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Abstract

We present a novel approach for inspecting variable data

prints (VDP) with an ultra-low false alarm rate (0.005%)

and potential applicability to other real-world problems.

The system is based on a comparison between two images:

a reference image and an image captured by low-cost scan-

ners. The comparison task is challenging as low-cost imag-

ing systems create artifacts that may erroneously be clas-

sified as true (genuine) defects. To address this challenge

we introduce two new fusion methods, for change detec-

tion applications, which are both fast and efficient. The

first is an early fusion method that combines the two in-

put images into a single pseudo-color image. The sec-

ond, called Change-Detection Single Shot Detector (CD-

SSD) leverages the SSD by fusing features in the middle of

the network. We demonstrate the effectiveness of the pro-

posed deep learning-based approach with a large dataset

from real-world printing scenarios. Finally, we evaluate

our models on a different domain of aerial imagery change

detection (AICD). Our best method clearly outperforms the

state-of-the-art baseline on this dataset.

1. Introduction

Print defects detection is a necessary step to ensure print-

ing quality. Although manual human inspections are still

being employed, automated visual inspection has the po-

tential to replace manual labor due to its accuracy, speed,

relative ease of implementation and reduced costs. The key

idea in print inspection systems is detecting genuine dif-

ferences (changes) between a pair of images: a reference

image and its corresponding printed (and scanned) image.

Variable data printing (VDP) is a form of digital print-

ing in which elements such as text, graphics, and images

may be changed from one printed piece to the next without

stopping or slowing down the printing process [38]. VDP

inspection is a challenging task as illustrated in Fig. 1 be-

cause ‘every page is different’ (e.g., photos) and thus there

is high variability in both defect types and image types. For

example, Fig. 1(b) illustrates a complex defect caused by

Figure 1. Examples of the main challenges in our system: (a) a

small defect with respect to the size of the image, (b) a complex

defect with high variability and (c) scanner artifacts that may in-

crease the false alarm rate.

erroneously printing the previous image on top of the cur-

rent image (‘memory’ defect). Such defect (change) is diffi-

cult to define a priori as there is no limitation on the content

of each printed image. Also, there are changes of interest

called semantic or structural changes (e.g., an appearance

of defects as shown in Fig. 1(a) and 1(b)) but also nui-

sance changes which are called noisy changes. The noisy

changes are caused by multiple variables like changes in

illumination, misregistration and low-cost scanner artifacts

(Fig. 1(c)) that can be hard to isolate from the structural

changes. Any detection system must be able to robustly dif-

ferentiate between real defects (semantic/structural changes

we care about) and noise (e.g., due to scanner artifacts).

A defect detection process can be framed as either an

object detection task or a segmentation task [10, 48]. Fully

convolutional networks (FCN) have dominated the recent

progress [10, 41]. However, the vast majority of deep learn-

ing (DL) based inspection systems take as input only the

potential defective image without the corresponding refer-

ence image [7, 10, 22, 27, 41]. Single-frame object detec-

tion methods such as Faster R-CNN [35] and the single shot

detector (SSD) [23] are commonly used for detection tasks

while Mask-RCNN [14], U-net [36] (inspired) or DeepLab

3541



v3+ [15] networks are used for semantic/instance segmen-

tation (prediction at the pixel level). There is no need for a

reference image in such systems as the focus is on detect-

ing specific defect types per application. It is also assumed

that the defect instances in each class are quite homoge-

neous (including the background on which each defect is

overlaid). Thus, each method has its own characteristics

that only respond to specific kinds of features. This is in

contrast to the VDP inspection system that should detect a

wide range of defect types (instead of limited and specific

‘changes’) that do not necessarily appear in the training set.

In addition, each print is potentially different; thus, a refer-

ence image must be generated for each.

Given a pair of images, change detection is the most re-

lated domain for VDP inspection systems. Such techniques

[8, 11, 13, 16, 21, 24, 33, 45, 47, 48, 51] use an aligned im-

age pair as an input and return either a pixel-wise classifica-

tion map of the structural changes (semantic segmentation)

or a bounding box around each changed region. They can

be classified into three categories depending on the stage at

which the two images are fused [8, 13, 24, 52]: pixel level

(early fusion), feature level (medium fusion) and decision

level (late fusion).

