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Abstract

We propose novel Stacked Spatio-Temporal Graph Con-

volutional Networks (Stacked-STGCN) for action segmen-

tation, i.e., predicting and localizing a sequence of actions

over long videos. We extend the Spatio-Temporal Graph

Convolutional Network (STGCN) originally proposed for

skeleton-based action recognition to enable nodes with dif-

ferent characteristics (e.g., scene, actor, object, action), fea-

ture descriptors with varied lengths, and arbitrary tempo-

ral edge connections to account for large graph deforma-

tion commonly associated with complex activities. We fur-

ther introduce the stacked hourglass architecture to STGCN

to leverage the advantages of an encoder-decoder design

for improved generalization performance and localization

accuracy. We explore various descriptors such as frame-

level VGG, segment-level I3D, RCNN-based object, etc. as

node descriptors to enable action segmentation based on

joint inference over comprehensive contextual information.

We show results on CAD120 (which provides pre-computed

node features and edge weights for fair performance com-

parison across algorithms) as well as a more complex real-

world activity dataset, Charades. Our Stacked-STGCN in

general achieves improved performance over the state-of-

the-art for both CAD120 and Charades. Moreover, due

to its generic design, Stacked-STGCN can be applied to a

wider range of applications that require structured infer-

ence over long sequences with heterogeneous data types

and varied temporal extent.

1. Introduction

Inspired by the success of convolutional neural net-

works (on either grid-like or sequential data), graph neural

networks (GNNs) including graph convolutional networks

(GCNs) have been developed and have demonstrated im-

provements over a number of machine learning/computer

vision tasks such as node classification [19], community

clustering [4], link prediction [41], 3D point cloud segmen-

tation [50], etc.

As a special case of GCNs, spatio-temporal graph con-

volutional networks (STGCN), have been proposed for

skeleton-based activity recognition [56]. STGCN defines

the node descriptor as the location (x and y) and confi-

dence of detected joints of human body (i.e., the length

of the node descriptor is three), leverages the spatial con-

nection between these joints, and connects the same joints

across consecutive time steps to form a spatio-temporal

graph. STGCN has shown performance improvements on

Kinetics-skeleton [18] and NTU RGB+D [42] datasets via

exploiting primarily actor poses.

In addition to actor poses, there frequently exist abun-

dant contextual cues that would help in recognizing an ac-

tion. Leveraging these contextual cues becomes critical

for improving accuracy and robustness of action recogni-

tion, especially for actions with subtle changes in the actor’s

movement/pose.

A graph is an intuitive data structure to jointly represent

various contextual cues (e.g., scene graph, situation recog-

nition). Therefore, in this paper, we plan to construct a com-

prehensive spatio-temporal graph (STG) to jointly represent

an action along with its associated actors, objects, and other

contextual cues. Specifically, graph nodes represent actions,

actors, objects, and scenes, spatial edges represent spatial

(e.g., next to, on top of, etc.) and functional relationships

(e.g., attribution, role, etc.) between two nodes with im-

portance weights, and temporal edges represent temporal

and causal relationships. We exploit a variety of descrip-

tors in order to capture these rich contextual cues. In the

literature, there exist various techniques such as situation

recognition [24], object detection, scene classification, and

semantic segmentation. The output of these networks pro-

vides embeddings that can serve as the node features of the

proposed STGs.

We perform action segmentation on top of this spatio-

temporal graph via stacked spatio-temporal graph convolu-

tion. Our STGCN stems from the networks originally pro-

posed for skeleton-based action recognition [56] and intro-

duces two major advancements as our innovations. First, as

mentioned before, to accommodate various contextual cues,

the nodes of our STG have a wide range of characteristics,
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Figure 1. System overview. Different from the original STGCN based on human skeleton [56], our graph allows nodes of various types

(such as actors, objects, and scenes) and with varied feature length. Our graph also supports flexible temporal connections (green lines)

that can span multiple time steps, for example the connections among the actor nodes (blue nodes). Note that other nodes can have such

temporal connections but are not depicted to avoid congested illustration. This spatio-temporal graph is fed into a stack of hourglass

STGCN blocks to output a sequence of predicted actions observed in the video.

leading to the need for using descriptors with varied length.

