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Abstract

Intelligent vehicles and social robots need to navigate in

crowded environments while avoiding collisions with pedes-

trians. To achieve this, pedestrian trajectory prediction is

essential. However, predicting pedestrians’ trajectory in

crowded environments is nontrivial as human-to-human in-

teractions among the crowd participants influence their mo-

tion. In this work, we propose a novel end-to-end graph-

centric gated learning model to estimate the existence of

interactions between individuals. Accordingly, the model

predicts pedestrians’ future locations and velocities. Re-

cent methods based on LSTM networks used thresholding

techniques to define neighborhood boundaries and rela-

tionships. Other graph-structured methods grow edges in

polynomial size. In contrast, our graph-based GRU net-

work model employs an online data-driven criterion that

can learn from interactions and grow connections between

pedestrian nodes. The proposed model yields outperform-

ing prediction accuracy over state-of-the-art works in two

public datasets, i.e. Crowds and SDD.

1. Introduction

Pedestrian trajectory prediction is essential for enabling

intelligent vehicles and social robots to avoid collisions

during navigation in crowded environments [24, 8, 1, 27].

However, pedestrian trajectory prediction in urban environ-

ments is a challenging task as human navigation decisions

are influenced by their social interactions with other traffic

participants. Besides, urban environments are characterized

by a temporally varying number of pedestrians and motion

dynamics, which further increases the difficulty in develop-

ing accurate prediction models.

From a cognitive perspective, crowds motion imitates a

collective tendency towards self-organization and coordina-

tion of pedestrians motion inside the crowd [11]. We take

our inspiration from this normative theory, to build a self-

growing graph that estimates the potential for an interaction

between two pedestrians and reflects that accordingly onto

the spatial connectivity inside each graph step. Figure 1
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Figure 1. Relationship prediction between two pedestrians. The

relationship in this context refers to the dynamical influence im-

posed by pedestrians onto each other. By visually tracking the rel-

ative distance ∆d at time-steps t1 and t2, one can assess whether

there is a potential influence between two pedestrians as indicated

by the dotted lines tagged with <? > between pair of pedestrians.

Resolving relational assessment is depicted by establishing edges

between the nodes, where each node refers to a pedestrian in the

scene.

shows a typical scene of pedestrians, each of them conduct-

ing different motion dynamics such as: running, walking,

and standing. The proposed method aims to discover the

relationship between the pedestrians, which is a manifesta-

tion of the social behavior among pedestrians (i.e. to avoid

collisions) that impacts their subsequent trajectories.

Existing works attempt to learn the interactive context

of urban environments using fixed spatial neighborhoods

to provide local features of pedestrians social interactions

[1]. The idea of defining neighborhood boundaries using the

neural model was highlighted earlier in [29]. Nevertheless,

few structured architectures developed this task on graphs

considering the spatial relations between pedestrians [9, 32]

using fixed parameters to establish neighborhoods. In this

work, we propose a novel end-to-end graph-centric gated

learning model to estimate the existence of interactions be-

tween individuals. Our interaction modeling is based on

a principled understanding of social relations that governs

potential interactions between pedestrians and inspired by
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relational reasoning [25].

Previous approaches were conducted in offline learning

setting such that the neighborhood size should be tuned to

fit new scenes. For autonomous mobility in unknown envi-

ronments, the prediction model will benefit from the ability

to continually learn from incoming data streams. Learning

from data streams is known as online learning [15, 2, 14],

which in our context, reasons about future trajectory in-

stantly based only on the current step, and withdrawing

the previous steps from the model. However, applying this

setting directly to Long-Short Term Memory (LSTM) pro-

vokes instability in its predictions, as the internal cell mem-

ory requires longer sequences to learn motion correlations

that are embedded along consecutive time-steps.

In our case, maintain a continual long-term trajectory

prediction. We ensure that pedestrians nodes are stateful by

carrying their state through gated memory to mitigate the

prediction instability problem and, at the same time, allow

for an adaptive structure by enabling the spatial graph to

grow dynamically while keeping the network trainable and

majorly stable.

