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Abstract

Assessing visual similarity in-the-wild, a core ability of

the human visual system, is a challenging problem for com-

puter vision methods because of its subjective nature and

limited annotated datasets. We make a stride forward,

showing that visual similarity can be better studied by iso-

lating its components. We identify color composition simi-

larity as an important aspect and study its interaction with

category-level similarity. Color composition similarity con-

siders the distribution of colors and their layout in images.

We create predictive models accounting for the global simi-

larity that is beyond pixel-based and patch-based, or his-

togram level information. Using an active learning ap-

proach, we build a large-scale color composition similarity

dataset with subjective ratings via crowd-sourcing, the first

of its kind. We train a Siamese network using the dataset

to create a color similarity metric and descriptors which

outperform existing color descriptors. We also provide a

benchmark for global color descriptors for perceptual color

similarity. Finally, we combine color similarity and cate-

gory level features for fine-grained visual similarity. Our

proposed model surpasses the state-of-the-art performance

while using three orders of magnitude less training data.

The results suggest that our proposal to study visual simi-

larity by isolating its components, modeling and combining

them is a promising paradigm for further development.

1. Introduction

Visual similarity is a long-standing research problem

that has not been studied thoroughly. Its challenges come

from the ambiguity in the problem definition as well as the

subjective evaluation due to individual human perception.

There are many factors that contribute to the overall visual

similarity evaluation such as object categories, image com-

position, color layout, image style, etc.

The goal of our paper is to study the fundamental prob-

lem of visual similarity and propose novel ways to reduce

the ambiguity in order to create better predictive models.

We break down visual similarity into sub-problems (cate-

gory and color similarity), finding a way to collect mean-

ingful training data, and developing metrics and descriptors

for color similarity. In contrast to existing approaches, we

study visual color similarity “in-the-wild”, which goes be-

yond pixel-based or patch-based approaches. For individual

colors, we have a good standard to measure the perceptual

similarity that is established via the CIE △E2000 metric

[20, 11]. However, multiple colors interact in complex ways

in natural images. Existing metrics like CIE △E∗ and hand-

crafted color descriptors [2, 12, 29, 5, 4, 21, 18, 15, 28] are

not able to accurately predict color composition similarity.

While recent methods learn visual features for image

search and visual similarity [6, 30, 23, 3, 31], they lack a

dataset built directly from human judgments on color simi-

larity for training and validation. These methods are trained

on datasets that are labeled with object categories [7, 9].

Another set of approaches try to separate aspects of percep-

tion, by discovering and learning visual attributes for image

search and retrieval [10, 32, 22, 8, 16, 24, 26]. The infor-

mation they rely on involves textual description, attribute

labeling and supervised learning on attribute labels. At-

tributes simplify the objectives of visual similarity by map-

ping a full range of perception into a discrete set of textual

descriptions. Our approach is to ask participants to visually

compare and rate images directly without having to use less

accurate means of assessment such as textual descriptions.

As stated in [33], fine-grained similarity comparisons

(including color) are critical for building perceptually ac-

curate models. However, it is very difficult to measure the

color similarity for images in-the-wild due to the high com-

plexity of natural images and the subjectivity of perceptual

judgments. Therefore, we introduce a new way to define

visual color similarity, as color composition, and study it

directly via human evaluations. The color composition as-

sessment emphasizes hues and shades, their distributions

and overall layout, independent of the semantic category.

We create a dataset annotated with 5-point similarity rat-

ings for color composition. This contrasts with other image

similarity datasets which often rely on binary labels such
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(a) score ≈ 5 (b) score ≈ 4 (c) score ≈ 3 (d) score ≈ 2 (e) score ≈ 1

Figure 1: Examples of ratings for color composition similarity on a scale of 1 (lowest similarity) to 5 (highest similarity).

as INRIA Holidays [14] or the triplets dataset [30]. One of

the challenges for building a fine-grained similarity rating

large-scale dataset is the cold start problem that arises from

the very low probability in obtaining similar image pairs if

we were to sample them randomly. We overcome this by

using an active learning approach and iterating from binary

to fine-grained ratings. We also account for many measures

to ensure the quality of the dataset (Section 3). As a re-

sult, we contribute a large-scale (31,248 image pairs with at

least 20 ratings each), high quality (ICC of 0.69, very high

for crowd-sourcing) and novel dataset for color composi-

tion similarity. Our dataset is the first annotated dataset of

its kind up to date, to the best of our knowledge 1.