Second, our STG allows arbitrary edge connections (even

fully connected graph as an extreme case) to account for

the large amount of graph deformation caused by missed

detections, occlusions, and emerging/disappearing objects.

The enhanced representational capacity with arbitrary edge

connections especially along the temporal axis enables ac-

curate temporal localization of action boundaries compared

to fixed temporal connection of consecutive frames. There-

fore, we can apply stacked-STGCN for action segmentation

which involves generating not only action category but also

temporal locations of the starting and end boundaries of the

identified action. Extension from recognition to segmenta-

tion is a non-trivial task since we have to perform per frame

prediction so that we get the exact boundary of a particu-

lar action despite large variations in the temporal spans of

actions and ambiguity between two consecutive actions.

Another innovation we introduce is the extended use of

stacked hourglass architecture on graph data. Stacked hour-

glass networks have been applied to grid-like data with reg-

ular connections (e.g., images using CNNs) and shown im-

proved results for a number of tasks such as human pose es-

timation [29], facial landmark localization [57], etc. They

allow repeated upsampling and downsampling of features

and combine these features at different scales, leading to

better performance. We propose to extend this encoder-

decoder architecture to graph data with irregular connec-

tions. Different from CNN, STGCN (or more general GCN)

employs adjacency matrices to represent irregular connec-

tions among nodes. To address this fundamental difference,

we adapt the hourglass networks by adding extra steps to

down-sample the adjacency matrices at each encoder level

to match the compressed dimensions of that level.

In summary, the proposed Stacked-STGCN offers the

following unique innovations: 1) joint inference over a

rich set of contextual cues, 2) flexible graph configuration

to support a wide range of descriptors with varied feature

length and to account for large amounts of graph deforma-

tion over long video sequences, and 3) stacked hourglass ar-

chitecture specifically designed for graph data with irregu-

lar connection. These innovations promise improved recog-

nition/localization accuracy, robustness, and generalization

performance for action segmentation over long video se-

quences. We demonstrate such improvements via our ex-

periments on the CAD120 and Charades datasets.

2. Related Works

2.1. Neural Networks on Graphs

In recent years, there have been a number of research di-

rections for applying neural networks on graphs. The orig-

inal work by Scarselli et al., referred to as the GNN, was

an extension of the recursive neural networks and was used

for sub-graph detection[40]. Later, GNNs were extended
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and a mapping function was introduced to project a graph

and its nodes to an Euclidean space with a fixed dimen-

sion [39]. In 2016, Li et al. used gated recurrent units and

better optimization techniques to develop the Gated Graph

Neural Networks [26]. GNNs have been used in a num-

ber of different applications like situation recognition [24],

human-object interaction [25], webpage ranking[39, 40],

mutagenesis[39], etc.

The literature also mentions a number of techniques that

apply convolutions on graphs. Duvenaud et al. were one of

the first to develop convolution operations for graph prop-

agation [13] whereas Atwood and Towsley developed their

own technique independently [2]. Defferrard et al. used ap-

proximation in spectral domain [8] based on spectral graph

introduced by Hammond et al. [16]. In [19], Kipf and

Welling proposed GCNs for semi-supervised classification

based on similar spectral convolutions, but with further sim-

plifications that resulted in higher speed and accuracy.

2.2. Action Recognition

Action recognition is a classic example of computer vi-

sion problems. Since the development of two-stream [47]

and 3D convolution architecture, a series of works were

studied, including TSN [52], ST-ResNet [59], I3D [5],

P3D [35], R(1+2)D [51], T3D [9], S3D [54], TGM [31], etc.

Another popular type of DNNs used for action recognition

is the Recurrent Neural Network (RNN) including Long

Short-Term Memory networks (LSTM). The structural-

RNN (S-RNN) is one such method that uses RNNs on

spatio-temporal graphs for action recognition [17]. S-

RNN relies on two independent RNNs, namely nodeRNN

and edgeRNN, for iterative spatial and temporal inference.