To the best of our knowledge, our work is the first to si-

multaneously estimate social relations between pedestrians

while learning their dynamics using a dynamic incomplete

graph structure.

Contribution Our work improves state-of-the-art pedes-

trian trajectory prediction in the following aspects:

1. In previous works, socially-focused methods em-

ployed an exclusive motion feature, i.e. velocity or

location displacement, for prediction. In contrast, we

predict multiple motion features at one pass to improve

the trajectory forecast. Motion features can be bet-

ter exploited, by combining future velocity predictions

with future location prediction, rather than solely rely-

ing on the past location sequence.

2. We develop a self-learned criterion for growing graph

topology under a variable number of nodes, reducing

the message passing load between the nodes in the

graph network.

3. We introduce spatio-temporal graphs in online contin-

ual learning by preserving the statefulness of nodes

states with gated memory units. The graph creates its

spatial and temporal structure with minimal data pre-

processing per frame.

2. Related Works

Neighborhood selection for pedestrian trajectory pre-

diction A plethora of research works approached pedes-

trian trajectory prediction from several perspectives includ-

ing their social interaction modeling as means of under-

standing how pedestrians move with respect to each oth-

ers motion [3, 7, 22, 28, 31, 24]. The social interaction

centered approaches proved to be more applicable than fo-

cusing on pedestrian as an individual entity in the environ-

ment. The relational bias suggests that pedestrians tend

to interact within small distances forming local neighbor-

hoods. This assumption proved to be useful for crowd

motion representation under limited scenarios. Recent ad-

vances in graph-structured learning conduct parameter shar-

ing and parameters tying mechanisms on tabularized repre-

sentation, to have a compact form of the variable size envi-

ronments [13, 19]. However, these approaches resorted to a

fixed grid-like neighborhood layout for passing messages

between nodes, either by growing spatially in quadratic

space [27] or locally set neighborhoods [1]. Other super-

vised models [20, 30] expand neighborhood concept from

local scope to global scope such that parameter sharing be-

tween neighborhoods is achieved using gated memory cells.

Link Prediction in Graphs for neighborhood selection

Link Prediction is a big task in data mining problems, such

as recommender systems, social networks, and protein for-

mation networks [5, 21, 17]. Nevertheless, the idea of pre-

dicting future links (or relations) in graphs has significant

potential that covers graph-structured data in any domain.

Studying crowd motion modeling as a graph completion

problem finds a new area for link prediction. However, pre-

dicting the future association between pedestrians is non-

trivial, as there have not been theoretical guarantees for

an optimal solution. Fixed neighborhood-based heuristics

have been empirically set to gain the best predictions, but

as crowds motion is a dynamic system, pedestrians often

have dynamic neighborhoods, which makes the Euclidean

discretization a scene-specific solution. It is best to rea-

son about pedestrian interaction based on graph structure

and extend the neighborhood concept to the non-Euclidean

zone.

In graph streams, it is more challenging to estimate associa-

tion heuristic without having an initially connected graph to

anticipate the missing links. We resort to learning adaptive-

sized neighborhoods and estimate the association between

the nodes, without specifying heuristics apriori. Existing

works in pedestrian trajectory prediction are always based

on ground-truth settings regarding the latent graph struc-

ture. Unlike the existing works, our graph model does not

rely on any assumption, e.g. minimum Euclidean distance,

to fixate the spatial connections. Instead, we permit a vari-

able size and an arbitrary shape for the spatial neighbor-

hoods from one time-frame to another to allow generaliza-

tion in the social interaction modeling.
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3. Proposed Method

3.1. Problem formulation

We formulate our pedestrian trajectory problem as fol-

lows: Let X be pedestrians trajectories, such that: X =

x1, x2, ..., xn, with n pedestrians. X̃ are future trajectories,

xi
t is i-th pedestrian trajectory from time-step t = 1 un-

til t = t + obs, given that obs is observation length. We

observe 8 steps of each pedestrian trajectory and predict

for the next 12 steps. Each predicted step is added to the

first predicted point, xi
t+pred = xi

t+1 + xi
t+2 + ... + xi

t+l

to maintain consistency and dependency between predicted

steps. Along with trajectory prediction, each pedestrian has

its velocity prediction for each time-step and added to the

respective predicted steps.

