datasets and Training Details

We pretrain our network on Human 3.6M dataset [14],

which has 5 subjects for training and 2 subjects for testing.

The subjects perform typical activities such as smoking, sit-

ting and totally have 15 activities. During our pretrained

stage, to achieve the generalization in poses, we use all 15

activities for 5 subjects. We leverage 80 per cent of data as

training set and the rest 20 per cent as validation set to de-

termine the most suitable hyper parameters. When we fine-

tune the network to enroll the person appearance, we only

use one activity that contain all views, as one activity has

already contain enough frames for enrollment. This fine-

tune stage use the same hyper parameter pretrained. Details

about choosing number of frames are showed in subsection

4.6. Here we use the Photoing activity to fine-tune. We use

the remaining 14 activities for testing. The images in this

dataset are cropped according to their bounding box. We

also collect a few of images of different people by mobile

phone for fine-tune. Each person has a video about 50 sec-

onds and totally about 1500 frames. Note that we can not

use DeepFashion [23] and Market1501 [41] datasets for hu-

man pose tranfer, as we need a set of images of a specific

person to enroll the person appearance into the network for

more robust applications, while these datasets just have a

single image for one person.

In our experiments, all images are resized to 256×256 as

input. We load pretrained weight from HMR [17] model

and freeze the weight parameters. We adopt a batch size of

32 and use the Adam optimizer [18] with parameters β1 =

0.5 and β2 = 0.9, also with a learning rate of 1e-4. The loss

weights are set to λ1 = 80 for reconstruction loss, λ2 = 1
for adversarial loss and λ3 = 150 for perceptual loss after

validation.

4.2. Human Pose Transfer

When we fix shape and camera parameters, we show the

qualitative results of human pose transfer in Figure 3 which

use self-collected dataset. As the network enrolls the person

appearance in, so the pose in unseen views also generate

images with true appearance.

Figure 4 shows the results in Human3.6M test set with

our method and Dance [3] which is most similar to us. Ad-

ditionally, Table 1 calculates Inception Scores(IS) [34] and

Structural Similarities(SSIM) [36]. As our method com-

pletely separates human appearance, pose and shape, and

the UV-guided encoder better correspond the uv maps with

the input image for extracting appearance, we can achieve a

better result quantitatively and qualitatively. Our pretrained

network which generalized well on the poses also brings an

improvement in the end of arms and legs, while [3] is more

blurry at these positions. Note that in [3] GAN for face is

additionally trained, but our work in this paper is focus on

human body shape and pose.

Method SSIM
IS

mean std

Real Image 1.000 2.360 0.033

Dance [3] 0.310 2.017 0.100

Ours 0.334 2.232 0.109

Table 1. Inception scores(IS) and structured similarities(SSIM)

comparison of reconstructed test images on Human3.6M dataset.

4.3. Human Shape Change

We change various body shapes as shown in Figure 5.

We vary the weight and the height respectively for the test
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(a) person1 (b) person2

(c) person3 (d) person4

Figure 3. Human pose transfer results in self-collected datasets. The source poses come from Mars. In each subfigure, the first row is the

source person’s poses, the second row is the corresponding UV maps with poses, and the third row is the corresponding generated images

with target person’s appearance. We show results on four target people.

Figure 4. Qualitative comparison between our method and previous work [3].

set in Human3.6M. As we completely separate the compo-

nents of human images, we can achieve an excellent re-

sults with different body shapes. In previous work, when

we want to get different human shape, the most common

method is to adjust 3D human model which are complex

and costly, and then project to 2D images. Our method for

changing human shape is easier to realize.

For those applications that need to keep the target per-

son’s shape, we can get the shape parameters from HMR

model and change the source person’s shape parameters to
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the target’s shape.

(a) Change Weight

(b) Change Height

Figure 5. Human shape change results in Human3.6M dataset. The

first row is the UV maps, and the second row is the corresponding

generated images with different shapes.