In contrast, our Stacked-STGCN performs joint spatio-

temporal inference over a rich set of contextual cues.

Recently, graph-based representation becomes a popular

option for action recognition, for instance skeleton-based

activity recognition using STGCN [56], Graph Edge Con-

volution Networks [60], and Neural Graph Matching Net-

works [15]. In [53], GCN is applied to space-time graphs

extracted from video segments to produce an accumula-

tive descriptor, which is later combined with the aggregated

frame-level features to generate action predictions. Their

work is similar to ours, but is used for classification and not

segmentation. Furthermore, their graphs are formed based

on object nodes only while ours are more general connect-

ing different types of features like scene descriptor, human

pose feature etc.

The most related work is STGCN originally proposed for

skeleton-based activity recognition [56]. The nodes of the

original STGCN are the skeletal joints, spatial connections

depend on physical adjacency of these joints in the human

body, and temporal edges connect joints of the same type

(e.g., right wrist to right wrist) across one consecutive time

step. The original STG is based on an oversimplified struc-

Figure 2. An illustration of spatio-temporal graphs. Each node vi
is represented by a feature vector denoted by fi. The edge be-

tween node i and j has a weight ei,j . These edge weights form

the spatial and temporal adjacency matrices. Note that our spatio-

temporal graph supports a large amount of deformation, such as

missed detection (e.g., the actor node and the object 3 node) and

emerging/disappearing nodes (e.g., the object 2 node).

ture for the variety and complexity our STG needs to han-

dle in order to perform action segmentation with contextual

cues and large graph deformation. Therefore, the original

STGCN is not directly applicable.

2.3. Action Segmentation

Action segmentation presents a more challenging prob-

lem than action recognition in the sense that it requires iden-

tifying a sequence of actions with semantic labels and tem-

porally localized starting and ending points of each identi-

fied actions [27, 11, 6]. Conditional Random Fields (CRFs)

are traditionally used for temporal inference [28, 32, 43].

Language models and RNNs/LSTMs are also employed to

leverage dependencies/correlations among actions to pro-

duce a long sequence of detected actions [37]. Lea et

al. proposed temporal convolutional networks (TCNs) [22].

Later, a number of variations of TCNs were studied [10,

12, 23, 14]. Recently, weakly supervised approaches have

gained increasing research interest to alleviate the demand-

ing requirements on fully annotated video data [38, 49].

Most similar to our work is the graph parsing neural net-

works (GPNN) developed for the inference of human-object

interactions as well as action segmentation [33]. However,

GPNN relies on explicit object and actor detection whereas

our graph-based inference operates on candidate proposals

directly to avoid unrecoverable errors induced by missed

object/actor detection.

3. Stacked Spatio-Temporal GCNs

The proposed Stacked-STGCN is illustrated in Figure

1. Related notations are given in 3.1. We describe the

basic building block of Stacked-STGCN, i.e., generalized

STGCN, in 3.2 and how to construct the stacked hourglass

architecture in 3.3.

3.1. Graph Convolutional Networks

Let a graph be defined as G(V, E) with vertices V and

edges E (see Figure 2). Vertex features of length d0 are
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Figure 3. Illustration of two STGCN implementations to support

graph nodes with varied feature length. (a) Additional convolution

layers to convert node features with varied length to a fixed length.

(b) Multiple spatial GCNs each for one cluster of nodes (nodes

with the same color) with a similar feature length. These spatial

GCNs convert features with varied length to a fixed length.

denoted as fi for i ∈ {1, 2, . . . , N} where N is the total

number of nodes. Edge weights are given as eij where eij ≥
0 and i, j ∈ {1, 2, . . . , N}. The graph operation at the lth

layer is defined as:

Hl+1 = g(Hl, A) = σ(D̂−1/2ÂD̂−1/2HlW l) (1)

where W l and Hl are the dl
× dl+1 weight matrix and

N×dl input matrix of the lth layer, respectively. Â = I+
A where A = [ei,j], D̂ is the diagonal node degree matrix

of Â, and σ represents a non-linear activation function (e.g.,

ReLU).