3.2. Method

In this section, we present our proposed models: MTV

and MTV P , and MSGTV , where SG stands for Self-

Growing, T for trajectories, V for Velocity and P for Pool-

ing layer. Thereby, any model containing T indicates its

reliance on positional features and the same naming con-

vention applies to the rest of the symbols.

Overall, we formulate the problem of growing graph as a

graph-focused learning task: Assume Graph G comprised

of nodes set N , temporal edges set ΣT , and an unknown

spatial edges set ΣS , our task is to grow the spatial set to

minimize the Euclidean error in nodes output predictions.

Our learning objective for this task is formulated as follows:

minG{ΣT ,ΣS
}||X̃n −Xn||

2
2 , (1)

According to Graph Network (GN) [4], the prediction

pipeline comprises two sets of functions: aggregators ρ and

updaters φ. Aggregator functions are responsible for aug-

menting nodes and edges states before processing and up-

dater functions are applied at nodes and edges to output

their final states.

3.3. Centralized models

MTV and MTV P both process data on a set of dis-

connected nodes, withdrawing relationships from the graph

structure. This design choice is a preliminary element to test

the capability of the most basic recurrent structure. They

train the data within a central Multi-Stacked GRU so that

at each frame all the nodes trajectories and the output pre-

dictions are set in a tabulated form to ease indexing and

retrieval of each node.

The minibatch models increase the observation length.

As shown in Figure 2, the minibatch training takes 8 steps

to predict the next 12 frames. They aggregate all nodes tra-

jectories and passes them into the stacked GRU cell to get

positional predictions:

X̃{t,t+l}, h{t,t+l} = GRU(x{t−l,t}, h{t−l,t}), (2)

As previous models calculate velocities of observed tra-

jectories, we dedicate another GRU cell for predicting walk-

ing velocity V ∗, preserving the existing hidden space and

pass it again into the second GRU:

V = F (vn×l) (3)

F (V ) = Wve ∗ v + bve (4)

V ∗
{t,t+l}, hv{t,t+l} = GRU(V, h{t−l,t}), (5)

Then the velocity predictions are summed with the re-

spective positional predictions to update nodes future tra-

jectories:

X∗
{t,t+l} = X̃{t,t+l} + V ∗

{t,t+l} , (6)

Predicting new velocity at each step enables the model

to continuously adapt to sudden changes in position data.

It is beneficial to add the higher-order motion to positional

prediction, as this combination pace the model performance

for different walking velocities. Relying on position alone

makes the model prone to significant errors, which can af-

fect motion pattern understanding without adding extra cues

and information.

As the multi-stacked GRU has 4 layers, it generates 4

mappings of every predicted sequence. Therefore, we used

average pooling layer P to average the mappings before

transforming to the output layer:

X∗
x =

∑4
i=1 X

∗
i{t,t+l}

4
, (7)

Eventually, the network preserves statefulness of GRU

cells over time, by adding the previous hidden states into

the recent ones:

ht =
t−1∑

i=1

hi , (8)