Using the dataset, we train a Siamese network to pre-

dict the distributions and mean opinion scores (Section 4).

The network serves as a metric and a feature extractor for

color composition similarity. We compare performances

and create a benchmark for existing color descriptors and

our trained color features in the field of color similarity

for images in-the-wild ( Section 3.3). Trained global fea-

tures using CNNs produce a very good performance (0.913

SROCC, Spearman correlation w.r.t the ground-truth). Even

though L1 and L2 measuring on existing hand-crafted lo-

cal descriptors with dense samplings yield lower perfor-

mances, it is promising to train these descriptors to capture

global features of color composition, leading to better per-

formances (the best case is 0.862 SROCC with HueSIFT).

Furthermore, we validate our color features and metrics

in a fine-grained similarity application (Section 6). Color

had been previously modeled implicitly together with cat-

egory. We propose a novel approach to combine category

features via pair-wise correlations and color similarity as

predicted from our models. These combined features are

extracted from pairs of images leading to improvements

in accuracy compared to learning on individual content or

color features alone. Training an SVM using our proposed

features on a small dataset yields better accuracy than the

state of the art. Compared to a common baseline, the

best existing method DeepRanking [30] trained on millions

of images achieves a relative improvement of 3.5%. Our

model, trained on less than 50K images in total, improves

by a much higher margin of 12.5%. Despite using three or-

ders of magnitude less training data, the absolute improve-

ment of our method on different validation sets is still better

1dataset download link: https://github.com/hamailan/

Color-Composition-Similarity

than the state of the art, 86.2% for ours vs their 85.7%.

In summary, our contributions are: (i) A general frame-

work for modeling sub-aspects of image similarity, that

is designed to handle highly subjective measurements via

crowd-sourcing and active learning. (ii) The first large-

scale perceptual color composition similarity dataset in-the-

wild with 5-point ratings. (iii) A global color similarity

benchmark for color descriptors.(iv) A new type of brief

but highly generalizing features for fine-grained similarity:

the concatenation of the correlation of category features

and color similarity extracted from pairs of images. Triplet

ranking using SVM on these features surpasses the state of

the art even when trained on a much smaller dataset.

2. Related Work

Hand-crafted Features for Color Similarity: From the

famous SIFT descriptor [19] that describes local features for

a set of interesting points in an image by histograms of gra-

dient orientations, different extensions of SIFT are derived

for color descriptors [2, 12, 29, 5, 4]. A common objec-

tive of these descriptors is to be robust against changes in

lighting, scale, rotation, and so on. A complete evaluation

of these SIFT variational color descriptors can be found in

[28]. Another set of color descriptors, introduced in the

MPEG-7 standard [21], relies on transformations to vari-

ous color spaces. Color descriptors are often designed to

be compact for fast indexing [18], or to maintain a level of

photometric invariance [15]. However, all these descriptors

operate locally on low-level image features and therefore

lack the ability to capture global color information.

Learned Features for Visual Similarity: For complex

natural images, it is challenging for hand-crafted descrip-

tors to perform well. Deep Convolutional Neural Networks

(DCNN) have been successfully applied to image similar-

ity. One type of methods learns similarity metrics for pairs

of images using pairwise similarity data [6, 33, 3, 34]. An-

other approach uses triplet data where a reference image

is paired with a positive and a negative example [31, 30].

In either case, pairwise image similarity is labeled by cat-

egory, attributes or binary classification. When labeling by

category, colors are ignored. Binary classes often relate to

generic visual similarity rather than specifically to colors.

With attribute learning, the visual attributes are expressed in

terms of textual descriptions [10, 32, 22, 8, 16, 24, 26] and

therefore over-simplify the objectives of visual and color

similarity. In this work, we aim to develop better metrics
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for color similarity that can also provide color features that

are beneficial for many Computer Vision applications.

Datasets for Perceptual Similarity: In order to train

or validate perceptual similarity metrics and descriptors, we

need to have datasets that are assessed by people as ground-

truth. However, there is no fine-grained rating dataset for

perceptual similarity for images in-the-wild. INRIA Hol-

idays [14] is a dataset where similar images are grouped

together and dissimilar images are assigned to different

groups. Another type is a triplet dataset [30] that provides

a coarse level of similarity. Recently published, the BAPPS

dataset [34] contains natural images and their generated dis-

tortions for learning perceptual patch similarity. In this

work, we fill in the missing gap by contributing a perceptual

color similarity in-the-wild dataset for which the similarity

is measured by participants’ ratings on color composition

using a fine-grained 5-point scale rating.