3.2. Spatio­Temporal GCNs
STGCN is originally designed for skeleton-based action

recognition [56]. We apply STGCN for action segmentation

of long video sequences using frame-based action graphs

extracted via situation recognition [24]. To accommodate

additional application requirements, our STG differs fun-

damentally in two aspects. First, the original STGCN is

based on the human skeletal system with graph nodes cor-

responding to physical joints and spatial edges represent-

ing physical connectivity between these joints. Instead, we

use human-object interactions to construct our spatial graph

where nodes represent actors, objects, scenes, and actions

whereas edges represent their spatial (e.g., next to) and/or

functional (e.g., role) relationships. Various descriptors can

be extracted either as the channels or nodes of the spa-

tial graph to encode comprehensive contextual information

about the actions. For example, we can use pose feature

to describe actor nodes, appearance features including at-

tributes at high semantic levels for object nodes, and frame-

level RGB/flow features for scene nodes.

Second, the original STGCN only connects physical

joints of the same type across consecutive time stamps,

which indeed reduces to a fixed and grid-like connectiv-

ity. As a result, the temporal GCN degrades to conven-

tional convolution. To support flexible configurations and

account for frequent graph deformation in complex activi-

ties (e.g., missed detections, emerging/disappearing objects,

heavy occlusions, etc.), our graph allows arbitrary temporal

connections. For example, an object node present at time t0
can be connected to an object node of the same type at time

tn with n ≥ 1 in comparison to the original STGCN with

n = 1.

Let As and At denote the spatial and temporal adjacency

matrices, respectively. Our proposed STGCN operation can

be represented mathematically as follows:

Hl+1 = gt(H
l
s, At) = σ(D̂t

−1/2
ÂtD̂t

−1/2
Hl

sW
l
t )

Hl
s = gs(H

l, As) = D̂s
−1/2

ÂsD̂s
−1/2

HlW l
s

(2)

where W l
s and W l

t represents the spatial and temporal

weight metrics of the lth convolution layer, respectively. In

comparison, the original STGCN reduces to

Hl+1 = g(Hl, As) =

σ(D̂s
−1/2

ÂsD̂s
−1/2

HlW l
sW

l
t )

(3)

due to the fixed grid-like temporal connections.

Note that the original STGCN requires fixed feature

length across all graph nodes, which may not hold for our

applications where nodes of different types may require dif-

ferent feature vectors to characterize (e.g., features from

Situation Recognition are of length 1024 while appearance

features from Faster-RCNN[36] are of length 2048). To ad-

dress the problem of varied feature length, one easy solution

is to include an additional convolutional layer to convert

features with varied length to fixed length (see Figure 3(a)).

However, we argue that nodes of different types may re-

quire different length to embed different amounts of infor-

mation. Converting features to a fixed length may decrease

the amount of information they can carry. Therefore, we

group nodes into clusters based on their feature length and

design multiple spatial GCNs, each corresponding to one of

the node cluster. These spatial GCNs will convert features

to a fixed length. To allow spatial connections across these

node clusters, we model these connections in the temporal

adjacency matrix to avoid the use of an additional spatial

GCN, since our temporal GCN already allows for arbitrary

connections (see Figure 3(b)).

Notably, the S-RNN is developed for action recognition

in [17] where node RNN and edge RNN are used iteratively

to process graph-like input. In comparison, our model fea-

tures a single graph network that can jointly process node

features and edge connectivity in an interconnected manner.

This, therefore, leads to improved performance and robust-

ness.
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Figure 4. Illustration of stacked hourglass STGCN with two levels.

3.3. Stacking of hourglass STGCN

Hourglass networks consist of a series of downsampling

and upsampling operations with skip connections. They fol-

low the principles of the information bottleneck approach to

deep learning models [3] for improved performance. They

have also been shown to work well for tasks such as human

pose estimation [29], facial landmark localization [57], etc.

In this work, we incorporate the hourglass architecture with

STGCN so as to leverage the encoder-decoder structure for

action segmentation with improved accuracy.