3.4. Self­Growing Gated model

Self-Growing Graph Network aims to overcome the in-

efficiency issues due to reliance on stable, dense connec-

tions in graph-structured networks. We developed an effi-

cient adaptive neighborhood approach, which can execute at

runtime for an evolving graph. Learning in graph network

uses edge features and nodes features to learn the global

graph. The aggregation function accumulates respective

temporal edge and node features in one message chunk and

gets passed to the global stacked GRU cell, where features

are set in layered order and information is propagated from

one layer up to the next layer. Propagating messages in a

stacked style at one global cell plays a core role in forming

a hierarchical concept of the hidden representation.
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Figure 2. Structure and learning pipeline combining parts of the three models: MTV ,MTV P and MSGTV . Each model has special

components which are enclosed within dashed boxes and tagged with model name. The basic model MTV operates without the average

pooling layer and adjacency matrix, while MSGTV works only without the pooling. The solid circles indicate pedestrian nodes, the

diamond operator ⋄ illustrates the conditional selection of inputs to form a neighborhood Z with directed edges and the circled plus

operator
⊕

is for addition of entries. X is the input trajectories set, V is the velocity set, X̃ is the output of GRU, hi is the input for

initial hidden states of i-th trajectory, h
′

i is the output hidden state of i-th trajectory. V ∗ is the predicted velocity and finally, X∗ is the final

predicted trajectory after the sum of V ∗ and X̃ . (Best viewed in color).

For our self-growing mechanism, we map graph G to the

Adjacency matrix An×n, in which the dimensions can be

changed according to the maximum observed pedestrians.

This is based on estimating adjacency potential for each of

pair of pedestrians. Firstly, we initialize matrix to zeros as

all nodes are disconnected, then the spatial edges are evalu-

ated by distance matrix D, which stores distances between

all nodes in the scene:

Dt
n×n =

{
0; i = j

||xt
i − xt

j ||
2
2 otherwise

(9)

Eq. (10) stores normalized Euclidean distances D̃t
n×n as

follows:

D̃t
n×n =

{
0; i = j,Dt

(i,j) = 0
1

Dt
(i,j)

otherwise
(10)

The distance matrix gets embedded using linear function

F , which uses weight matrix Wde and bias vector bde to

transform from distance space to embedded feature space:

F (D) = Wde ∗D + bde (11)

ê = F (D̃t
n×n), (12)

Similar to [12], the potential for adjacency is produced

by passing D̃ through softmax layer which is suitable for

transforming distances into probability space between (0, 1)
and one digit of precision. However, our adjacency matrix

is not necessarily symmetric. Depending on the estimation

of influence on a directed graph, the influence can be deter-

mined in one-way.

At
n×n = softmax(D̃t

n×n), (13)

Typically, At
n×n gets its probabilistic entries rounded to

the nearest integer, so that it is used for selecting the em-

bedded spatial edges’ features ê. This selection forms the

neighborhood Z of which all common nodes are considered

influential to node i:

Zt =
{
ê(i,j); if At

(i,j) = 1, (14)

After estimating the global neighborhood for every node,

GRU cell receives nodes embeddings X{1,t} together with

neighborhood feature embeddings, such that P{1,t} are all

the observed trajectories:

x{1,t} = F (P{1,t}) (15)

X̃{t+1,t+l}, h{t+1,t+l} = GRU(x{1,t}, Zt, h{1,t}), (16)

The flow continues as described in Eq. (5) and Eq. (6)

previously.
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Dataset ETH hotel Students UCY Zara

Avg velocity 2.5 1.2 0.9 1.6 1.4

Table 1. Average walking velocity over various subsets in Crowds

dataset (m/s)

Dataset Death Circle Gates Hyang

Avg velocity 1.0 1.2 1.0

Table 2. Average walking velocity over various subsets in Stanford

drone dataset (m/s)

4. Experiments

In this section, we present experiments results for our

models. Crowd motion can be highly dynamic, hence we

conducted experiments to demonstrate our Graph Network

accuracy, adaptability to variations in social interactions and

efficiency in comparison with state-of-the-art models. All

the experiments and testing in this study were carried out

using a desktop computer with Intel Core-i5 3.1 GHz CPU

and 16 GB memory running Ubuntu 16.04 operating sys-

tem. All models were implemented in PyTorch.