3. Process for Definition of Perceptual Color

Composition Similarity

The complexity of color composition on natural images

makes it extremely challenging to write down a set of rules

or formulae to define the perceptual color composition sim-

ilarity. If we need to give a verbal definition, the similar-

ity criteria that we are aiming at are the layout of colors,

color distribution, dominant colors, and the overall percep-

tual appearance of colors in the images. Instead of relying

on such a description, our approach is to capture this defi-

nition directly via human judgments. Given a pair of refer-

ence and test images, participants rate the degree to which

the pair is similar with respect to colors exclusively. We face

two challenges. The first is selecting images for which rat-

ings for color similarity make sense. Statistically, numbers

of pairs that are different in color compositions are much

higher than similar pairs. The second is to convey an unam-

biguous definition of color composition similarity to partic-

ipants so that they can understand and provide useful and

reliable ratings. Unlike other types of annotations, it is not

easy to describe the degrees of similarity.

Our solution to the first problem is to build the dataset

in two stages. In the first stage, we create a small bi-

nary dataset in which similarity is clearly defined: either

very similar or completely dissimilar. We start with the

least subjective data. It is possible to collect a small set of

pairs or groups of similar images by using INRIA Holidays

[14] dataset and Pixabay [1] images. From this starting bi-

nary dataset, we train a small binary classification network

(binary-net) to identify similar/dissimilar labels for pairs of

images. We then use the binary-net to sample more image

pairs and have them annotated by participants as similar or

dissimilar. The network performance is further improved

with the extended set of annotated pairs. We name the im-

proved binary network as improved-binary-net. For more

details, see Section 3.1.

In the second stage, we use the improved-binary-net to

select images for the rating dataset. We ask participants to

evaluate similarity on a finer-grained 5-point scale where 1

means a pair is completely different and 5 means the images

are very similar or almost identical. It is important to choose

evaluated images such that the ratings are present for all 5

options. We describe the detailed strategy in Section 3.2.

To solve the second problem, we ask participants to con-

sider several cues that help them consistently compare pairs

of images such as presence of dominant colors, distribution

of colors, colors of foreground objects and the background,

and the overall perceptual appearance of colors in the whole

image. We quantify the rating from 1 to 5 as follows: 1 -

the pair of images are totally different, 2 - below 50% sim-

ilar colors, 3 - about 50% similar colors, 4 - above 50%

similar colors and 5 - very similar to identical (e.g., Fig. 1).

We present many rating examples, conduct an entrance test

before participants can start working on the project and em-

bed hidden test questions seamlessly into work items. The

test pairs and their expected ratings serve as ground truth

to assess whether participants’ rating criteria are consistent

with the requirements of the task. In the test cases, to al-

low room for subjectivity, for very similar pairs we set the

candidates for correct ratings to {4, 5}. For pairs that are

absolutely different, the correct rating candidates are set to

{1, 2}. For non-extreme similarities, ratings of {2, 3, 4} are

allowed. Participants must pass the entrance test and main-

tain their accuracy above 70% throughout the study. Finally,

the quality of our rating dataset is evaluated in Section 3.3.

3.1. Binary Dataset and Network

We combine the images from INRIA Holidays [14] and

Pixabay [1] datasets to create our own dataset. We use an

active learning approach to improve the binary network and

expand the dataset (Fig. 2). The process starts with an equal

number of 3,591 labels each for similar and dissimilar im-

age pairs. This small set of labels are manually annotated by

the authors (Fig. 2(a)) and are used to train the initial binary

network named binary-net to classify similar or dissimilar

images in term of color composition (Fig. 2(b)). Due to

the limited amount of training data, we design a CNN ar-

chitecture with few parameters. Instead of using a Siamese

model, we stack pairs of RGB images into 6 channel inputs.

We augment the images by horizontal flips, small rotations,

and swap the two inputs. The output of the network is soft-

max scores for 2 classes: similar and dissimilar.