In this paper, we propose a novel early fusion method,

which is both fast and efficient. It significantly outperforms

the common baselines of combining the two RGB images

into a single image via concatenation (along the channel di-

mension) or by a difference [8, 47, 49].

We also propose a novel feature level (medium) fusion

method for detecting genuine differences between two im-

ages using a variant of the SSD. It is based on an efficient

Siamese architecture that merges the data in a way that is the

most appropriate for our application. We show that it sig-

nificantly outperforms the recently proposed Siamese SSD

architecture by V. Osin et al. [30].

Our main contributions are summarized as follows :

• To the best of our knowledge, we are the first to intro-

duce an automated, end-to-end, real-time (production

speed - at least one page per second), industrial and

low-cost inspection system for VDP, while still main-

taining low false alarm and miss detect rates.

• We propose a novel early fusion method, for change

detection applications, which is both fast and efficient.

It is based on combining the two input RGB images

(reference and scanned images in our application) into

a single pseudo-color image that enhances the seman-

tic changes while preserving the essential image pair

information. This image can be used as an input to

any single-frame object detection methods (e.g., SSD)

including pre-trained models (transfer learning).

• We present a novel Siamese network architecture,

called Change-Detection SSD (CD-SSD), for detect-

ing semantic changes between two images. It is based

on a network design that leverages the SSD efficiently

by fusing features in the middle of the network. As far

as we know, this is the first time a SSD based network

has been applied for change detection applications.

• Our methods outperform the baseline methods by a

large margin when evaluated on a large dataset of real

defects from real-world printing scenarios. We also

demonstrate the potential of applying our methods, in

other areas, by training each on the publicly available

Aerial Imagery Change Detection (AICD) [3] dataset.

Our best model (CD-SSD) clearly outperforms the

state-of-the-art solution on this dataset.

2. Related Work

Classical computer vision based techniques. Tradi-

tional computer vision-based inspection systems have been

relatively well-studied. These systems occur in many in-

dustrial applications [19, 29, 42] like printed circuit boards,

textile and texture inspection. One popular method is sub-

tracting a reference image from a potentially defective im-

age and then thresholding the result. Although this method

is fast, it tends to be very sensitive to noisy changes (such

as misregistration errors). Thus, it does not work well with-

out significant pre/post-processing [33]. The same is true

when using more advanced ‘classical’ image quality metrics

such as the structural similarity index measure (SSIM) [46]

or even DL based image quality measures [2]. To address

these limitations, some methods have proposed to extract

features from each defect candidate. The features are then

put into a classifier that is trained in advance to determine

whether it contains a defect or not. Hand-crafted features

[19, 31] or DL based features [40] are usually used for this

task. However, the extracted features tend to be application

specific and don’t solve the defect localization problem.

Single frame (no-reference) DL based networks. With

the recent success of deep neural networks on generic ob-

ject detection (SSD, Faster R-CNN, etc.) and segmentation

(Mask-RCNN, U-net, etc.) networks it becomes very natu-

ral to use them as a basis for fast and accurate defect detec-

tion systems [26, 32]. Application examples are printed cir-

cuit boards [7], railway track inspection [27], metallic sur-

face detection [41], sealing surface inspection [22] and cast-

ing defects in X-ray images [10]. However, such methods

are not applicable to the case of VDP because they are fo-

cused on detecting application-specific defects, whereas the

VDP problem requires a ’general’ defect detector that can

be extended well to new (previously unseen) defect types

Change detection using semantic segmentation.

Much research has been done in the field of change detec-

tion. The core idea in DL-based methods is to fuse the two

images [8, 13, 24, 52] using early, medium, or late fusion
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and then use a FCN to predict per-pixel segmentation map.

In the case of early fusion, it is common to concatenate

the two RGB images into a single 6-channel image which

is used as an input to a FCN [8, 11, 16, 47]. However, as

the filters of the first convolutional layer are modified (due

to using 6 channels instead of 3) single frame pre-trained

models cannot be reused directly. A workaround is replicat-

ing the weights of the first layer along the channel dimen-

sion (similarly to bootstrapping 3D filters from 2D filters

[5]) and use it as an initialization method. It requires one

to fine-tune the lowest layer (or few lowest layers) in the

model which is risky in case of a small dataset. A differ-

ence between the two images [47] is another option, but it

is more sensitive to noise and misregistration errors.