4.1. Datasets

We evaluate our models on the set of videos included in

the TrajNet challenge [23]. Subsets such as ETH and UCY

videos are commonly tested across the literature, and they

only illustrate pedestrian-wise interactions. We choose to

include additional subsets to indicate how well our models

perform under different dynamic characteristics and walk-

ing patterns. Tables 1 and 2 provide pedestrians average

walking velocity in Crowds and SDD datasets respectively.

We calculated the average velocities as L2 displacements

along with trajectory steps over the frame rate. Velocity

average can hint on the nature and intensity of social inter-

actions which distract pedestrians and therefore make them

walk slower.

1. Stanford Drone Dataset (SDD) [22] is a hetero-

geneous dataset, containing different categories in-

cluding pedestrians, bikers, cyclists, and skateboard-

ers. While pedestrians and bicyclists are prevalently

present in every scene, the other categories exhibit

faster motion, and this poses a stronger influence on

walking pedestrians. We choose to include this dataset

in our evaluation as it is more challenging for modeling

the correlation between different dynamic patterns.

2. Crowds [18] is a widely tested dataset, containing 8

videos taken from 4 urban scenes, ETH, Hotel, Zara

and UCY, making over 6K annotated frames and 1530

pedestrians that have different styles of walking and

interactions with each other.

Table 1, illustrates that the dataset embraces different

ranges of walking velocity profiles ranging from

[0.5 – 2.5] m/s on average. Unlike Table 2 which

shows that for subsets like Gates, Death circle, and

Hyang pedestrians share similar walking velocities

around 1.0 m/s.

4.2. Training Setup

We run the network based on Mean Squared Error (MSE)

loss function Eq. (17). MSE provides the advantage of

squaring L2 errors, which greatly penalizes estimation er-

rors and therefore leads to faster convergence in streamed

and semi-streamed models, where frequent updates create

variations in loss curve, such that it ends up converging to a

high error value. In our models, mini-batch training strug-

gles to produce a smooth and convex loss curve. However,

we ensure that the model converges to the lowest local min-

imum point possible.

L =

∑N

i=1 ||X
∗
i −Xi||

2
2

N
, (17)

For hyper-parameters settings, we set 1e-05 for the learn-

ing rate, which is smaller than other baselines [1] by two

magnitudes. We also set gradient clipping at 10 which is

scheduled at every batch. Embedding size is 128 per node

vector and 256 per edge vector. The dropout parameter is

1e-04, and the lambda regularization parameter is 5e-04.

The batch size is 1, trajectory observation length is 8 steps

and prediction length is 12 steps. We re-evaluated [8] model

on our observation and prediction lengths, however, we re-

ferred to [27, 1] reported evaluation results due to lack of

available implementation.

All the weight matrices and bias vectors used in the

multi-stacked cell and linear layers are initialized accord-

ing to a uniform distribution of range [-0.008, 0.008] which

is scaled by feature embedding size of 128. The weight de-

cay rate is 1e-4. The number of layers in a multi-stacked

cell is 4 and so is the batch size.

We also reset the graph every 100 batches by deleting

nodes and edges of pedestrians that no longer exist in the

scene. This is to maintain the running time and training

parameters size.

4.3. Evaluation Metrics

We calculate Euclidean L2 norms to measure displace-

ments between ground-truth and predicted trajectories. Our

evaluations are based on the following two metrics:

1. Average Displacement Error (ADE) which is the aver-

age L2 displacements along all predicted steps:

E =

√∑N

i=1

∑l

j=1(X̃
j
i −X

j
i )

2

N ∗ l
, (18)
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2. Final Displacement Error (FDE) which is the L2 dis-

placements at the final point:

E =

√∑N

i=1(X̃i −Xi)2

N
. (19)

Other methods such as [1, 13] calculate root square for each

predicted trajectory. In our case, we calculate the square

root of all Euclidean errors once all the predictions are gen-

erated. We noticed that this calculation shows statistical sta-

bility. It is well-representative of average errors over gen-

erated predictions and does not get biased by the drastic,

sudden variances in the Euclidean error range, due to the

instability induced by the gated models in end-to-end se-

quence learning, for encoders like GRU or LSTM.