In the next step, we generate data for participants’ evalu-

ation on new pairs of images for binary classification using

the initial binary network binary-net (Fig. 2(c)). We select

1,302 reference images that cover a wide variety of objects,

textures, and scenes. We use binary-net to evaluate the bi-

nary similarity between each reference image against a set
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Figure 2: Active learning approach for building color composition similarity binary dataset: it starts with hand-picked similar

image pairs (a), on which a classifier is trained (b) to select more similar image pairs (c), which in turn are annotated for

similar or dissimilar by crowd-sourcing participants. The process is repeated by using accumulated user annotated data.

of 3,000 images from our large pool dataset. The results

from the binary-net are then sorted from the most similar to

the most different based on their similarity scores. For each

reference image, only the first few dozen images are similar

and the majority of images are different. Therefore, we se-

lect only 24 evaluated images per reference for participants

to evaluate similar or dissimilar. These 24 images consist

of 1 highly similar image from the initial set of 3,591 labels

that are manually selected at the beginning, the first 20 im-

ages resulted from the binary-net and 3 dissimilar images

that are taken randomly at the end of the binary-net result

list. It yields 31,248 pairs of comparisons in total. Finally,

the participants’ evaluations are added to the binary dataset

(Fig. 2(d)) and fed to re-train the initial binary-net to in-

crease its accuracy (Fig. 2(b)). This re-trained network is

called improved-binary-net and we use it to select images

for fined ratings in Section 3.2.

3.2. Rating Dataset

In the subsequent crowd-sourcing process we create a

fine-grained rating dataset from the binary set. We ask par-

ticipants to evaluate the similarity for pairs of images using

a 5-point Likert-type scale, ranging from absolutely dissim-

ilar (1) to very similar or identical (5). The rating data com-

prises 1,302 reference images. There are 24 evaluated im-

ages for each reference. It is important to choose the eval-

uated images such that their ratings span the entire 5-point

scale. For very similar to identical (rating 5) pairs of im-

ages, we choose pairs from the 3,591 manual labeling data.

For pairs of images for which the similarity ratings poten-

tially range from 2 to 4, we select pairs from the top results

of improved-binary-net sorted by similarity scores. Dissim-

ilar pairs of images (rating 1) are accurately chosen from

the bottom of the sorted improved-binary-net result list.

The important factors that control the quality of the rat-

ing dataset are the rating accuracy and consistency among

work items of individual participants as well as the consis-

tency among all participants for each work item. To reduce

biases and promote the coherence of participants’ ratings,

for every reference image, we presented to participants a

group of evaluated images at a time. We asked the partic-

ipants to not only rate each pair of images individually but

also compare among the group of evaluated images. If an

evaluated image A is more similar to the reference image

R than an evaluated image B to R, then the rating for A

should be higher than for B and vice versa. If both images

A and B are equally similar to the reference image, then the

ratings for both should be the same. This strategy provides

an additional context for rating, thus helping participants to

adjust their individual ratings to become more consistent.

3.3. Quality of the Rating Dataset

One important aspect of crowd-sourcing experiments is

to have a sufficient number of participants working on each

question. In highly subjective perceptual comparison tasks,

we need a larger number of user judgments per item com-

pared to less subjective tasks such as object labeling. There-

fore, we conducted a preliminary experiment on a small part

of the dataset (559 pairs) using 40 ratings per pair. We stud-

ied how well a smaller number of ratings can reproduce the

mean of 40 ratings. We found that the mean opinion derived

from 20 ratings suffices to obtain a 0.994 Pearson linear cor-

relation with the mean for 40 ratings, with an MAE of 0.033

on a scale of [1,5]. Thus, we chose 20 ratings per pair.

To evaluate the quality and reliability of the dataset, we

use the Intra-class Correlation Coefficient (ICC). The one-

way ICC on our dataset is 0.69. This suggests a high agree-

ment in the context of crowd-sourcing rating experiments,

where values between 0.3 and 0.5 have been previously re-

ported on several rating datasets [25, 13].

4. Computational Model of Perceptual Color

Composition Similarity

With the rating dataset, we train Convolutional Neural

Networks (CNN) to evaluate the perceptual color compo-

sition similarity. These networks can be used as similarity

metrics and color feature extractors.

Different from binary networks, rating networks allow us

to rank image similarity. We train two types of rating net-

2562



(a) Siamese network for predicting ratings. (b) Shared-weight Convolutional Block.