Different from early fusion, middle fusion is based on

merging middle-level convolutional features [8, 13, 30, 45,

51]. It usually provides better results as it fuses information

at a stage where the spatial features are less relevant. How-

ever, it is unclear a priori which architecture of the fusion

model could get the best results for a specific application

[49]. This includes the layers to be merged and the data

fusion functions (concatenation, difference, max, etc.).

Decision level fusion follows a two-stage approach [24,

52] - each image is first passed independently through a

FCN for predicting a binary segmentation mask. Then the

binary masks are subtracted. However, it assumes low vari-

ability between instances of the same class.

The main disadvantage of semantic segmentation net-

works is a high computational cost (mainly for large im-

ages). The need for a large amount of per-pixel labeled data

is another disadvantage. Some methods alleviate this prob-

lem by using lightweight network architectures [11, 28], but

the accuracy is usually lower. Also, these networks are typ-

ically trained with the cross-entropy loss function [11], or

the contrastive loss function [13] that essentially makes the

network learn a classifier for each pixel (and summing up

the loss). This makes it hard to train the network when the

objects to detect are small [25, 50]. Finally, the training and

evaluation are usually done on datasets with limited types

of changes (appearing/disappearing of buildings, construc-

tion areas, vehicles, vegetation, etc.). Such task-specific

networks may not generalize well to ‘general’ change de-

tection applications like VDP.

Multi-frame object detection networks. Object detec-

tion is an efficient and faster alternative to semantic segmen-

tation. In the case when multiple frames are available, the

additional temporal/depth information can be used for im-

proving detection accuracy. There are many different ways

to model motion cues, including 3D convolutional neural

networks or recurrent neural networks [1, 4, 5, 9]. Two-

stream based networks are the most common approach [9].

It consists of a spatial network that models appearance with

RGB frames as an input and a temporal network that models

motion (optical flow). Then, decision level fusion, which

works on the bounding-box level is commonly used. How-

ever, the focus of such methods is not on detecting changes

between two frames but rather on improving per-object de-

tection accuracy (compared to single-frame models), object

tracking and action recognition.

Recently, V. Osin et al. [30] extended the SSD to support

multi-spectral data (visible and infra-red images). It has a

Siamese network architecture that fuses the two branches

at each detection layer of the SSD. The data fusion func-

tion is a concatenation followed by 1×1 convolution filters.

We show later (Section 5) that for VDP, it falls below our

proposed Change-Detection SSD network (CD-SSD) by a

large margin (in terms of accuracy).

J. Wu et al. [48] proposed to consider the differences

between two (book cover) images (captured with a high-

resolution camera) as the objects to detect. The two RGB

images are concatenated (early fusion) into a single 6-

channel image. Then, Faster R-CNN [35] is used to spot

the difference between them. We show later (Section 5)

that our novel early fusion method (‘Pseudo-color’) signifi-

cantly outperforms it.

3. Legacy Inspection System

Our first-generation system was designed using classical

computer vision based techniques. A block diagram of the

system is shown in Fig. 2. It is based on [44] and contains

the following stages:

3.1. Pre­Processing

Creating a reference image (RGB). The reference and

scanned images are in different color spaces. A lookup table

is used to convert the reference image from CMYK to RGB

(scanner) color space. After this stage, the two images are

almost color matched and in the same RGB color space.

Page corners detection. Before applying the registra-

tion filter, the paper image should be cropped from the

scanned image which contains scanner background (stripes

pattern of the conveyor belt – see Fig. 2) followed by ro-

tating it into zero angle orientation. The page’s corners are

detected by first identifying discontinuities in the standard

deviations of gray levels along rows and columns in the

scanned image. Then the Harris corner detector [6] is ap-

plied but only in a small region around each discontinuity.

3.2. Registration And Color Correction

The reference image should be aligned on a pixel-by-

pixel basis with respect to the scanned image. This is be-

cause paper movement causes local and global spatial dis-

tortions. A global template matching (block matching) [18]

for coarse alignment between the images is followed by

a local template matching for fixing the local movements.
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Figure 2. A block diagram of the legacy system. The two input images (reference image and its printed and scanned version) are registered

and color corrected before comparing them using the SSIM. False alarms can be reduced by applying a binary classifier (true/false defect)

using hand-crafted/deep learning (DL) based features.