Our Stacked-STGCN extends and adapts the hourglass

structure, commonly applied to data with regular grids (e.g.,

images), to data with irregular connections (e.g., graphs).

This entails the development of new techniques: 1) non-

symmetric encoding and decoding since feature pooling on

graphs is only required in encoding stage and 2) the di-

mensions of the spatial and temporal adjacency matrices

need to be adjusted accordingly. Our deliberate design of

Stacked-STGCN stemming from 1) and 2) above tackle

the difficulties in adapting the traditional hourglass to data

with irregular connections and produce consistent perfor-

mance improvement. To the best of our knowledge, ex-

tending/adapting the hourglass structure to spatiotemporal

graphs at multiple spatial and temporal resolutions has not

been attempted before.

Particularly, our GCN hourglass network contains a se-

ries of a STGCN layer followed by a strided convolution

layer as the basic building block for the encoding process.

Conventional deconvolution layers comprise the basic unit

for the decoding process to bring the spatial and temporal

dimensions to the original size. Figure 4 depicts an exam-

ple with two levels.

Note that, at each layer of STGCN, the dimension of the

spatial and temporal adjacency matrices, As and At, needs

to be adjusted accordingly to reflect the downsampling op-

eration. Take the illustrative example in Figure 4 for in-

stance and assume that the adjacency matrices At and As

are of size Nt × Nt and Ns × Ns, respectively, at level 1

and that a stride of two is used. At level 2, both At and

As are sub-sampled by two and their dimensions become

Nt/2 × Nt/2 and Ns/2 × Ns/2, respectively. Due to the

information compression enabled by the encoder-decoder

structure, using hourglass networks leads to performance

gain compared to using the same number of STGCN lay-

ers one after another.

4. Experiments
4.1. CAD120

Dataset. The CAD120 dataset is one of the more sim-

plistic datasets available for activity recognition [20]. It pro-

vides RGBD Data for 120 videos on 4 subjects as well as

skeletal data. We use the 10 actions classes as our model la-

bels including reaching, moving, pouring, eating, drinking,

opening, placing, closing, scrubbing and null.

The CAD120 dataset splits each video into segments of

the above mentioned actions. For each segment, it pro-

vides features for object nodes, skeleton features for actor

nodes, and spatial weights for object-object and skeleton-

object edges. Across segments, it also provides temporal

weights for object-object and actor-actor edges. The object

node feature captures information about the object’s loca-

tions in the scene and the way it changes. The Openni’s

skeleton tracker [1] is applied to RGBD videos producing

skeleton features for actor nodes. The spatial edge weights

are based on the relative geometric features among the ob-

jects or between an object and the actor. The temporal edge

weights capture the changes from one temporal segment to

another.

Implementation. We exploited all the node features and

edge weights provided by the CAD120 dataset. The skele-

ton feature of an actor node is of length 630 and the feature

of an object node is of length 180. We pass each of these

descriptors through convolution layers to convert them to a

fixed length of 512. The initial learning rate is 0.00035 and

the learning rate scheduler has a drop rate of 0.9 with a step

size of 1. While experimentation, four fold cross-validation

is carried out, where videos from 1 of the 4 people are used

for testing and the videos from the rest three for training.

Results. For the CAD120 dataset, the node features

and edge weights are provided by the dataset itself. The

same set of features were used by S-RNN [17] and Kop-

pula et al [20, 21] who used spatio-temporal CRF to solve

the problem. The S-RNN trains two separate RNN models,

one for nodes (i.e., nodeRNN) and the other for edges (i.e.,

edgeRNN). The edgeRNN is a single layer LSTM of size

128 and the nodeRNN uses an LSTM of size 256. The ac-

tor nodeRNN outputs an action label at each time step. In

Table 1, we show some of the previous results, including

the best reported one from S-RNN, as well as the result of

our STGCN. The F1 score is used as the evaluation metric.

We cannot compare to [34] as they do not follow the 4 fold

cross-validation, a convention most of the previous works

used.