Figure 3: Siamese architecture (a) using Convolutional Neural Network (b) for training our color similarity metrics.

works: COLSIM RATE to predict the participants rating

distribution and COLSIM MOS to predict the participants

Mean Opinion Score (MOS). Both networks use the same

architecture as in Fig. 3(a). The only difference is in the pre-

diction layer, where we have a single output for MOS and

five outputs for rating distributions. The overall architec-

ture is a Siamese network that has two input images. Each

input is fed into a shared-weight Convolutional Block that

contains a series of convolutional layers to extract features.

The features from the two input images are combined by a

function f defined in Eq. 1. Finally, a neural network with

a few fully connected layers performs the predictions based

on the combined features.

Shared-weight Convolutional Block: we use 5 convo-

lutional layers that are similar to the Caffe implementation

of AlexNet with Batch Normalization on the first 2 layers.

The responses of the last convolutional layer are flattened

to form a feature vector v (Fig. 3(b)). We also train a com-

pact network that contains only 3 convolutional layers on

images of size 112×112 pixels. The compact network is

smaller and faster, but there is a slight drop in performance

(see Section 5).

Image Features Combination: to combine features of

image 1 (v1) and features of image 2 (v2), we use 3 dif-

ferent metrics: absolute difference, squared difference and

Hadamard product as follows:

f : (v1, v2) → C(|v1 − v2|, |v1 − v2|
2, v1 · v2) (1)

where ‘·’ denotes the element-wise multiplication, and C is

the concatenation operator. The combined features resulting

from Eq. 1 are used as the input to the Fully Connected

Layer (FCL) block (Fig. 3(a)).

Fully Connected Layer (FCL) Block: is comprised of

two fully connected layers of size 512 and 128. We use

dropout 0.5 for the first FCL and 0.2 for the second FCL.

ReLU activation is used throughout the whole network.

Rating Distribution prediction: participants’ ratings

are distributed over the 5-point scale. Given a pair of im-

ages, we want to predict the participants’ rating distribu-

tion. We use different metrics for computing the distribution

losses, including Mean Absolute Error (MAE), Kullback-

Leibler (KL) divergence and Huber loss. From numerical

results, KL divergence consistently performs the best. Thus,

we use KL divergence in all of our rating networks.

Mean Opinion Score (MOS) prediction: From the par-

ticipants’ rating distributions, we can compute MOS values

that are useful for image ranking. The MOS is computed as

MOS =
∑n

i=1
i · P (i) where P is the normalized rating

distribution and n = 5 for a 5-point rating scale. We also

train networks that predict MOS (COLSIM MOS) using

Mean Squared Error (MSE) loss. Our experiments show

that MOS derived from predicted rating distributions has

lower errors compared to the results of networks that are

trained directly on MOS data.

5. Color Descriptors Evaluations

In order to evaluate and compare the performances of

different descriptors and networks on perceptual color sim-

ilarity measurements, we split the dataset into an 80% train-

ing set (24,840 pairs) and a 20% test set (6,210 pairs). There

are no common reference images in the two sets. All the al-

gorithms are trained and validated on the training set and

tested on the test set. The results reported in Table 1 are

the SROCC on the test set, which measures the Spearman

Rank Order Correlation between the predicted results and

participants’ ratings. We choose SROCC over other metrics

such as MAE or MSE because it accounts for the changes

in scale and non-linearity of the measurements coming from

different descriptors and methods.

We divide color descriptor methods into three groups:

histogram-based, SIFT-based and MPEG7. We use L1 and

L2 for all descriptors in these three groups to measure the

similarity between pairs of images in the test set, rank them,

and compute the SROCC. We also train the descriptors

using CNNs, and neural networks for SIFT and MPEG7

descriptors, respectively. To extract SIFT descriptors, we

densely sample the images and compute SIFT color fea-

tures at each sampled point. The resulting data is enough

to train a CNN that has a similar architecture to our COL-

SIM RATE network (in Section 4). MPEG7 descriptors,

on the other hand, are very compact. Their sizes are 192

for Color Layout Descriptor (CLD), and 256 for Color

Structure Descriptor (CSD) and Scalable Color Descriptor

(SCD). Thus, we train a small neural network that has two

fully connected layers with one prediction layer. The fea-

tures produced by descriptors for pairs of images are com-
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Descriptor
Spearman correlation ρ