Histogram match [34] is used for reducing color inconsis-

tencies (caused during scanning) between the two images.

3.3. Image Comparison (SSIM)

The registered images are compared using the SSIM

metric of Z. Wang et al. [46], patch versus patch. Each

patch in the scanned image receives a score that represents

its similarity to the reference patch. In order to improve

the detection rate of mainly large defects and increase ro-

bustness to small misregistration errors, the SSIM is also

applied on several down-sampled versions of the scanned

and reference images (multi-scale SSIM).

3.4. Analysis

Every defect that is found in the SSIM map (after thresh-

olding) is analyzed, to reduce false alarms caused by small

misalignment errors or scanner artifacts such as: moiré

(under-sampling of fast color variation- example in Fig.

1(c)), dust (dirty scanner), noise and illumination inconsis-

tency (un-calibrated scanner). This was done by extract-

ing simple shape and texture features (size, contrast, etc.)

and filtering the irrelevant defects using empirical thresh-

olds (e.g., minimal defect size is about 1 mm squared).

3.5. Output

In order to get the full defect area, region growing [34]

is applied to each detected defect. Reference and scanned

images are presented to the user with red rectangles around

each defect. Binary DL based classification network (e.g.,

VGG16), pre-trained on the ImageNet dataset, may be ap-

plied on each defect candidate for reducing false alarms.

4. Proposed Method

Inspired by the recent success of deep convolutional neu-

ral networks in the field of object detection, we explore

two options to leverage it for detecting genuine differences

(print defects) between two images. A block diagram of

the proposed DL based system is presented in Fig. 3. It

comprises the same pre-processing module (Section 3.1) as

the legacy system. Then, FlowNet2 [17] is used for opti-

cal flow computation (registration). It is faster and more

accurate (maximum error - few pixels) compared to lo-

cal template matching (Section 3.2). The printed page is

stretched randomly (and locally) due to the media transport

mechanism of our system, which is complex and non-ideal.

Therefore a non-global transformation (like FlowNet2 or

PWC [39]) is needed to estimate local movements between

the scanned and reference images. Finally, the two im-

ages are fused either using a novel early fusion method

called Pseudo-color SSD or a middle-fusion method called

Change-Detection SSD (CD-SSD). Both are described next.

Meaningful (structural) differences are considered as the

objects to detect. Noisy changes (color deviations, scanner

artifacts, etc.) are excluded automatically in the training due

to the hard-negative mining employed in the SSD. The re-

sultant network learns only the real defects characteristics.

4.1. Pseudo­Color SSD

Single-frame object detection models (e.g., SSD) expect

one input image with three channels while we have a to-

tal of six channels (three from the scanned image and three

from the reference image). A possible solution is to com-

bine the two images (scanned and reference) into a single

image (early fusion). Fig. 4 presents our proposed early

fusion method. The reference and scanned images are com-

pressed from three channels to one by converting each to

a gray-scale image. Then, the scanned gray-scale image is

mapped to the green channel of the combined image. Sim-

ilarly, the reference gray-scale image is mapped to the red

and blue channels of the combined image. Regions in the

combined image where the reference and scanned images

are identical will appear in grayscale. In contrast, regions in

the combined image where the reference image differs from

the scanned image will have a green or magenta appearance.

In this way, the combined image may be considered to be a
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Figure 3. A block diagram of the proposed deep learning (DL) based inspection system. Only the pre-processing module is the same as the

legacy system. The registration is based on FlowNet2 and the detection on novel single shot detector (SSD) based methods (Section 4).

Figure 4. The proposed early fusion method. The reference and

scanned images are combined into a single pseudo-color image

which is used as an input to the SSD. Grayscale (in the pseudo-

color image) denotes no difference between the two images while

green or magenta colors denote a difference.

pseudo-color image, as the true (i.e., RGB) colors of the ref-

erence/scanned image are not apparent. The pseudo-color

image can be used as an input to the SSD. The intuition is

as follows:

• In case of VDP, what constitutes a real defect com-

pared to a false alarm is mainly a local change in the

structure of the scene and not its color (as it may appear

in various colors). Such structural/semantic changes

are clearly evident in the grayscale version of the im-

ages (except very low contrast differences).

