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Figure 1: Example images from our test set (a), exaggerated cartoons (b) and overlaid warping fields (c) generated by our model (Auto-

Toon), our model’s cartoons stylized with CartoonGAN [6] to create caricatures (d), as compared to WarpGAN [28] caricatures (e).

Abstract

Caricature, a type of exaggerated artistic portrait, am-

plifies the distinctive, yet nuanced traits of human faces.

This task is typically left to artists, as it has proven difficult

to capture subjects’ unique characteristics well using au-

tomated methods. Recent development of deep end-to-end

methods has achieved promising results in capturing style

and higher-level exaggerations. However, a key part of car-

icatures, face warping, has remained challenging for these

systems. In this work, we propose AutoToon, the first super-

vised deep learning method that yields high-quality warps

for the warping component of caricatures. Completely dis-

entangled from style, it can be paired with any stylization

method to create diverse caricatures. In contrast to prior

art, we leverage an SENet and spatial transformer module

and train directly on artist warping fields, applying losses

both prior to and after warping. As shown by our user stud-

ies, we achieve appealing exaggerations that amplify distin-

guishing features of the face while preserving facial detail.

1. Introduction

Every human face is slightly different. While most peo-

ple can identify faces familiar to them, it requires the more

trained eye of a caricature artist to pick up on the most dis-

tinctive features that characterize an individual’s face. In

fact, caricature is a specific form of portraiture in which

artists exaggerate the most visually salient characteristics

of their subjects that distinguish them from others. Am-

plifying these defining features lets artists create more dis-

tilled portrayals of their subjects, and studies have shown

that this skillful exaggeration can allow viewers to identify

a subject’s identity more easily from a caricature than from

a normal photograph [27].

With the rise of applying computer vision techniques

to tackle creative tasks, an interesting problem that has

emerged is automatic caricature generation. Similar to how

an artist might approach caricatures, the computer vision

analogy to caricature generation can be decomposed into

two steps: 1) applying a geometric warp to the face that ex-
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aggerates salient features, and 2) stylizing the warped im-

age for an artistic effect. The complete disentanglement of

these two steps allows them to be independently learned and

applied, leading to greater flexibility and higher quality of

generated caricatures.

Early work in caricature generation mostly relied on

rules-based methods [1, 2, 11, 20, 21, 24]. More recently,

with the rise of deep learning for artistic tasks such as sketch

synthesis, image-to-image translation, and style transfer

[10, 16, 35, 38, 41], caricature generation has been re-

introduced as an image-to-image translation problem first

by Cao et al. [4] and then Shi et al. [28]. While these sys-

tems do achieve geometric exaggeration and artistic styl-

ization, the exaggerations still have room for improvement.

They often either do not precisely target the most salient fa-

cial features due to the constrained set of warping handles,

or the warping is not disentangled completely from the artis-

tic stylization, resulting in weaker standalone warps and less

flexibility for combining different warps and styles.

In comparing the difficulty of these two stages of cari-

cature generation, it is noteworthy that the computer vision

community has seen much progress in general image styl-

ization and style transfer in recent years, such as [10, 18].

However, effective geometric warping, especially applied to

faces, has more room for improvement. In fact, there is less

room for error in pure geometric warping; not only are our

eyes highly attuned to faces [32], but viewers are also more

sensitive to the quality of unstylized, warped faces than that

of stylized caricatures, since the resulting images are photo-

realistic. Thus, in this work, recognizing there are numerous

high-quality methods that can perform stylization in the car-

icature generation pipeline, we focus on the more difficult

stage: geometric warping of distinguishing characteristics

to create a high-quality, warped version of the original pho-

tograph, the result of which we term a cartoon.

Specifically, we aim to create an automated, end-to-end

pipeline (AutoToon) that geometrically warps images of

faces to generate cartoons, which are then used to create

caricatures via existing stylization techniques. Our model

learns a smooth warping field of pixel displacements that is

applied to the input image, which can be scaled in magni-

tude to increase the exaggeration. By virtue of learning a

warping field rather than performing image-to-image trans-

lation, our model preserves facial details more effectively

and generates higher quality images for a given portrait.

Finally, to accompany our model, we also introduce the

AutoToon dataset, a paired dataset of human facial portrait

photos and their corresponding geometrically warped car-

toons by trained artists. We hope that proposing a model

for higher-quality face warping will accelerate the progress

in creating end-to-end systems for caricature generation and

other face-related cartoonization tasks.

