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Abstract

We introduce Probabilistic Object Detection, the task of

detecting objects in images and accurately quantifying the

spatial and semantic uncertainties of the detections. Given

the lack of methods capable of assessing such probabilis-

tic object detections, we present the new Probability-based

Detection Quality measure (PDQ). Unlike AP-based mea-

sures, PDQ has no arbitrary thresholds and rewards spa-

tial and label quality, and foreground/background separa-

tion quality while explicitly penalising false positive and

false negative detections. We contrast PDQ with existing

mAP and moLRP measures by evaluating state-of-the-art

detectors and a Bayesian object detector based on Monte

Carlo Dropout. Our experiments indicate that conventional

object detectors tend to be spatially overconfident and thus

perform poorly on the task of probabilistic object detection.

Our paper aims to encourage the development of new ob-

ject detection approaches that provide detections with accu-

rately estimated spatial and label uncertainties and are of

critical importance for deployment on robots and embodied

AI systems in the real world.

1. Introduction

Visual object detection provides answers to two ques-

tions: what is in an image and where is it? State-of-the-art

approaches that address this problem are based on deep con-

volutional neural networks (CNNs) that localise objects by

predicting a bounding box, and providing a class label with

a confidence score, or a full label distribution, for every de-

tected object in the image [27, 37, 38]. The ability of deep

CNNs to quantify epistemic and aleatoric uncertainty [19]

has recently been identified as paramount for deployment in

safety critical applications, where the perception and deci-

sion making of an agent has to be trusted [1, 19, 43, 49].

Figure 1: In contrast to conventional object detection, prob-

abilistic object detections express semantic and spatial un-

certainty. Our probabilistic object detections represent ob-

ject locations as probabilistic bounding boxes where corners

are modelled as 2D Gaussians (left) used to express a spatial

uncertainty over the pixels (centre). Semantic uncertainty is

represented as full label probability distributions (right).

While state-of-the-art object detectors have limited capabil-

ity to express epistemic and aleatoric uncertainty about the

class label through the confidence score or label distribution

[14, 15, 33, 44, 48], uncertainty about the spatial aspects of

the detection is currently not at all quantified. Furthermore,

none of the existing benchmarks using average precision

(AP) as the basis for their evaluation [7, 8, 20, 23, 26, 40]

can evaluate how well detectors quantify spatial and seman-

tic uncertainties.

We introduce Probabilistic Object Detection, the task

of detecting objects in images while accurately quantify-

ing the spatial and semantic uncertainties of the detections.

Probabilistic Object Detection poses a key challenges that

goes beyond the established conventional object detection:

the detector must quantify its spatial uncertainty by report-

ing probabilistic bounding boxes, where the box corners are

modelled as normally distributed. As illustrated in Figure 1,

this induces a spatial probability distribution over the image

for each detection. The detector must also reliably quan-

tify its semantic uncertainty by providing a full probability

distribution over the known classes for each detection.

To evaluate how well detectors perform on this chal-
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lenging task, we introduce a new evaluation measure,

Probability-based Detection Quality (PDQ). In contrast to

AP-based measures, PDQ explicitly evaluates the reported

probability of the true class via its Label Quality compo-

nent. Furthermore, PDQ contains a Spatial Quality term

that evaluates how well a detection’s spatial probability dis-

tribution matches the true object.

Unlike existing measures such as mAP [26] and

moLRP [34], PDQ jointly evaluates spatial and label uncer-

tainty quality, foreground and background separation qual-

ity, and the number of true positive (correct), false positive

(spurious), and false negative (missed) detections. Impor-

tantly, PDQ does not rely on fixed thresholds or tuneable

parameters, and provides optimal assignments of detections

to ground-truth objects. Although PDQ has been primar-

ily developed to evaluate new types of probabilistic object

detectors that are designed to quantify spatial and semantic

uncertainties, PDQ can also evaluate conventional state-of-

the-art, non-probabilistic detectors.

As we show in Section 7, current conventional detec-

tion methods perform poorly on the task of probabilistic ob-

ject detection due to spatial over-confidence and are outper-

formed by a recently proposed probabilistic object detector

that incorporates Monte Carlo Dropout into a VGG16-based

Single Shot MultiBox Detector (SSD) [29].