• Concatenating the two gray-scale images (along the

channel dimension of the pseudo-color image) is more

robust to misregistration errors compared to taking the

difference between them.

• The human eye is more sensitive to the green color.

This means better enhancement of defects when map-

ping the scanned image (gray-scale) into the green-

channel of the pseudo-color image. Note that there

is no need, in our system, to detect defects that are

not visible to the human’s eyes (e.g., due to the back-

ground on which each defect is overlaid).

• Replicating the reference image (gray-scale) results in

a 3-channel image (two from the reference and one

from the scanned). This pseudo-color image has many

features that qualitatively appear in standard RGB im-

ages, such as edges and corners (see Figs. 4 and 7).

Therefore, using single-frame pre-trained models (e.g.,

on the ImageNet dataset) is possible in this approach.

This is in contrast to the common early fusion (con-

catenate) method of using a 6-channel image.

4.2. Change­Detection SSD (CD­SSD)

The architecture of CD-SSD is shown in Fig. 5. It

has two main components: a feature extractor network

(VGG16) and a detection ‘head’ consisting of convolutional

layers. The main modification we make to the SSD512 ar-

chitecture is adding two data fusion (concatenation) layers

after conv4 3 and pool 5 layers of VGG16 (the weights of

the two branches are shared before the fusion layers). The

output of the data fusion layer after conv4 3 is fed into

the first detection layer of the SSD. The architecture after

pool 5 fusion layer is the same as a standard single-frame

SSD512 model. The intuition is as follows:

• The first fusion is at conv4 3 layer (and not before)

since it has a relatively large receptive field which is

more robust to misregistration errors.

• We use two fusion layers (instead of one) in order

to exploit ImageNet pre-trained weights until pool 5

layer of VGG16. This is in contrast to V. Osin et al.

[30] which use seven fusion layers in case of SSD512

(one for each detection layer).

• Feature maps concatenation is used instead of convo-

lution fusion [30] which adds 1×1 convolution filters

on top of it (for dimensionality reduction). This is be-

cause 1×1 convolutions are less robust to misregistra-
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Figure 5. Illustration of the proposed Change-Detection SSD (CD-SSD) architecture (middle fusion). The two input images are fused twice

(using a concatenation) after conv4 3 and pool 5 layers of VGG16. Next, the architecture is the same as the single frame SSD (512 model).

tion errors and also may lose some data (the same is

true for fusion using a difference).

5. Experiments

5.1. Datasets

Two datasets from real-world printing scenarios were

used to train/evaluate our models. The datasets are an order

of magnitude larger than existing change-detection datasets

and much more challenging. This is due to high variability

in image/defect types (size, shape, contrast, etc.), illumina-

tion changes, misregistration and low-cost scanner artifacts.

Fig. 6 contains examples of some defects from the datasets,

cropped from the full scanned images (which contain 500

× 1250 pixels).

Figure 6. Examples of some defects from our datasets : (a) band,

(b) streak, (c) large drip, (d) small drip, (e) paper wrinkle, (f) ran-

dom spots, (g) paper cut and (h) dent.

Real defects dataset (labeled) - A dataset of 20,000 im-

age pairs with 40,000 real defects. The labeling, meaning

drawing bounding boxes around the true defects, was done

using the LabelImg tool [43]. The dataset was divided into

training and validation sets using a 4-fold cross-validation.

Real defects test-set (unlabeled) - A test set of 80,000 im-

age pairs. Some of the images are defect free, and some

may contain more than one defect. The set is unlabeled

which means that we can measure only the false alarm rate.

False alarm rate is most important in high speed press ap-

plication, since high rates of false alarm (even 0.1%) will

become annoying to the operator/user causing them to ig-

nore or disable the inspection system.

5.2. Evaluation Metrics

False alarm rate (FPR) and miss detect rate (FNR)

are used to evaluate the accuracy of each method:

FPR =
FP

TP + FP
× 100 [%] (1)

FNR =
FN

TP + FN
× 100 [%] (2)

where FN are the false negatives and FP are the false pos-

itives. Detection is a true positive (TP) if the Intersection

Over Union (IOU) with the ground-truth box is above 0.25.