Our STGCN outperforms the S-RNN by about 5.3% in

F1 score. Instead of using two independent RNNs to model

interactions among edges and nodes, our STGCN collec-

tively performs joint inference over these inherently inter-
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Figure 5. Action segmentation results of our Stacked-STGCN on CAD120. Green/red: correct/erroneous detection.

Method F1-score (%)

Koppula et al. [20, 21] 80.4

S-RNN w/o edge-RNN [17] 82.2

S-RNN [17] 83.2

S-RNN(multitask) [17] 82.4

Ours (STGCN) 88.5

Table 1. Performance comparison based on the F1 score using the

CAD120 dataset. Our STGCN improves the F1 score over the best

reported result (i.e., S-RNN) by approximately 5.3%.

connected features. This, therefore, leads to the observed

performance improvement.

In Figure 5, we can see a couple of errors in the sec-

ond and third examples. For example, the third prediction

is ‘opening’ instead of ‘moving’ in the second example.

The previous action is ‘reaching’ which is generally what

precedes ‘opening’ when the actor is standing in front of a

microwave and looking at it. So probably that is the reason

for the observed erroneous detection. Also the ninth frame

is classified ‘reaching’ instead of ‘moving’. If we look at

the ninth frame and the eleventh frame, everything appears

the same except for the blue cloth in the actor’s hand. Our

STGCN failed to capture such subtle changes and therefore

predicted the wrong action label.

4.2. Charades

Dataset. The Charades is a recent real-world activ-

ity recognition/segmentation dataset including 9848 videos

with 157 action classes, 38 object classes, and 33 verb

classes [45, 46]. It contains both RGB and flow streams at a

frame rate of 24fps. It poses a multi-label, multi-class prob-

lem in the sense that at each time step there can be more

Description

Scene Features

N1. FC7 layer output of VGG network trained

on RGB frames

Motion Features

N2. FC7 layer output of VGG network trained

on flow frames

Segment Features

N3. I3D pre-final layer output trained on RGB frames

N4. I3D pre-final layer output trained on flow frames

Actor Features

N5.GNN-based Situation Recognition trained

on the ImSitu dataset

Object Features

N6. Top 5 object detection features from Faster-RCNN

Table 2. Features for the Charades dataset.

than one action label. The dataset provides ground-truth

object and verb labels as well as FC7 features for every 4th

frame obtained from a two-stream network trained on Cha-

rades. The entire dataset is split into 7985 training videos

and 1863 testing videos.

Implementation. For the Charades dataset, we explored

two types of features, one based on VGG [48] and the other

based on I3D [5], for the scene nodes in our spatio-temporal

graph. Further, we used the GNN-based situation recog-

nition technique [24] trained on the ImSitu dataset [58] to

generate the verb feature for the actor nodes. The top five

object features of the Faster-RCNN network [36] trained on

MSCOCO are used as descriptors of the object nodes. We

chose top five object nodes through empirical study of the

581



videos where we observed that five is roughly the maximum

number of objects. Note that our Stacked-STGCN operates

directly on object candidate descriptors so that we can by-

pass explicit object detection and avoid the challenges in

dealing with varying number of action associated objects.

These descriptors can be unrelated or redundant (since no

non-maximum suppression is applied) to the current action

of interest. In total, the spatial dimension of our STG is

eight. The VGG features are of length 4096, the verb fea-

tures 1024, and the object features 2048. Each of these

channels are individually processed using convolution lay-

ers to convert them to a fixed length (e.g., we used 512).

Table 2 summarizes these features.

In this experiment, spatial nodes are fully connected and

temporal edges allow connections across three time steps,

i.e., at the tth step there are edges from t, to t+ 1 and t+ 2
and t + 3. The connections are binary, meaning if there

is a connection, it has weight 1. The adjacency matrix is

normalized using the normalized graph laplacian function

since it does better than the normalization technique used

by [19]. We used a stack of three hourglass STGCN blocks.