In summary, our contributions include defining the chal-

lenging new task of probabilistic object detection, introduc-

ing the new evaluation measure PDQ, evaluating current

object detectors, and showing for the first time that novel

probabilistic object detectors achieve better performance on

this new task, that is highly relevant for applications such as

robotics or embodied AI.

2. Motivation

Object detection embedded in a robot or autonomous

system, such as a self-driving car, is part of a complex, ac-

tive, goal-driven system. In such a scenario, object detec-

tion provides crucial perception information that ultimately

determines the performance of the robot in its environment.

Mistakes in object detection could lead to catastrophic out-

comes that not only risk the success of the robot’s mission,

but potentially endanger human lives [1, 2, 24, 32, 35, 49].

For safe and trusted operation in robots or autonomous

systems, CNNs must express meaningful uncertainty infor-

mation [1, 14, 15, 19, 43, 49]. Object detectors will have

to quantifying uncertainty for both the reported labels and

bounding boxes, which would enable them to be treated

as yet another sensor within the established and trusted

framework of Bayesian information fusion [39, 47]. How-

ever, while state-of-the-art object detectors report at least

an uncalibrated indicator of label uncertainty via label dis-

tributions or label scores [14, 15, 33, 44, 48], they cur-

rently do not report spatial uncertainty. As a result, eval-

uating the quality of the label or spatial uncertainties is not

within the scope of typical benchmark measures and com-

petitions [7, 8, 20, 23, 26, 40].

We argue in favour of accurate quantification of spatial

and semantic uncertainties for object detectors in computer

vision and robotics applications. Our work builds on this

idea by creating a measure that will guide research towards

developing detection systems that can operate effectively

within a robot’s sensor fusion framework.

3. Related Work

Conventional Object Detection: Object detection is a

fundamental task in computer vision and aims to localise

each instance of certain object classes in an image using

a bounding box. The typical output from an object de-

tection system is a set of bounding boxes with a class la-

bel score [5, 9, 50]. Since the advent of convolutional

neural networks (CNNs) [21], object detection has ex-

perienced impressive progress in terms of accuracy and

speed [4, 12, 13, 25, 27, 37, 38]. Nonetheless, current

overconfident object detection systems fail to provide spa-

tial and semantic uncertainties, and as a result, can be a

source of risk in various vision and robotics applications.

The probabilistic object detection task introduced by this

paper requires that object detectors estimate the spatial and

semantic uncertainty of their detections.

Uncertainty Estimation: To improve system robustness

and accuracy or avoid risks, quantifying uncertainty has be-

come popular in many vision tasks. Kendall et al. [18] pro-

pose a Bayesian model that outputs a pixel-wise semantic

segmentation with a measure of model uncertainty for each

class. In [19], the authors propose to model the aleatoric

and epistemic uncertainties for the pixel-wise semantic seg-

mentation and depth regression tasks, and argue that epis-

temic uncertainty is important for safety-critical applica-

tions and training with small data sets. Kampffmeyer et

al. [17] propose a model that estimates pixel-wise classi-

fication uncertainty in urban remote sensing images – they

argue that the estimated uncertainty can indicate the cor-

rectness of pixel labelling. Miller et al. [29, 30] estimate

both spatial and classification uncertainties for object de-

tection and use the uncertainty to accept or reject detections

under open-set conditions. Nair et al. [31] provide four dif-

ferent voxel-based uncertainty measures for their 3D lesion

segmentation system to enable a more complete revision by

clinicians. In [45] an uncertainty map for super-resolution

of diffusion MR brain images is generated to enable a risk

assessment for the clinical use of the super-resolved images.

In [42], the authors build an ensemble of predictors to esti-

mate the uncertainty of the centre of nuclei in order to pro-

duce more accurate classification results. All the methods

above, except the last one [42], estimate uncertainty based

on the Monte Carlo (MC) dropout technique [10, 11]. The
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papers above provide evidence that it is important to esti-

mate uncertainty for various vision tasks. Most of the pro-

posed methods, except [29, 42], deal with pixel-wise clas-

sification.We argue that it is essential to capture the uncer-

tainty of object detectors as motivated in Section 2.

Performance Measures: For the past decade, detection

algorithms have predominantly been evaluated using av-

erage precision (AP) or variants thereof. Average preci-

sion was introduced for the PASCAL VOC challenge [8]

in 2007 to replace measuring the area under the ROC curve.