4.4. Baselines

1. Structural-RNN [13] is a spatio-temporal LSTM graph

method. They illustrate their graph in several interac-

tive contexts for activity forecasting, such as the in-

teraction between human and static objects. However,

they preserve the bipartiteness property for fixed rela-

tionships between the nodes. In crowd modeling, ar-

bitrary graphs can be better at generalizing over the

exchanged influence between pedestrians.

2. S-LSTM [1] dedicates LSTM for every pedestrian, and

pool their states before predicting future steps. Their

method only combines features of pedestrians who are

found occupants of common neighborhood space. The

neighborhood and occupancy grid sizes are set empir-

ically for attaining the best results over ETH and UCY

datasets.

3. S-GAN [8] also dedicates LSTM for every pedes-

trian, deployed within Encoder-Decoder architecture

for generating future predictions using GAN network.

Each pedestrian gets multiple sampled trajectories, and

eventually, the least erroneous sample is selected for

presentation. The authors publish their code so we

retrained their model with a non-variational setting to

compare with our work.

4. Desire [16] is an RNN-based variational model for pre-

dicting objects trajectories in heterogeneous interac-

tions. They collect multimodal data streams, includ-

ing static and dynamic features in a centralized gated

encoder-decoder unit. Their model is conditioned over

an unknown distribution for learning its parameters.

5. GRE Gated Relation Encoder [6], a recent work in-

spired by [25] generalized relational inference net-

work. It is an LSTM-based method for predicting

pedestrians social and contextual relationships. From

the relational perspective, this method tracks the rela-

tionship importance by encoding correlations between

visual motion features and static environment features

for all possible pairings of objects and selects the rela-

tions with the highest potential.

6. Social Attention S-Attn is a graph-based full-

connectivity method that assesses the influence of so-

cial interactions with weighted edges. However, they

grow edges constantly between all pedestrians.

4.5. Quantitative Results

It is observed from the quantitative ADE results in Ta-

ble 3 that outperforming results were achieved in MSGTV

over ETH, Hotel and UCY sets. At the second place comes,

MTV and MTV P , which present comparable performance,

yet they produce the highest prediction errors in Univ sub-

set. They omit relationships modeling from the graph, re-

alizing a use-case of the stacked central GRUs as explained

earlier by Section 3.3. The average pooling layer in MTV P

model works on global social interactions. Unlike social

pooling in [1, 26, 10], our social pooling layer combines

nodes future representations as shown in Figure 2. This is a

new order of pooling deployment in deep networks, as the

social pooling of existing states, enables the model to im-

plicitly understand neighborhood impact on a given pedes-

trian. Predictions pooling advances the model understand-

ing of interaction future evolution, and take feedback from

the predicted interactions.

At the bottom line, all of our models outperform the

baseline models due to the usage of the stacked gated mem-

ory cells. The improvement is achieved due to the inclu-

sion of walking velocity for every pedestrian as well as

predicting future velocity to estimate relative future loca-

tions concerning the previous time-step and velocity. The

self-growing mechanism provides an advantage above the

basic model MTV , and the fully-connected graph models

[13], [27] in which the graph connections grow densely

with time. Overloading the graph with node-wise connec-

tions may include unrelated nodes together and complicate

the graph structure. Likewise, neglecting the social factors

would limit the model from learning the collision avoidance

pattern conducted naturally among pedestrians.

Compared to Crowds dataset, Stanford Dataset includes

a more challenging setting, as it has objects with signifi-

cantly variant dynamics. Each object conducts different pat-

terns of dynamics. Hence, a prediction algorithm ought to

adapt to these variations in one scene. For example, pedes-

trians are walking while cyclists are making displacements

at a faster rate, and potentially both pedestrian and cyclist

meet at the same scene zone. The model tasks here are un-

derstanding each object motion and the variation in rela-
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tionships between two different objects to make plausible

predictions.