The output of the final Stacked-STGCN block is spatially

pooled and passes through a fully connected layer to gen-

erate the probability scores of all possible classes. Since

the Charades is a multi-label, multi-class dataset, the binary

cross-entropy loss was used. We used an initial learning rate

of 0.001 and a learning rate scheduler with a step size of 10

and a drop rate of 0.999.

To further improve action segmentation performance on

Charades, we have used a trained I3D model on Charades to

generate descriptors for the scene nodes replacing the VGG

features. These feature descriptors are of length 1024. Since

I3D already represents short-term temporal dependencies,

one block of hourglass STGCN is sufficient for capturing

long-term temporal dependencies. We also did not use ob-

ject nodes with I3D since they did not result in improve-

ments in performance. This means that the RGB and Flow

I3D features are passed through separate temporal graph

convolution networks and undergoes late fusion. The ini-

tial learning rate was 0.0005 and the learning rate scheduler

was fixed at a drop rate of 0.995 at a step size of 10.

During training, we chose our maximum temporal di-

mension to be 50. If the length of a video segment is less

than 50, we zero-pad the rest of the positions. But these

positions are not used for loss or score computation. If the

length of a video segment is greater than 50, we randomly

select a starting point and use the 50 consecutive frames as

the input to our graph.

At test time, we used a sliding window of length 50.

Based on overlapping ratios, we applied a weighted average

over these windowed scores to produce the final score. We

used an overlap of 40 time steps. Following instructions in

the Charades dataset, we selected 25 equally spaced points

from the available time steps in the video, to generate the

final score vectors.

Ablation Studies. As to the Charades dataset, the mean

average precision (mAP) is used as the evaluation metric.

For fair comparison, we have used the scripts provided by

the Charades dataset to generate mAP scores. We examined

the performance of Stacked-STGCN using two types of de-

scriptors for the scene nodes, namely frame-based VGG

features and segment-based I3D features (see Table 2). We

summarize our ablation studies in Table 3

(A1) All Features; Baseline 8.13

(A2) All Features; STGCN 10.26

(A3) VGG-RGB; STGCN; 1 time step 6.77

(A4) VGG-RGB; STGCN 7.06

(A5) All Features; Stacked-STGCN; 1 time step 11.29

(A6) VGG-RGB; Stacked-STGCN; 8.66

(A6) VGG-RGB+VGG-Flow; Stacked-STGCN 10.94

(A7) All Features; Stacked-STGCN 11.73

Table 3. Comparison of our Stacked-STGCN (A7) with baseline

(A1), STGCN without hourglass (A2), different temporal connec-

tions (A3-A5), and different input features (A6). Input features

include VGG-RGB for scene, VGG-Flow for motion, Situation

Recognition for action, and Faster RCNN for object.

We first examine the performance improvement intro-

duced by structured inference of contextual information

represented in spatio-temporal graphs. We implemented a

baseline method (A1) in Table 3 which employs a Fully

Connected layer for joint inference of multiple types of

features. We compare our Stacked-STGCN (A7) with this

baseline (A1) and demonstrate an improvement of 3.6% .

We also compare our Stacked-STGCN (A7) with an

implementation without the hourglass structure (A2) and

demonstrate an improvement of 1.47% in Table 3. For fair

comparison of this experiment, we design a network (A2)

with the same number of convolutional layers as the en-

coder of our Stacked-STGCN. To maintain the same tem-

poral resolution, these convolution layers have a stride of

one, compared to a stride of two in the Stacked-STGCN.

We further implement a network that closely resembles

the original STGCN: 1) nodes are represented by the same

type of features (i.e.,VGG-RGB); 2) pure graph convolu-

tional operations (i.e., without hourglass); and 3) temporal

connections across one time step. Comparing to this vanilla

implementation (A3), our Stacked-STGCN (A7) produces

an improvement of 4.96% in Table 3.