It is the average of the maximum precision values at dif-

ferent recall values. These use a pre-defined threshold for

the intersection over union (IoU), typically 0.5, defining

a true positive detection. This is calculated and averaged

across all classes. Since then, AP has become the standard

evaluation measure in the PASCAL VOC challenge and is

the basis for many other works examining object detec-

tion [4, 25, 26, 27, 38, 40]. Most recently, a variation of AP

was created which averages AP over multiple IoU thresh-

olds (varying from 0.5 to 0.95 in intervals of 0.05) [26].

This averaging over IoUs rewards detectors with better lo-

calisation accuracy. In this work we refer to this measure

as mean average precision (mAP) to distinguish it from AP

despite mAP typically referring to averaging AP over all

classes.

AP-based measures have biased the community to de-

velop object detectors with high recall rate and locali-

sation precision, but these measures have several weak-

nesses [3, 16, 36]. They rely on fixed IoU thresholds which

can lead to overfitting for certain IoU thresholds – the neg-

ative consequence is that a small change in the thresholds

can cause abrupt score changes. Additionally, these mea-

sures use the label score as the detection ranking evidence,

without considering the spatial quality, which can lead to

sub-optimal detection assignment. In our work, we pro-

pose the new evaluation measure PDQ to evaluate both label

and spatial qualities of object detections, without using any

fixed thresholds and relying on an optimal assignment of

detection to ground-truth objects based on both spatial and

label qualities.

Oksuze et al. [34] propose the Localisation Recall Pre-

cision (LRP) metric to overcome two main deficiencies of

mAP: the inability to distinguish different precision-recall

(PR) curves, and the lack of a direct way to measure bound-

ing box localisation accuracy. When used for analysing

multi-class detectors, the mean optimal LRP (moLRP) is

used. Comparing to mAP, moLRP is also based on PR

curves but measures localisation quality, false positive rate

and false negative rate at some optimal label threshold

for each class. The localisation quality is represented by

the IoU between the detection and the ground-truth ob-

ject, scaled by the IoU threshold being used to plot the PR

curves. In contrast, our PDQ measure estimates the spatial

uncertainty through probabilistic bounding boxes and eval-

uates how well the detection bounding box’s spatial proba-

bility distribution coincides with the true object.

4. Probabilistic Object Detection

Probabilistic Object Detection is the task of detecting ob-

jects in an image, while accurately quantifying the spatial

and semantic uncertainties of the detections. Probabilistic

Object Detection thus extends conventional object detec-

tion, and makes the quantification of uncertainty an essen-

tial part of the task and its evaluation.

Probabilistic Object Detection requires a detector to pro-

vide for each known object in an image:

• a categorical distribution over all class labels, and

• a bounding box represented as B = (N0,N1) =
(N (µ

0
,Σ0) ,N (µ

1
,Σ1)) such that µi and Σi are

the mean and covariances for the multivariate Gaus-

sians describing the top-left and bottom-right corner

of the box.

From this probabilistic box representation B, we can calcu-

late a probability distribution P over all pixels (u′, v′), such

that P (u′, v′) is the probability that the pixel is contained in

the box:

P (u′, v′) =

∫∫ v′,u′

0,0

N0(u, v) du dv

∫∫ H,W

v′,u′

N1(u, v) du dv,

where H,W is the height and width of the image. This is

illustrated in Fig. 1, with Gaussians over two corners illus-

trated on the left, and the resulting distribution P (u′, v′) in

the centre.

The evaluation of each detection focuses on the proba-

bility value assigned to the true class label, and the spatial

probability mass from P (u′, v′) assigned to the ground truth

object vs. the probability mass assigned to the background.

Since existing measures for conventional object detection

such as mAP [26] or moLRP [34] are not equipped to eval-

uate the probabilistic aspects of a detection, we introduce a

novel evaluation measure for Probabilistic Object Detection

in the following section.