Qualitative evaluation via user studies and artist ap-

praisal of cartoons produced by AutoToon show that the

generated cartoons from our approach exaggerate facial fea-

tures more effectively than state-of-the-art warping meth-

ods. A summary of our contributions is as follows:

• To our knowledge, AutoToon is the first supervised

deep learning face cartoon generation model. It

– automatically exaggerates salient facial features

well in a caricature-like manner and can be scaled

to control warping extent,

– is completely disentangled from stylization, and

thus can be paired with any stylization method,

– is trained on less data, and preserves image de-

tails more effectively than previous methods.

• A paired dataset, the AutoToon dataset, which also in-

cludes artist warping fields for photorealistic facial ex-

aggeration and cartoon generation.

2. Related Work

Human faces have received a lot of attention in the liter-

ature over the years. Many approaches were developed to

either model [29], interact [12] or generate them [19]. In

this section, we review the work relevant to caricature gen-

eration and face warping.

2.1. Learned Warping

Multiple works have learned and applied spatial trans-

forms on images. First, parametric approaches such as

the spatial transformer [17] have been proposed to estimate

global transform parameters. Flow-based approaches such

as [26] further this idea by learning a dense deformation

field over the whole image. DeepWarp [9] proposes to ap-

ply this to gaze manipulation. Recently, Zhao et al. [40]

uses this dense flow estimation to remove geometric dis-

tortion from close-range portrait images. Cole et al. [8]

also warp portrait images using spline interpolation on pre-

detected landmarks while preserving identity. Similar to our

loss functions, Zhang et al. [37] use smoothness, local, and

global alignment terms for parallax-tolerant image stitch-

ing. Given the efficacy of flow estimation in these related

application domains, our work on AutoToon aims to inte-

grate this work with caricature generation by using dense

flow estimation and the differentiable warping module from

[17] to predict warping fields for generating cartoons.

2.2. Caricature Generation

One goal of caricature generation is to detect and amplify

the unique features of a given face. Traditional techniques

typically approached this by amplifying the difference from

the mean, either by explicitly detecting and warping land-

marks [3, 11, 22, 25] or using data-driven methods to esti-

mate unique face features [23, 36, 39]. Early work largely
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relied on rules-based methods [1, 2, 20, 21], which lim-

ited caricature diversity. More recently, deep learning tech-

niques have also been applied. For instance, Wu et al. [33]

model the subject face in 3D to improve how natural the

caricature expression looks using a neural network.

Newer techniques for caricature generation are data-

driven. There exist some readily available datasets of an-

notated caricatures, such as WebCaricature [15], comprised

of 6042 caricatures and 5974 photographs from 252 differ-

ent identities. Despite these efforts, the limited amount of

data available is still a major challenge. Thus, most of the

work on this topic has taken inspiration from the recent gen-

erative image-to-image translation literature trained on un-

paired images [7, 14, 41] and focuses on learning from un-

paired portraits and caricatures [4, 34, 35]. Wu et al. [34]

proposed to improve this image-to-image translation ap-

proach [16] by adding a geometric motion module.

Closer to our work, the first deep learning approach to

caricature generation, CariGAN [4], proposed to train a

Generative Adversarial Network (GAN) using unpaired im-

ages to learn the image-to-caricature translation. Building

on previous work on style transfer and learned warping,

Shi et al. [28] then proposed a method that uses the GAN

framework to jointly train style and warping end-to-end.

However, while unpaired learning can leverage more data,

they introduce highly varied exaggerations from artists with

divergent styles, even for the same subject, making learn-

ing consistent exaggerations difficult. They also frequently

have varying scales, poses, and low input-output correspon-

dence, resulting in models learning very high-level features

that may not be the most specific distinguishing features of a

given face. The exaggerations learned by these models are

relatively coarse as well due to the use of sparse warping

points. Thus, in our work, we instead take a paired super-

vised learning approach based on the work of two artists to

balance this tradeoff, electing to learn specific artist styles

well rather than an average of all styles. We also lever-

age the differentiable warping module from [17] to generate

denser warping fields for more detailed exaggerations.

In contrast to previous work, we focus purely on the

warping step of caricature generation to create high-quality

warps while completely disentangling geometry and style.

3. Problem Formulation and Warping Model

In caricature generation, the task is to generate an ex-

aggerated and stylized caricature for a given input portrait.

Our new method, AutoToon, tackles the exaggeration por-

tion of this pipeline. Given a normalized RGB portrait im-

age Xin ∈ R
H×W×3, our task is to apply an artist-like fa-

cial exaggeration to Xin to generate a cartoon image X̂toon.