4.4. Novel Views Synthesis

When we fix shape and pose parameters, we can ro-

tate the camera parameters from 0◦ to 360◦ and synthesis

images in arbitrary views. The qualitative results on Hu-

man3.6M dataset are shown in Figure 6. The input is a

single image when testing, but as the fine-tune process tar-

geting at a specific person enrolls the appearance into the

network, if even turn to an unseen view, we can still syn-

thesis an accurate image with right appearance. Note that

for a better visualization about the separation of the poses,

shapes and camera parameters, we control the variable pa-

rameters for changing only one. In fact, we can vary the

poses, shapes and camera parameters in the same time to

get more various images.

Figure 6. Novel views synthesis results in Human3.6M dataset.

The first row is the UV maps, and the second row is the corre-

sponding generated images in arbitrary views.

4.5. Ablation Study

Figure 7 shows the qualitative results and Table 2 shows

the quantitative results of ablation study, which demonstrate

the effect of individual components of our network. With

the same UV maps showed in the first row, the second row

is the result without UV guided, that means we do not con-

catenate UV maps with the target image. When no UV

maps guide the input image to extract the appearance infor-

mation for a person, the appearance may mix something that

not belongs to the human structure. The second row is the

result without cross-training strategy. In this case the human

body structure and appearance may not separate well, and

when we input a different pose, the generated images may

be a little blurry and lost end joints to compromise the con-

flict. In contrast, our UV-guided appearance encoder and

the cross-training strategy can lead to a clear and realistic

result.

Figure 7. Qualitative comparison of ablation study on Human3.6M

dataset. From top to bottom, each row shows the results of uv

maps, our method without UV-guided encoder and without cross-

training, our method without cross-training, and our full method.

Method SSIM
IS

mean std

Real Image 1.000 2.360 0.033

w/o uv& w/o cross 0.311 2.082 0.056

w/o cross 0.313 2.011 0.108

full 0.334 2.232 0.109

Table 2. Quantitative comparison of ablation study on Human3.6M

dataset. Each row is the corresponding inception scores(IS) and

structured similarities(SSIM) results of different methods.
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Figure 8. Results with no appearance enrollment. The first row is

the supplied uv maps, the second row is the generated images, and

the third row is the corresponding ground-truth images.

4.6. Enrollment Amounts Study

To determine the proper number of images for accurate

appearance enrollment, we compare the results with dif-

ferent amounts of images for fine-tuning. Figure 8 shows

the results without fine-tuning. While the training set con-

tains only 5 subjects, the network may be overfitting. Thus,

when we test with a new person, the generated images keep

the most similar appearance of the training set rather than

test person’s. When we add appearance enrollment, while

amount of images for fine-tuning is increasing, the results

of the generated images is better. But when it turns to about

500 or more, quality of generated images show no obvious

promotion, as shown in Figure 9. Figure 10 shows quali-

tative results for different amounts of images, respectively

containing 5, 100 and 500 images. When the images are

too less, the network may be overfitting in poses, thus may

cause blurry in generated images. When images become

more, the generated images will be more clear. We also use

only front images to fine-tune the network. Figure 11 shows

the results. As the front appearance is seen by the network,

the result is clear. But when we test with back images, the

network hasn’t enrolled the back appearance, causing the

generated images blurry.

5. Conclusion

In this paper we propose a semi-supervised framework

for synthesising person images, that can generate person

images in arbitrary poses, shapes and views for different

applications. We also adopt a UV-guided appearance en-

coder and a cross-training strategy for a better separation,

and fine-tune is adopted to enroll the appearance into the

network. Results on Human3.6M dataset and self-collected

datasets show that the framework can be utilized in many

Figure 9. The relationship between the number of images and L2

loss. L2 loss is computed between generated images and corre-

sponding ground-truth.

Figure 10. Qualitative results for different number of images used

to fine-tune.

Figure 11. First row is generated images trained only with only

front view, and the second row is ground-truth images.

applications and can achieve an excellent performance. In

the future, we will further development face generation for

a better visualization and improve our method to generate

clearer images, thus the easy semi-supervised person im-

ages synthesis method can be applied to more fields.
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