5. Probability-based Detection Quality (PDQ)

This section introduces the major technical contribution

of our paper: the probability-based detection quality (PDQ)

measure which evaluates the quality of detections based on

spatial and label probabilities. Unlike AP-based measures,

our approach penalises low spatial uncertainty when de-

tecting background as foreground, or when detecting fore-

ground as background, and explicitly evaluates the label

probability in calculating detection quality. PDQ has no

thresholds or tuneable parameters that can redefine the con-

ditions of success. Furthermore, PDQ is based on an ap-

proach that provides optimal assignment of detections to
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(a) ground-truth object (b) detection

Figure 2: In our notation, a ground-truth object (a) con-

sists of a segmentation mask Ŝf
i (black), a bounding box

B̂f
i (blue box), and a class label ĉfi which here is diamond.

A detection (b) consists of a probability density function

P (x ∈ Sf
j ) (illustrated as a heatmap), a segmentation mask

Sf
j (all pixels within the orange box), and a probability dis-

tribution across all classes l
f
j , which here provides proba-

bilities for diamond and square classes.

ground-truth objects, incorporating both the label and spa-

tial attributes of the detections in this assignment.

A reference implementation of PDQ will be made avail-

able on github (link withheld for double-blind review).

Notation We write the i-th ground-truth object in the f -th

frame (image) as the set Gf
i = {Ŝf

i , B̂f
i , ĉ

f
i }, comprising a

segmentation mask defined by a set of pixels Ŝf
i , a set of

bounding box corners B̂f
i fully encapsulating all pixels in

Ŝf
i , and a class label ĉfi .

We define the j-th detection in the f -th frame as the set

Df
j = {P (x ∈ Sf

j ),Sf
j , l

f
j }, comprising a probability func-

tion that returns the spatial probability that a given pixel

is a part of the detection (regardless of class prediction)

P (x ∈ Sf
j ), a set of pixels with a non-zero P (x ∈ Sf

j )

which we refer to as the detection segmentation mask Sf
j ,

and a label probability distribution across all possible class

labels l
f
j . A visualisation of both ground-truth objects and

detections is provided in Figure 2.

Requirements PDQ requires pixel-accurate ground-truth

annotations for the segmentation mask Ŝf
i . Such anno-

tations can be easily obtained from simulated environ-

ments [6, 41] and also from datasets containing only bound-

ing box annotations by considering all pixels within a box

part of the segmentation mask. PDQ can evaluate proba-

bilistic detectors that provide bounding boxes with Gaus-

sian corners as defined in Section 4, or conventional detec-

tors by assuming P (x ∈ Sf
j ) = 1−ǫ for all pixels inside the

respective bounding box and ǫ outside, for a small ǫ > 0.

Overview PDQ evaluates both the spatial and label qual-

ity of a detector. It is therefore based on a combination of

a spatial quality measure QS and a label quality measure

QL. Both are calculated between all possible pairs of de-

tections and ground-truth objects within a single frame. We

Data: a dataset of f = 1 . . . NF frames with

detections Df
j and ground-truths Gf

i

forall frames in the dataset do

forall pairs (Gf
i ,Df

j ) do

calculate spatial quality QS(Gf
i ,Df

j )

calculate label quality QL(Gf
i ,Df

j )

calculate pPDQ(Gf
i ,Df

j ) =
√
QS ·QL

end

Based on the pPDQ(.) computed between all

pairs, find optimal assignment between

detections and ground-truth objects, yielding

optimal pPDQ for frame f .

end

Combine frame-wise optimal pPDQs into an overall

PDQ measure.
Algorithm 1: PDQ Evaluation Process

define the geometric mean between these two quality mea-

sures as the pairwise PDQ (pPDQ), and use it to find the

optimal assignment between all detections and ground-truth

objects within an image. The optimal pPDQ measures are

then combined into an overall PDQ measure for the whole

dataset. However, many of these intermediate results can

also be recorded and analysed for a more detailed break-

down of performance. Algorithm 1 summarises the overall

PDQ calculation. In the following, we detail each of the

involved steps and both quality measures.

5.1. Spatial Quality

The spatial quality QS measures how well a detection

Df
j captures the spatial extent of a ground-truth object Gf

i ,

and takes into account the spatial probabilities for individual

pixels as expressed by the detector.