L1 L2
Trained

MOS/Rating

nrghistogram 0.503 0.546 -

opponent histogram 0.604 0.498 -

hue histogram 0.631 0.535 -

lab histogram -0.260 -0.336 -

rgsift 0.259 0.277 - / 0.754

hsvsift 0.327 0.277 - / 0.757

csift 0.351 0.318 - / 0.687

opponentsift 0.604 0.498 - / 0.636

huesift 0.631 0.535 - / 0.862

Descriptor / Spearman correlation ρ

Network L1 L2
Trained

MOS/Ratings

CLD 0.290 0.562 - / 0.715

CSD 0.653 0.692 - / 0.737

SCD 0.692 0.646 - / 0.720

VGG19 + L2 - - 0.467 / -

VGG19 Transfer - - 0.780 / 0.812

VGG19 Fine-tune - - 0.832 / 0.863

Compact (ours) - - 0.860 / 0.869

COLSIM (ours) - - 0.902 / 0.913

Table 1: Evaluation of color descriptors and learning methods on color composition similarity. Predictions are based on L1

and L2 norms, or trained on ‘MOS’ and distribution of ‘Ratings’. The Spearman ρ between the predictions and the MOS

computed from user ratings is reported. Performance is highest when training on distributions of ratings.

bined using the function f as described in Eq. 1.

The numerical results show that descriptors, even though

designed for color similarity, do not correlate well with hu-

man evaluations. The maximum SROCC is 0.692 obtained

with CSD and SCD descriptors. Training a CNN or Neural

Network on the descriptors can improve the results up to a

maximum of 0.860 SROCC in the case of huesift. Never-

theless, it takes an additional step to first compute descrip-

tors before training them to get decent results.

A straightforward approach is to fine-tune a network or

train one from scratch on our dataset. We do transfer learn-

ing from pre-trained features and then fine-tuning using the

VGG19 network [27]. As VGG19 is trained for object cat-

egorization, it cannot perform well out of the box on color

similarity. The SROCC result for L2 distance on fc7 fea-

tures of the VGG19 is 0.467. It shows that content and color

are not highly correlated. The SROCC result of VGG19

transfer learning is 0.812 and improves to 0.863 with fine-

tuning. Even though the results are satisfying, we observe

that the features in VGG19 favor classification and hence

still affect the performance of color similarity measurement.

Thus, we train a rating network COLSIM RATE described

in Section 4 from scratch. The SROCC of COLSIM RATE

is 0.913, the best of all methods. We also train a Com-

pact network that contains 3 convolutional layers, 2 fully

connected layers and 1 prediction layer on images of size

112×112 pixels. Even though the performance is lower at

0.869 SROCC, the network has fewer parameters while hav-

ing comparable performance to the fine-tuned VGG19. The

MOS prediction network COLSIM MOS has an SROCC

of 0.902, which is slightly lower than COLSIM RATE.

Regarding errors, we plot the cumulative distribution

function (CDF) of the MAE between the participants’ distri-

bution of ratings and our COLSIM RATE network’s pre-

dictions in Fig. 4(a). The MAE is below 0.1 for 70% of the

test data and only increases substantially in the last 5%.

6. Fine-grained Image Similarity

Fine-grained image similarity measures not only the con-

tent difference among image classes but also the visual dif-

ference within a class. Image retrieval by class or categori-

cal features does not consider colors as a part of the ranking

procedure. For instance, when searching for an image of a

black poodle, retrieval prioritizes semantic information and

returns poodles with various colors. This is not always de-

sirable. We show that by using our visual color similarity

metric, the relevance of the ranking results is improved.

6.1. Related work

Existing methods relate visual similarity to fine-grained

classification or visual attribute similarity. These two main

approaches are only beginning to tackle the complex nature

of perceptual comparisons as part of visual search. Visual

similarity is contextual because of the subjective judgments

and its use-case. For instance, a query for an image depict-

ing a leopard pup at the zoo could be intended to retrieve

images of leopards (pure class), young leopards (object at-

tribute and class), or yellow animals (color and class).

The first type of methods learn features for general vi-

sual similarity [6, 30, 23, 3, 31], starting from category la-

bels, textual descriptions, or triplet data. The second type of

approaches separate aspects of visual similarity, by learn-

ing from human-nameable visual attributes or discovering

new ones for image retrieval [10, 32, 22, 8, 16, 24, 26, 31].