X̂toon is then the input image to any stylization network to

complete the caricature generation task.

3.1. Warping and Linear Interpolation

To discuss our method, we first need to formalize our

definition of warping fields and grid sampling, which are

key to our approach.

To perform the facial exaggeration for Xin, our network

learns a flow field, which we call a warping field. The

learned warping field F̂ ∈ R
H×W×2 is applied to Xin to

obtain X̂toon. The first channel of dimension W × H is a

grid of scalar values representing the per-pixel displacement

of Xin in the x direction, while the second channel encodes

the same for the y direction.

To perform exaggeration, this warping field is applied to

Xin via the differentiable warping module taken from Spa-

tial Transformer Networks [17]. The module performs bi-

linear interpolation to displace the pixels of Xin according

to the learned displacements F̂ , or Warp(Xin, F̂ ). We call

Warp the Warping Module, as shown in Figure 2.

4. Proposed Method

4.1. Dataset

101 portrait images of frontal-facing people (non-

celebrities) were collected from Flickr. The people selected

covered a broad range of age groups, sexes, races, and face

shapes. These images were then warped via Adobe Photo-

shop by two caricature artists with similar styles to generate

the ground-truth artist cartoons. This paired dataset of 101

images (Xin, Xtoon) was split into 90 training and 11 vali-

dation images. The test set, without ground truth labels, was

collected from various subjects and public sources. Sample

images from the training set are shown in Figure 3.

An additional component of the dataset that we provide

are the estimated artist warping fields F32 ∈ R
32×32×2 that,

after bilinear upsampling to size H ×W × 2, correspond to

each artist caricature. We discuss this choice to select 32

× 32 as the warping field spatial size choice in the next

section. To obtain these, we performed gradient descent

optimization on the warping field for each Xtoon with L1
loss through the differentiable Warping Module to obtain

the artist warping fields that correspond as closely as possi-

ble to each Xtoon. To be precise, we solved the optimization

argmin
F32

||Xtoon − Warp(Xin,Upsample(F32))||1 . (1)

4.2. Model Architecture

AutoToon, our proposed method to tackle cartoon gen-

eration, is outlined in Figure 2. The exaggeration net-

work of AutoToon is comprised of two components: the

Perceiver Network and Warping Module. The Perceiver

Network is a truncated Squeeze-and-Excitation Network

(SENet50) [13] with weights pretrained on the VGGFace2

Dataset [5], chosen due to its state-of-the-art facial recogni-
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Figure 2: AutoToon model architecture and training losses. Given an input image, the Perceiver Network generates a 32 × 32 warping

field. The warping field is upsampled via bilinear interpolation to obtain pixel-wise displacements, which is used to warp the input image

into the resulting cartoon. The cartoon can then be stylized using any desired stylization network, such as CartoonGAN [6], used here. At

inference time, a scaling factor α can be applied to the warping field to manipulate warping intensity.

Input Artist Input Artist

Figure 3: Four example pairs of input images and artist-warped

cartoons from the training dataset. Photos by Dick Thomas John-

son, Shannon Luk, Possible, and Chuck Grimmett; modified.

tion performance. In particular, we modify it by only keep-

ing the original layers up to and including the second bottle-

neck block, followed by an adaptive average pooling layer

with output size 32× 32× 2. The purpose of truncating the

network is to reduce network capacity and prevent overfit-

ting to the small dataset. The Perceiver Network takes input

image Xin and outputs the warping field F̂32 ∈ R
32×32×2.

F̂32 is then upsampled via bilinear upsampling to obtain F̂ ,

the per-pixel displacement. The Warping Module applies

the warping field F̂ to Xin to obtain X̂toon. In inference,

the warping field can also be multiplied by a scaling factor

α to control the intensity of the warp, as shown in Figure 7.

The choice to upsample a 32×32 warping field was mo-

tivated by two primary reasons. First, upsampling allows

for an inherent smoothing of the warps, which intuitively

creates smoother cartoons. Second, in keeping with powers

of 2, a 64× 64 warping field would have been too granular,

and a 16 × 16 warping field was found to yield less exag-

gerated cartoons (see supplementary materials for details).

4.3. Loss Functions

We propose three loss functions to train AutoToon: the

reconstruction loss, artist warping loss, and smoothness reg-

ularization loss.