Spatial quality QS comprises two loss terms, the fore-

ground loss LFG and the background loss LBG. Spatial

quality is defined as the exponentiated negative sum of the

two loss terms, as follows:

QS(Gf
i ,Df

j ) = exp(−(LFG(Gf
i ,Df

j ) + LBG(Gf
i ,Df

j )),
(1)

where QS(Gf
i ,Df

j ) ∈ [0, 1]. The spatial quality in (1) is

equal to 1 if the detector assigns a spatial probability of 1 to

all ground-truth pixels, while not assigning any probability

mass to pixels outside the ground-truth segment. This be-

haviour is governed by the two loss terms explained below.

Foreground Loss The foreground loss LFG is defined as

the average negative log-probability the detector assigns to

the pixels of a ground-truth segment.

LFG(Gf
i ,Df

j ) = − 1

|Ŝf
i |

∑

x∈Ŝ
f
i

log(P (x ∈ Sf
j )), (2)
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where, as defined above, Ŝf
i is the set of all pixels belonging

to the i-th ground-truth segment in frame f , and P (·) is the

spatial probability function that assigns a probability value

to every pixel of the j-th detection. The foreground loss is

minimised if the detector assigns a probability value of one

to every pixel of the ground-truth segment, in which case

LFG = 0. It grows without bounds otherwise.

Notice that LFG intentionally ignores pixels that are in-

side the ground-truth bounding box B̂f
i but are not part

of the ground-truth segment Ŝf
i . This avoids treating the

detection of background pixels as critically important in

the case of irregularly shaped objects when pixel-level an-

notations are available, unlike AP-based methods using

bounding-box IoUs, as illustrated in Figure 3.

Background Loss The background loss term LBG pe-

nalises any probability mass that the detector incorrectly

assigned to pixels outside the ground-truth bounding box.

It is formally defined as

LBG(Gf
i ,Df

j ) = − 1

|Ŝf
i |

∑

x∈V
f
ij

log((1−P (x ∈ Sf
j ))), (3)

which is the sum of negative log-probabilities of all pixels

in the set Vf
ij = {Sf

j − B̂f
i }, i.e. pixels that are part of

the detection, but not of the true bounding box. A visual-

isation of this evaluation region Vf
i,j is shown in Figure 4.

Note that we average over |Ŝf
i | rather than |Vf

i,j | to ensure

that foreground and background losses are scaled equiva-

lently, measuring the loss incurred per ground-truth pixel

the detection aims to describe. The background loss term

is minimised if all pixels outside the ground-truth bounding

box are assigned a spatial probability of zero.

5.2. Label Quality

While spatial quality measures how well the detection

describes where the object is within the image, label quality

QL measures how effectively a detection identifies what the

object is. We define QL as the probability estimated by the

detector for the object’s ground-truth class. Note that this

is irrespective of whether this class is the highest ranked

in the detector’s probability distribution. Unlike with mAP,

this value is explicitly used to influence detection quality

rather than just for ranking detections regardless of actual

label probability. We define label quality as:

QL(Gf
i ,Df

j ) = l
f
j (ĉ

f
i ). (4)

5.3. Pairwise PDQ (pPDQ)

The pairwise PDQ (pPDQ) between a detection Df
j and a

ground-truth object Gf
i in frame f is the geometric mean of

the spatial quality and label quality measures QS and QL:

pPDQ(Gf
i ,Df

j ) =
√

QS(Gf
i ,Df

j ) ·QL(Gf
i ,Df

j ). (5)

Figure 3: Example of a detection of an aeroplane (orange

box), a ground-truth box (blue line), and a ground-truth

segmentation mask, (blue-coloured region with black bor-

der). At an IoU threshold of 0.5, AP-based methods con-

sider the orange detection entirely correct, despite covering

only 16% of the plane’s pixels. There is no correlation be-

tween the bounding box overlap analysed and the content

within the bounding box. By comparison, PDQ penalises

this detection heavily for only detecting this small portion

without any spatial uncertainty. The pPDQ for this detec-

tion containing no spatial uncertainty is 3.64× 10−6.

Figure 4: PDQ defines the background evaluation region

Vf
i,j (red) as the set of pixels that are part of the detection

Sf
j (orange), but not of the true bounding box B̂f

j (blue).

Using the geometric mean requires both components to

have high values for a high pPDQ score, and is zero if ei-

ther component reaches zero. Notice that it is also possible

to use a weighted geometric mean for applications where

the spatial or label quality component is more important.

5.4. Assignment of Optimal Detection­Object Pairs

It is important that, for every frame, each detection is

matched to, at most, one ground-truth object and vice versa.