We conducted a short ablation study to discover the im-

pact of changing observation to prediction lengths ratio. We

evaluated S-GAN and MSGTV models observing 4 steps

and predicting the next 8 steps as shown in Table 4. It man-

ifests the effect of increasing the gap between observation

and prediction lengths, which explains why both models

performed worse than they did when observing 8 steps and

predicting 12 steps as of Table 3.

Table 5 shows the best prediction results at 1/5th of im-

age resolution. We pick DESIRE-SI-IT4 from [16] which

iterates over the data sequence 4 times. Both [16] and [6]

embeds visual scene semantics besides the social interac-

tions. We acknowledge the impact of including scene fea-

tures in the literature, yet our proposed models focus on

encoding pedestrian dynamics and inferring their potential

relationships. Both GRE [6] and MSGTV are interaction-

aware frameworks that infer relationships using gated mod-

els.

Our model dedicates two structured GRU cells for learn-

ing the correlation between pedestrians displacements and

velocities, respectively. Since we sum predicted motion fea-

tures and feed them again into GRU, this expands GRU

spatio-temporal learning into the future besides its learn-

ing from past features which is useful for improving predic-

tions iteratively. MSGTV produced higher average errors

than MTV .

This is due to treating social interaction in isolation from

environment static context. Besides, some pedestrians be-

havior is challenging as they are inconsiderate of the social

norms, so their behavior counters the interactions happen-

ing in the context. This situation challenges the interaction-

oriented modeling, i.e. MSGTV , as pedestrians appear less

interactive with each other.

The best result for MTV is found under the BookStore

subset (3.45 pixels), while MSGTV achieves the best re-

sults in the DeathCircle (3.55 pixels) scene and Gates (5.72

pixels).

4.6. Qualitative Analysis

Figure 3 contains snapshots of Self-Growing mecha-

nism performance when predicting pedestrians trajectories

in Zara dataset.

Figure 3(a) illustrates a scene where the model slows

down the trajectories as it anticipates a potential influence

between pedestrians facing each other and directly reflects

that on future pedestrian velocity. The motion direction of

the predicted trajectory also manifests the understanding of

collision-avoidance norm.

Existing literature addressed the LSTM tendency toward

trajectory overestimation, where pedestrians are predicted

with faster walking speed in recurrent models. Figure

(a)

(b)

Figure 3. Illustration of MSGTV estimation of interactions in

Crowd dataset. The dotted spline shows ground-truth trajectory.

Arrows indicate predicted trajectory direction in collision avoid-

ance situation.

3(b) shows velocity range estimation through circles when

pedestrians are facing each other, such that the velocity ex-

tent is not exceeding the personal space of pedestrians. This

is due to the benefit of understanding how people walk in

relative to each other.

4.7. Running time

Pedestrian count can be used as a factor to examine the

algorithm efficiency boundaries. In general, the more ob-

jects are observed, the longer a forward pass takes. We ex-

amined 3 of our proposed models over 20 runs for scenes

with 20, 40, and above 60 pedestrians, respectively. Re-

sults are displayed in Table 6, and illustrate the running

time per frame along with pedestrians counts in the graph.