The reconstruction loss Lrecon penalizes the L1 distance

between the artist cartoon Xtoon and the generated cartoon

X̂toon. In addition to this supervision on the model out-

put, we also supervise the warping fields themselves with

the artist warping fields. The artist warping loss Lwarp pe-

nalizes the L1 distance between the artist warping field F32

obtained with (1) and the estimated warping field F̂32.

Finally, we use a cosine similarity regularization loss

Lreg to encourage the warping field to be smooth and have

fewer sudden changes in contour. This can be described as

Lreg =
∑

i,j∈F̂

(

2−
〈F̂i,j−1, F̂i,j〉

‖F̂i,j−1‖‖F̂i,j‖
−

〈F̂i−1,j , F̂i,j〉

‖F̂i−1,j‖‖F̂i,j‖

)

,

(2)

where 〈F̂i,j−1, F̂i,j〉 denotes the dot product of the upsam-

pled warping field F̂ at pixel indices i, j − 1 and i, j.

Thus, the loss function used to train our model is

Lautotoon = λ1Lrecon + λ2Lwarp + λ3Lreg. (3)

5. Experiments and Discussion

5.1. Training Details

We use the Adam optimizer with β1 = 0.5 and β2 =
0.999, and with learning rate decay 0.95. With a batch

size of 16, each minibatch consists of a randomly selected

and aligned input-cartoon pair with the corresponding artist

warp. Two types of online data augmentation are applied

to the input images: random horizontal flips, as well as

color jitter (brightness, contrast, and saturation jitter each

uniformly sampled from the range [0.9, 1.1] and hue jitter
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Comparison of our method to WarpGAN [28] to visualize disentanglement of geometry from style. From left to right: input

images (a) from our test set, (b) the result of passing the image through WarpGAN’s warping module without performing stylization,

(c) stylizing using WarpGAN’s encoder and decoder, but without the warping module, (d) the final output of WarpGAN, and (e) the

visualized WarpGAN warping fields. Then, we have exaggerated cartoons (f) generated by our model, our model’s cartoons stylized with

CartoonGAN [6] to create caricatures (g), and our visualized warping fields (h). See supplementary materials for more comparisons.

uniformly sampled from the range [−0.05, 0.05] as speci-

fied by the PyTorch color jitter API). We empirically set

λ1 = 1, λ2 = 0.7, and λ3 = 1e-6. All experiments were

conducted with PyTorch version 1.1 on Tesla V100 GPUs.

5.2. Ablation Study

We train three additional variations of our model to an-

alyze the contribution of each loss function to the system

performance, as shown in Figure 5. Without the artist warp

loss, the warps are much weaker and constrained to de-

tailed features, and they do not dramatically alter the face

shape. Without the reconstruction loss, the warps are larger

in scope, but twist the face dramatically to the point where

it unnaturally distorts the face. Without the proposed co-

sine similarity regularization loss, the warping field is less

smooth and introduces some implausible asymmetries, arti-

facts, and inconsistencies in the facial warping.

5.3. Warping Quality User Study

We conducted two user studies to assess the quality of

the warps learned by AutoToon. Since our contribution is

purely the warping component of the caricature generation

framework, we evaluated the quality of our warps against

the performance of the warping module in the state-of-the-

art, WarpGAN [28]. For each of 24 images, we asked 14

Input No Lwarp No Lrecon No Lreg With all

Figure 5: Cartoons of model variations without each proposed loss

on images from validation (first two) and test set (last). Photos 1

and 2 by Pirátská strana and Frédéric de Villamil; modified.

trained artists to provide ratings of cartoons generated by

each network from 1 (worst) to 10 (best) for exaggeration

quality, or the exaggeration of the subject’s most prominent

features. We also asked 37 casual observers to select be-

tween AutoToon cartoons and WarpGAN cartoons for the

more “visually convincing” cartoon for the subject. To en-

sure earnest responses, the participants were in a controlled
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Score WarpGAN [28] AutoToon

Exaggeration 3.2 4.5 (p < 0.01)

User Preference 30.1% 69.9% (p < 0.0001)

Table 1: Results (averages) of user studies for artists and casual

observers. Artists rated images from 1 (worst) to 10 (best). Casual

observers chose the image with more convincing exaggeration; the

proportion of user selections for each model are shown here.

setting and attentive to the task rather than randomly crowd-

sourced. These results are shown in Table 1.