Attribute learning complements category-level recognition

by learning the degree to which one or more attributes are

present in an image. Attributes are very specific and com-

bining them is challenging [26] due to their interactions.

We propose to separate visual similarity into multiple

factors that can be individually studied. In this work, we fo-

cus on the color composition factor. This is not a per-image

attribute as we cannot quantify the amount of color compo-

sition in an image, nor can we say that an image has more
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(a) CDF of similarity ratings MAE. (b) Examples of different error levels (MAE). Blue graph: ground-truth, red graph: prediction

Figure 4: The MAE between participants’ rating distributions and the COLSIM RATE network’s predictions on the test set.

For most images the MAE is small, e.g., (i) and (ii) whereas only 3% have an MAE > 0.2, e.g., (iv).

or less color composition than another. However, it allows

us to better specify the context in visual search. We use the

correlation between pairs of content features and color sim-

ilarity to improve fine-grained visual similarity prediction.

6.2. Features and training model

Our hypothesis for improving fine-grained similarity is

that the combination of category and color features helps

to better predict the similarity of image pairs compared to

the individual features alone. The similarity in the categor-

ical feature space is computed as the correlation between

two feature vectors of pairs of images. The color similar-

ity features are extracted from our color composition simi-

larity metric or L2 distance for existing hand-crafted color

descriptors. The detailed formulations for the content cor-

relation and color similarity are explained below. Our hy-

pothesis is verified by numerical results in Table 2.

Wang et al. [30] have introduced a fine-grained similar-

ity database which contains 5,033 ranked triplets. A triplet

comprises a query Q, and two compared images A and B. If

the visual similarity sim(Q,A) > sim(Q,B) which means

A is more similar to Q than B, then the correct ordering of

the triplet is (Q,A,B).
Using this dataset, we study different similarity measures

on category and color features individually and in combina-

tion. We use the L2 distance to measure the visual sim-

ilarity between pairs of images. For content features, we

evaluate L2 on the fc8 layer of AlexNet and the Global Av-

erage Pooling (GAP) layer of ResNet50. For color features,

we evaluate L2 for all color SIFT descriptors, MPEG7 de-

scriptors and COLSIM features extracted from our model.

The L2 distance on individual types of features does not

yield good results (Table 2). Therefore, we train a binary

classifier (SVM, RBF kernel) on the triplet data using com-

binations of features. In general, the input features to the

SVM are a pair of similarities (sim(Q,A), sim(Q,B)) for

a correct triplet (Q,A,B). Wrongly ranked triplets are cre-

ated from the correct ones, by reversing the relationships

(sim(Q,B), sim(Q,A)).

The features that are used when training the SVM

are: the direct color similarity produced by the COL-

SIM network SCOLSIM (X,Y ), and the Pearson Linear

Correlation Coefficient (PLCC) between GAP content fea-

tures 2 FGAP extracted from a pre-trained ResNet50 net-

work: SGAP (X,Y ) = PLCC(FGAP (X), FGAP (Y ))
where PLCC(x, y) = 1

n−1

∑n

i=1
(xi−x

σx
)(yi−y

σy
) where n

is the number of dimensions of the features x, y. There-

fore, the input features for “SVM ResNet GAP cor-

relation” is [SGAP (Q,A), SGAP (Q,B)] which contains

only content features for a triplet (Q,A,B). The in-

put features for “SVM ResNet + COLSIM” are the

combination of content similarity and color similar-

ity, and defined as [SCOLSIM (Q,A), SCOLSIM (Q,B),
SGAP (Q,A), SGAP (Q,B)] for a triplet (Q,A,B).

6.3. Results analysis and discussion

The DCNN methods in [30] have been evaluated on

a validation dataset of 14,000 triplets. However, the au-

thors [30] make available only a subset of 5,033 triplets.

We evaluate our models on this subset by using 20 repeti-

tions of random 80%/20% train/validation splits. The opti-

mal hyper-parameters for each split are estimated by 5-fold

cross-validation. Our proposed model using the combined

category and color feature similarities performs best. We

do not have access to the other methods to directly compare

their performances on the “Subset 5k” database. Thus, we

use a shared baseline model for comparison: the L2 distance

between fc8 features from AlexNet [17], named “ConvNet

AlexNet fc8”. This common baseline performs much bet-

ter on the 14K dataset than on the subset 5K (Table. 2).