For 20 pedestrians, our models are nearly comparable with

the SGAN model. Knowing that MTV P pools at each time

step and SGAN is set to generate a single trajectory sample,

our models pace the performance downgrade. The running

time increases by up to 0.5x, i.e. time taken in MSGTV for

40 pedestrians versus 60 pedestrians and more. Whereas,

in SGAN, the running time inclines faster as pedestrians

count increases. To support this argument, we synthesized

a crowd of 74 pedestrians and ran both MTV P and SGAN,
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Model ETH Hotel Zara1 Zara2 Zara3 UNIV AVG

Structural-RNN [13] 2.72/4.60 0.85/1.35 1.05/2.20 1.60/3.50 – 1.45/3.00 1.53/ 2.93

S-LSTM [1] 1.09/2.35 0.79/1.76 0.47/1.00 0.56/1.17 – 0.67/1.40 0.91/1.54

S-GAN [8] 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 – 0.60/1.26 0.58/1.18

S-Attn [27] 0.39/3.74 0.29/2.64 0.20/0.52 0.30/2.13 – 0.33/3.92 0.30/2.59

MTV 0.04/0.14 0.04/0.15 0.05/0.25 0.08/0.31 0.08/0.29 0.04/0.20 0.06/0.22

MTV P 0.04/0.15 0.04/0.15 0.06/0.26 0.08/0.31 0.08/0.31 0.04/0.20 0.06/0.23

MSGTV 0.04/0.15 0.04/0.15 0.05/0.26 0.07/0.30 0.08/0.30 0.04/0.15 0.05/0.21

Table 3. Prediction errors (meters) over Crowds dataset Results Format: ADE/FDE. Each pedestrian is observed for 8 frames (3.2 seconds)

and predicted for future 12 steps (4.8) seconds. The dash (–) replaces missing results for the baseline methods

Model ETH Hotel Zara1 Zara2 Zara3 UNIV AVG

S-GAN [8] 0.89/1.60 0.69/0.93 0.43/1.00 0.43/0.89 – 0.50/1.07 0.59/1.10

MSGTV 0.05/0.22 0.05/0.23 0.10/0.30 0.11/0.35 0.12/0.38 0.16/0.46 0.10/0.32

Table 4. Empirical analysis of observation/prediction lengths gap. Prediction errors (meters) over Crowds dataset given that observation

length is changed to 4 steps (1.6 seconds) and prediction length is 8 steps (3.2 seconds).

Model Best AVG

Desire-SI-IT4 [16] 7.55 –

S-LSTM 9.85 –

GRE-MC-5 [6] 5.99 –

MTV 1.22 1.78/4.72

MSGTV 1.26 6.43/14.85

Table 5. Comparing best results achieved in DESIRE model with

our models at 1/5 resolution. MTV and MSGTV illustrates the

lowest FDE for length of 3.2 seconds while [16] displays the best

predictions on their model for length of 3 seconds.

Model c=20 c=40 c>60

MTV 0.2456 0.3619 0.5010

MTV P 0.2590 0.3560 0.4895

MSGTV 0.2314 0.3520 0.7568

SGAN 0.2965 0.5895 1.0525

Table 6. Running time in seconds for batch size = 1. c denotes

pedestrians count.

where we could observe that running cost escalates at larger

crowds. This situation occurred due to SGAN pooling the

features of all the possible pairs of pedestrians, which en-

larges the hidden space quickly.

Edge Growth Rate According to a fully-connected

graph, each node has (n− 1) edges, where n is the number

of nodes. The complete graph ends up with n2 − n edges.

Theoretically, MSGTV worst-case scenario might reach a

polynomial of the second degree. Through experiment, our

model grows edges linearly, due to the usage of softmax

for evaluating a relationship existence based on the relative

distances.

5. Conclusion

In this paper, we proposed an approach for growing spa-

tial relationships in graph-structured networks for modeling

pedestrian motion and interactions. This approach is con-

sidered an approximation of the ground-truth interactions,

such that anticipated relations between pedestrians rely on

a data-driven criterion that is stemmed from their velocities

and relative distances along time. The presence of links in

the graph is variant, resulting in spatially dynamic routes

that carry the hidden representation between the nodes. Al-

though our method generates relationships with different

degrees of confidence, it does not further exploit this infor-

mation for weighting the impact of different pedestrians. In

future work, we plan to develop a weighting mechanism to

evaluate the influence and accordingly improve the pedes-

trians associations decision.
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