AutoToon consistently performs higher for both casual

observers and artists (p < 0.0001 from 1-sample propor-

tion test, p < 0.01 from 2-sample t-test respectively), mak-

ing it a strong warping module for cartoon generation. We

hypothesize that ∼ 30% of users preferred WarpGAN car-

toons because these images are often warped so weakly that

they nearly exactly match the original image (see Figure 4),

creating such a stark contrast to AutoToon’s that users per-

ceived AutoToon’s as distorted. The artists also provided

feedback that they would have liked to see even more sym-

metry and less distortion in AutoToon warps, but that they

preferred this to WarpGAN warps that did not alter specific

facial features and only mildly stretched the image. We

leave these improvements to future work.

5.4. Disentanglement of Geometry and Style

Disentangling warping and stylization is valuable for

providing greater flexibility in combining warped images

with different styles, as well as potential uses where only

pure warping is desired to create photorealistic deformation.

It also encourages preservation of details, as we will discuss

shortly. A strong warping module is thus an important con-

tribution to a complete caricature pipeline. AutoToon only

performs geometric warping, so its output is photorealistic

and can be separately stylized by any stylization method.

To evaluate AutoToon’s warping quality, we can com-

pare it to the warping module of WarpGAN [28] by evalu-

ating the extent of disentanglement. In Figure 4, we exam-

ine WarpGAN’s output image with only warping from its

warping module, only stylization, both warping and styliza-

tion, and the corresponding warping field. We compare the

warping-only cartoon to the output cartoon of AutoToon,

the result of applying stylization to this output to create the

final caricature, and the warping field learned by AutoToon.

We find that WarpGAN’s cartoon images (b) do not sig-

nificantly deviate from the input images (a), only providing

relatively coarse and somewhat weak warping. The geomet-

ric differences between the stylized images (c) and the final

caricatures (d) are also minimal. We can confirm that the

warps are not that strong and do not provide a clear signal

of distinguishing facial characteristics between identities by

Input Photo

AutoToon

AutoToon +
CartoonGAN [6]

WarpGAN [28]

Figure 6: Comparison of AutoToon to WarpGAN [28] w.r.t. fa-

cial detail preservation (first two test, last two validation images).

Photos 3 and 4 by Robby Schulze and Possible; modified.

looking at the warping fields (e), which have very general

shapes. Thus, WarpGAN’s stylization network carries the

majority of the geometric contribution to the final carica-

ture in looking at the difference between the inputs (a) and

stylized images (c).

In contrast, applying stylization (g) to AutoToon’s out-

puts does not significantly alter the geometry of the cartoons

(f), and geometric differences between (a) and the cartoons

(f) are large, so the vast majority of the geometric contribu-

tion to the final caricature comes from AutoToon. Note also

the strength and specificity of the warps learned by Auto-

Toon in (h). Not only are the warps larger in magnitude and

localized around facial features, but they are also clearly

different for each identity on the level of facial features.

5.5. Preservation of Facial Detail

Caricatures need not sacrifice visual quality of the in-

put image when exaggerating salient facial characteristics.

However, due to the incomplete disentanglement of geom-

etry and style in WarpGAN, there exists an inherent trade-

off between stylization and facial detail preservation. As

shown in Figure 6, WarpGAN’s style is inseparable from

its warping, creating inconsistencies or sacrificing details of

the eyes, lowering the caricature quality. On the other hand,

AutoToon exaggerates yet still preserves the overall quality

and consistency of facial features in a way that is faithful

to the original image, especially with respect to details such

as the eyes, ears, and teeth. This is especially noteworthy

because of the difficulty of convincingly preserving facial

detail in a photorealistic image due to the lack of stylization

that could potentially compensate for any warping artifacts.

It is also interesting to note that while AutoToon pre-

serves facial plausibility, it is also in “toon” with facial
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Input α = 1 α = 1.5 α = 2

Figure 7: Result of scaling the warping field of various examples

from the test set with scaling factor α.

asymmetries. For example, in Figure 7, the second subject’s

left eye (from their perspective) is slightly smaller than their

right; with increases in the scaling factor α, this asymme-

try is amplified. We also see similar amplifications for the

crooked smile of subject 4 in Figure 4 and the smirks of

subjects 1 and 4 in Figure 10. This sort of exaggeration of

asymmetry is crucial for creating caricatures because they

often mark distinguishing features in individuals’ faces.

5.6. AutoToon Warp Transfer

To illustrate the efficacy of AutoToon warps, we show in

Figure 8 the effect of applying AutoToon warps to stylized

WarpGAN test images, in comparison to the end-to-end

WarpGAN caricatures. The resulting images have stronger

warps that enhance the prominent features of the subjects.