Next, we conduct a study on the performance of Stacked-

STGCN with different input features. With one, two and

four types of features, the performances are 8.66, 10.94,

and 11.73, respectively, in Table 3 (A6, A7). This steady

improvement is due to more context gained from enriched

input features.
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Method VGG mAP I3D mAP

Baseline [30] 6.56 17.22

LSTM [30] 7.85 18.12

Super-Events [30] 8.53 19.41

Stacked-STGCN (VGG only) 10.94

Stacked-STGCN (all features) 11.73

Stacked-STGCN (I3D) 19.09

Table 4. Performance comparison based on mAP between our

Stacked-STGCN and the best reported results published in [30]

using the Charades dataset. Our Stacked-STGCN yields an ap-

proximate 2.41% and 3.20% improvement in mAP using VGG

features only and all four types of features, respectively.

Method mAP

Random [44] 2.42

RGB [44] 7.89

Predictive-corrective [7] 8.90

Two-Stream [44] 8.94

Two-Stream + LSTM [44] 9.60

Sigurdsson et al. standard [44] 9.69

Sigurdsson et al. post-processing [44] 12.80

R-C3D [55] 12.70

I3D [5] 17.22

I3D +LSTM [30] 18.10

I3D+Temporal Pyramid [30] 18.20

I3D + Super-events [30] 19.41

I3D +Stacked-STGCN (ours) 19.09

Table 5. Performance comparison based on mAP with previous

works using the Charades dataset.

Finally, we study the performance of our Stacked-

STGCN with different temporal connections. Comparing

(A7) vs. (A5) in Table 3, temporal connections with three

time steps demonstrate an improvement of 0.44%. With a

simpler network (i.e., without hourglass), we observe an im-

provement of 0.29%, (A4) vs. (A3). The optimal number

of time steps can vary depending on networks and appli-

cations. The empirical optimal number for our Stacked-

STGCN on Charades is three.

Comparison with SOTA. In Table 4, the performance of

Stacked-STGCN is compared with a baseline, which uses

two-stream VGG or I3D features directly for per frame

action label prediction, an LSTM-based method, and the

Super-Events approach proposed in [30]. Our Stacked-

STGCN yields an approximate 2.41% and 3.20% improve-

ment in mAP using VGG features only and all four types

of features, respectively. Using I3D features, our Stacked-

STGCN ranks the second.

In Table 5, we compare the performance of Stacked-

STGCN against some selected works on Charades. We

can see that our Stacked-STGCN outperforms all the meth-

ods except for the I3D+super-events [30], which employs

an attention mechanism to learn proper temporal span per

class. We believe that incorporating such attention mecha-

nism could further improve the performance of our Stacked-

STGCN. Furthermore, our method provides a principled

way of structured inference over heterogeneous features,

which most of the list methods are incapable of.

Another set of results on Charades is from the workshop

held in conjunction with CVPR 2017. The results in that

competition appear better. However, as mentioned in [30],

that competition used a test set that is different from the

validation set we used for performance evaluation. Besides

those techniques could have used both the training and val-

idation sets for training. Reference [30] also shows that the

same algorithm (i.e., I3D) that produced 20.72 in the com-

petition produced only 17.22 on the validation set.

5. Conclusion

The proposed Stacked-STGCN introduces a stacked

hourglass architecture to STGCN for improved generaliza-

tion performance and localization accuracy. Its building

block STGCN is generic enough to take in a variety of

nodes/edges and to support flexible graph configuration. In

this paper, we applied our Stacked-STGCN to action seg-

mentation and demonstrated improved performances on the

CAD120 and Charades datasets. We also note that adding

spatial edge connections between nodes from same model

lead to performance improvement on Charades rather than

across different feature nodes. This is mainly due to the

oversimplified edge model (i.e., with fixed weights). In-

stead of using a binary function to decide on the correlation

between these nodes, more sophisticated weights could be

explored. We leave this as future work. Furthermore, graph

representation based on actor, action, object and scene pro-

vides inherent explanations of corresponding detection of

action categories. However, such explanation requires visu-

alizing the traces of most activated nodes/edges, which cur-

rent GCN implementations can not support. We will also

leave this as future work. Finally, we anticipate that due

to its generic design Stacked-STGCN can be applied to a

wider range of applications that require inference over a se-

quence of graphs with heterogeneous data types and varied

temporal extent.
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