5.3. Implementation Details

The training was done with the real defects (labeled)

dataset, Adam optimizer, a learning rate of 0.0001 with lin-

ear decay rate [37], 200 epochs, batch size of 8, one class

(real defects), MS COCO scales and input images resized to

512×512 pixels. The other parameters were set to their de-

fault values according to the original SSD paper [23]. The

layers of the base network (VGG16 until pool 5 layer) were

frozen during the first 100 epochs followed by unfreezing

them in the next 100 epochs. They were initialized with

ImageNet pre-trained weights, while the rest of the layers

were trained from scratch (Xavier initialization). The code

is based on the publicly available Keras SSD512 implemen-

tation [12]. We performed a 4-fold cross-validation and av-

eraged the results. The following on the fly augmentations

were employed (randomly): horizontal/vertical flips, color

channels swap and contrast/brightness stretch. NVIDIA

Quadro P5000 GPU was used for training and testing.

5.4. Comparative Analysis

We compare our methods (Section 4) with various base-

lines which include: early fusion using a concatenation or
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Method False Alarms Miss Detect Execution time Number of

(%) (%) per sample (sec) trainable parameters (M)

Legacy 0.5 30 0.90 0

Legacy + Classification (VGG16) 0.050 32 1.00 134.265

FlowNet2 + Pseudo-color SSD (ours) 0.010 15 0.25 24.386

FlowNet2 + CD-SSD (ours) 0.005 10 0.30 29.216

FlowNet2 + Concatenate + SSD 0.020 35 0.25 24.388

FlowNet2 + Multi-spectral SSD [30] 0.015 23 0.30 28.059

FlowNet2 + DIFF + SSD 30 22 0.25 24.386

SSD (scanned image) [23] 55 48 0.07 24.386

Table 1. Detection results evaluated on the real defects (labeled) dataset of 40,000 defects using a 4-fold cross-validation. We compare our

detection models (lines 1-4) with four baseline methods (lines 5-8).

Figure 7. Some qualitative results (red bounding boxes around the defects) from one of the validation sets. One can note that our methods

perform well on defects with diverse properties (size, shape, contrast, number of defects in the page, etc.) compared to the baseline methods.

Method False Alarms

(%)

Legacy 0.5

Legacy + Classification (VGG16) 0.1

FlowNet2 + Pseudo-color SSD (ours) 0.010

FlowNet2 + CD-SSD (ours) 0.005

FlowNet2 + Concatenate + SSD 0.025

FlowNet2 + Multi-spectral SSD [30] 0.020

FlowNet2 + DIFF + SSD 35

SSD (scanned image) [23] 60

Table 2. Detection results (in terms of false alarms) evaluated on a

test set of 80,000 image pairs from real-world printing scenarios.

a difference (DIFF) between the two images, multi-spectral

SSD [30], single frame SSD [23] (only scanned image) and

our legacy system (Section 3). The training of all the SSD

based models follows the same procedure described above

(Section 5.3). In the case of an early fusion using concate-

nation, the filters of the first convolutional layer (6 channels)

were initialized by replicating ImageNet first layer (3 chan-

nels) weights along the channel dimension. This allows us-

ing transfer learning in this case. We did experiments with

many fusion options, but we report (in Table 1) only the

schemes which provided the best results. Object detection

based solutions are used as baselines and not semantic seg-

mentation (Section 2) based methods because most of them

are not fast enough for our application. In order to inspect

every printed page, the execution time of all the modules

(pre-processing, registration, detection) must be less than

one second (a typical production speed of a printing press).

Some methods use a large output stride (e.g., 16 in [15]) to

reduce the computational cost, but this means less detailed

segmentation map. It is a disadvantage in our case, as some

of the defects are very small (a few pixels- e.g., in Fig. 7).

State of the art multi-frame object detection methods use

more than two images (a video) as an input, so they are not

applicable in our case as well.

5.5. Results

For the real defects (labeled) dataset we report in Ta-

ble 1 the accuracy (FPR and FNR), execution time and the
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number of trainable parameters attained by each method.