The warping quality of AutoToon warps can also be ob-

served through manipulating the scaling factor α, which

scales the magnitude of the warping field used to generate

the cartoons as shown in Figure 7. Larger scale factors cre-

ate more intense exaggerations, but still remain plausible

and maintain the overall warping quality.

5.7. Facial Feature­Specific Warping

Despite the small dataset size, AutoToon has learned a

diverse range of warping styles, and in particular, specific

facial feature-level exaggerations that are distinct for differ-

ent individuals. Examples of different learned facial feature

warps are shown in Figure 10. Many other examples ex-

ist, including the curved smile of the second individual in

Figure 4. In contrast to previous work that utilizes sparse

warping, this more granular level of amplification helps to

bring out more nuanced features of an individual’s face be-

yond a rough exaggeration of face shape.

(a) (b) (c) (d)

Figure 8: Input images (a) from test (first, third) and validation set

(second), unwarped, stylized images generated by WarpGAN [28]

(b), warped caricatures generated by WarpGAN (c), and (d), result

of applying the warping fields generated by AutoToon to (b).

5.8. Face Pose Generalization

Though only trained and validated on frontal-facing im-

ages, AutoToon performs relatively robustly on images in

the test set with subjects that deviate from the frontal pose,

shown in Figure 9. This suggests that the Perceiver Net-

work has successfully captured face features that are robust

to changes in angle and position.

Input Cartoon Input Cartoon

Figure 9: Model generalization to non-frontal test set images.

5.9. Visualization of Network Attention

In order to get a sense of the features used by our

method to generate cartoons, we employ guided backpropa-

gation [31] that we couple with smoothgrad [30] for a more

stable analysis. We visualize the result of this analysis on 4

different images from our validation set in Figure 11.

5.10. Limitations

Some limitations of AutoToon are illustrated in Figure

12. Compared to the ground-truth image, the model incor-

rectly enlarges the eyes in (a), likely because bulging of eyes

is very common in the dataset. The chin in (a) and mouth

and eyebrows of (b) are not as successfully warped and in-

troduce some distortion and warping artifacts.
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Big eyes Thin neck Thin eyes Chiseled face Big nose, hair Big eyes

Long chin Bulging cheeks Wide mouth Thick lips Wide smile Round face

Input Photo

AutoToon

Artist

Figure 10: Examples of different detailed, face feature-specific exaggerations on the validation set learned by AutoToon as compared to

artist cartoons. Shown are the input images, cartoons generated by our model, and the corresponding artist cartoons for the same subject.

See supplementary materials for more results. Photos 2, 5, 6 by Jacob Seedenburg, Community Archives, and Aaron Stidwell; modified.

(a) (b) (c) (d)

Figure 11: First row: network attention with smoothed guided

backpropagation [30, 31] jet-overlaid on validation images (in-

creasing from blue to red). Second row: generated cartoons. Our

model focuses on specific features for each face, such as (a) hair

and eyes, (b) eyes and smile dimples, (c) mouth, and (d) chin and

neck. Photos 1 and 2 by Maryland GovPics and Si1very; modified.

6. Conclusion

In this paper, we present AutoToon, the first supervised

deep learning method for cartoonization, or the warping

step of facial caricature generation. Our warping method

yields high-quality warps that outperform the state-of-the-

art. Our model is also disentangled entirely from style, al-

lowing it to be paired with any stylization network, includ-

ing existing caricature generation models, to create diverse

caricatures. Unlike previous work, it leverages the power

of the SENet and differentiable warping module, and also

(a)

(b)

Input AutoToon Artist

Figure 12: Model limitations illustrated by examples from the val-

idation set, consistent with artist comments from the user study.

Photo 2 by Vince Crabeo; modified.

learns directly from artist warping fields. In addition to cre-

ating convincing exaggerations that are subject- and facial

feature-specific, it also preserves facial detail faithful to the

original image and generalizes to non-frontal portrait im-

ages. We evaluated these caricatures qualitatively in com-

parison to prior art with respect to geometry and style dis-

entanglement, facial detail preservation, and warping qual-

ity and feature-level specificity, and quantitatively showed

through our user study and artist ratings that AutoToon out-

performs state-of-the-art networks in geometric warping.

Future directions of interest include further smoothing of

the warping field to avoid pixel collision, identity preserva-

tion, and few-shot learning to adapt to different artist styles.
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