Therefore, we expect equivalent methods will perform bet-

ter when tested on the 14K compared to the 5K subset.

2the terms category and content features are used interchangeably
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Model
Validation 14k

(not available)
Subset 5k (⊂ 14k)

L2 on ConvNet AlexNet fc8 82.8% (baseline) 73.7% (baseline)

Single-scale Ranking 84.6% -

OASIS on Single-scale Ranking 82.5% -

Single-Scale & Visual Feature 84.1% -

DeepRanking 85.7% (+3.5%) -

L2 on *sift descriptors - 62.9% - 65.4%

L2 on MPEG descriptors - 62.3% - 65.1%

L2 on COLSIM features - 69.1%

L2 on ResNet GAP - 79.1%

SVM on COLSIM correlation - 73.7%

SVM on ResNet GAP correlation - 84.3%

SVM on ResNet + COLSIM - 86.2% (+12.5%)

Color

Descriptor

Combined

features

Color

features

csift 84.5% 50.7%

rgsift 84.6% 61.3%

oppsift 84.8% 64.5%

hsvsift 85.1% 62.7%

huesift 85.3% 65.4%

CSD 85.5% 68.9%

SCD 85.5% 62.8%

COLSIM (ours) 86.2% 73.7%

SVM results on the 5k subset when training

with (combined) and without content features.

Except COLSIM, we use L2 for the rest of

color descriptors to compute SVM features.

Table 2: Evaluation on the DeepRanking triplet dataset. Results for the ’Validation 14k’ column are reproduced from [30].

State-of-the-art performance: the accuracy of our

method is 86.2% compared to 85.7% for the best Deep-

Ranking [30] approach. However, our method shows a

substantially higher improvement of 12.5% relative to the

shared baseline, compared to the improvement of 3.5% for

DeepRanking. As the performance of the baseline method

on ‘Subset 5K’ (73.7%) is much lower than on ‘Validation

14K’ (82.8%), the relative % improvement suggests a much

better overall performance for our method.

Feature combination vs individual features: even

though the SVM training on ResNet GAP correlation and

COLORSIM scores achieves the best results, we also test

the model on different hand-crafted descriptors. The re-

sults, on the right of Table 2, show that: (i) COLSIM out-

performs hand-crafted descriptors; (ii) the combination of

content feature correlation and color similarity yields better

accuracy compared to using L2 on descriptors or ResNet

GAP alone (on the left of Table 2).

Feature correlation vs L2 distance: using content or

color descriptors alone, we find that training an SVM on

the PLCC of the features results in a better accuracy than

L2 distance on the respective features. For instance, the ac-

curacy for SVM on ResNet GAP correlation is 84.3% com-

pared to 79.1% for L2 on ResNet GAP features.

Features vs end-to-end training: while DeepRanking

[30] used 14 million google search images during training,

and a large set of triplets (≈ 50k), our method relies on

a much smaller set of 5,033 triplets and our own database

of 30k image pairs. The improved performance of our ap-

proach, using combined category and color features, shows

that embedding domain knowledge in our model achieves

both excellent performance and efficient training. Training

on the proposed low-dimensional pairwise features is much

faster than an alternative end-to-end triplet network.

7. Conclusion

We hypothesize that visual similarity can be better stud-

ied by isolating its multitude of aspects and modeling them

individually. This approach requires the means to isolate,

model, and combine multiple aspects. We isolate the as-

pect of color composition similarity, define an efficient data

collection and annotation strategy including an active learn-

ing approach for this subjective measurement task. This

process leads to the first large-scale dataset for measuring

color composition similarity for images in-the-wild. Our

dataset has enabled us to train accurate DCNN models

for perceptual color similarity and benchmark the perfor-

mance of existing color descriptors. The numerical results

show that few existing descriptors are informative for global

color similarity, except for deep features that are trained

on our dataset. We create an improved model for visual

ranking similarity, by introducing a novel way to combine

non-homogeneous representations such as color similarity

and category features. These multi-aspect, low-dimensional

features have proven to be extremely effective in training

visual ranking models, surpassing the existing state of the

art ‘DeepRank that was trained on substantially more data.

Overall, the results prove that our proposed approach better

predicts visual similarity. We expect that future works will

improve visual similarity models by isolating and studying

other aspects such as texture, style, etc.
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