It can be noted that: a) CD-SSD and Pseudo-color SSD

outperform all baselines by a large margin including the

legacy system (in terms of accuracy). b) CD-SSD is bet-

ter than ‘Pseudo-color’ but with a relatively small margin

(accuracy). This means that when performance limitations

(speed/memory) are an issue, the ‘Pseudo-color’ could be a

good alternative. It allows using any single-frame DL based

object detection model ‘as is’ including transfer learning.

Although theoretically, a CNN with more than three chan-

nels input (Table 1, line 5) could have learned a simi-

lar/better color encoding parameters it failed to do so in case

of data with high variability. c) Training the SSD without a

reference image (only scanned) or with a difference (DIFF)

between the two images completely failed (very high false

alarm rate). This is expected since in VDP each print is po-

tentially different; therefore, a reference image must be gen-

erated for each. Also, a difference is more sensitive to noise

(e.g., scanner artifacts) and misregistration errors. d) The

specific two-branch network design (CD-SSD vs. Multi-

-spectral SSD) affects the FPR and FNR significantly. It in-

cludes the number and location of the fusion layers and also

the fusion function (e.g., concatenate/convolution [30]).

Fig. 7 presents some examples (validation set). We can

see that our methods (in contrast to the best baselines) de-

tect well a wide variety of defect types with different size,

shape, contrast, etc. More examples are in the supplemen-

tary file. Fig. 8 contains examples that demonstrate the

importance of a reference image in VDP and also the chal-

lenges compared to other computer vision problems. The

defects (detected using CD-SSD) in Fig. 8(a) and 8(b) re-

semble true object parts, tie and door knob, respectively.

Therefore without a reference image, it would be very diffi-

cult to know whether these are defects or not. Some of the

defects are with low contrast (Fig. 8(c)), difficult to define

a priori (Fig. 8(d)), and should be detected while ignor-

ing scanner artifacts (Fig. 8(e)). Table 2 presents for each

method the false alarm rate (FPR) evaluated on the real de-

fects test set of 80,000 image pairs. The results are quite

similar to those in Table 1.

Figure 8. Examples of reference (first row) and scanned (second

row) patches: (a) a drip defect that looks like a tie, (b) a dent

defect that resembles a door knob, (c) a low contrast defect (drip),

(d) a complex defect type with high variability and (e) detection

of a real defect while ignoring scanner artifacts. All of the defects

(red bounding boxes around them) were detected using CD-SSD.

5.6. Results For Different Application

We trained our models (without the pre-processing mod-

ule - Section 3.1) on a different application: Aerial Imagery

Change Detection (AICD). The publicly available dataset

[3] contains 1,000 image pairs with variations between them

(an example is in Fig. 9). From Table 3, one can see that

our CD-SSD method outperforms the state-of-the-art solu-

tion on this dataset. Also, in contrast to our datasets, the

difference between the single-frame SSD baseline and the

other methods is quite small. This emphasizes the chal-

lenge of high variability in VDP compared to other change

detection applications. Further, as the ‘Pseudo-color’ lacks

the ‘true’ color information, it is somewhat inferior to the

single-frame baseline. It means that for data with low vari-

ability (contrary to VDP) color is an important feature.

Method Average Precision (%)

FlowNet2 + Pseudo-color SSD 96.07

S. H. Khan et al. [20] 97.30

FlowNet2 + CD-SSD 99.00

SSD (no reference image) [23] 97.01

Table 3. Detection results for the AICD dataset (test set: 30% of

the data). Our CD-SSD clearly outperforms the baseline networks.

Figure 9. Example of a reference image (a) from the AICD dataset

[3], a test image (c) with our CD-SSD detection (red bounding

box) and the thresholded image difference (b).

6. Conclusion

We presented a novel inspection system for Variable

Data Printing (VDP). It allows one to detect general pur-

pose defects (i.e., without assuming any specific type a pri-

ori) with a very low false alarm rate. This was achieved

by proposing two new fusion methods, which are both fast

and efficient. The first is an early fusion method called

‘Pseudo-color’ and the second is a middle fusion method

called Change-Detection Single Shot Detector (CD-SSD).

Experiments on large datasets from real-world printing sce-

narios demonstrate that both methods outperform the base-

lines by a large margin. Also, we trained our models on the

aerial imagery change detection (AICD) dataset, and CD-

SSD clearly outperforms the state-of-the-art baseline. Thus,

our solution can be applied to other change detection appli-

cations.
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