This is also done for mAP, but it utilises a greedy assign-

ment process based upon label confidence ranking, rather

than ensuring that the optimal assignment takes into account

both the spatial and label aspects of the detection. To miti-

gate this problem, we use our proposed pPDQ score in (5)

between possible detection-object pairings to determine the

optimal assignment through the Hungarian algorithm [22].

This provides the optimal assignment between two sets of

information which produce the best total pPDQ score.

Using assignments from the Hungarian algorithm, we

store the pPDQs for all non-zero assignments in the f -th

frame in a vector qf = [qf
1
, qf

2
, qf

3
, ..., qf

N
f

TP

] where Nf
TP is

the number of non-zero (true positive) assignments within
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the f -th frame. Note that these “true positive” detections

are not ones which are considered 100% accurate as is done

for AP-based measures. Instead these are detections which,

even marginally, describe the ground-truth object they are

matched with and provide a non-zero pPDQ. If the pPDQ

from an optimal assignment is zero, there is no association

between the ground-truth object and detection. This occurs

when either a ground-truth object is undetected (false neg-

ative) or a detection does not describe an object (false pos-

itive). We also record the number of false negatives and

false positives for each frame, expressed formally as Nf
FN

and Nf
FP respectively, to be used in our final evaluation.

After obtaining qf , Nf
TP , Nf

FN , and Nf
FP for each frame,

the PDQ score can be calculated.

5.5. PDQ Score

The final PDQ score across a set of ground-truth objects

G and detections D is the total pPDQ for each frame divided

by the total number of TPs, FNs and FPs assignments across

all frames. This can be seen as the average pPDQ across all

TPs, FNs and FPs observed, which is calculated as follows:

PDQ(G,D) =
1

∑NF

f=1
Nf

TP +Nf
FN +Nf

FP

NF
∑

f=1

N
f

TP
∑

i=1

qf (i),

(6)

where qf (i) is the pPDQ score for the i-th assigned

detection-object pair in the f -th frame. This final PDQ

score provides a consistent, probability-based measure,

evaluating both label and spatial probabilities, that can de-

termine how well a set of detections has described a set of

ground-truth objects without the need for thresholds to de-

termine complete success or failure of any given detection.

6. Evaluation of PDQ Traits

The previous section introduced PDQ, a new measure

to evaluate the performance of detectors for probabilistic

object detection. PDQ has been designed with one main

goal in mind: it should reward detectors that can accu-

rately quantify both their spatial and label uncertainty. In

this section, we are going to demonstrate that this goal has

been met, by showing PDQ’s behaviour in controlled ex-

periments. We show the most critical experiments here and

more are provided in supplementary material.

PDQ Rewards Accurate Spatial Uncertainty We per-

form a controlled experiment on the COCO 2017 validation

dataset with a simulated object detector. For every ground

truth object with true bounding box corners x̂0 and x̂1, the

detector generates a detection with bounding box corners

sampled as x0 ∼ N (x̂0, Σ̂) and x1 ∼ N (x̂1, Σ̂), with

Σ̂ = diag(ŝ2, ŝ2). We vary the value of ŝ2 throughout the

experiments and refer to ŝ2 as the detector’s true variance.

0 100 101 102 103

True Variances (s2)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
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Figure 5: Top: PDQ rewards detectors that accurately eval-

uate their true spatial uncertainty. Bottom: PDQ explicitly

evaluates label uncertainty, in contrast to mAP. See Section

6 for explanation of the experiments.

Independent of the value of ŝ2, the simulated detector ex-

presses spatial uncertainty for each probabilistic detection

with a different variance σ2, which we refer to as the re-

ported variance. Each detection is assigned probability 1.0

for the true label, corresponding to perfect classification.

When varying the values of ŝ2 and σ2 and evaluating the

resulting detections, PDQ should reward when ŝ2 is simi-

lar to σ2, i.e. when the reported spatial uncertainty is close

to the true spatial uncertainty that was used to sample the

detection corners. When both reported and true spatial un-

certainty are equal, PDQ should reach its peak performance.

This would indicate that PDQ does indeed reward the accu-

rate estimation of spatial uncertainty.

Figure 5 confirms this conjecture. We repeated the ex-

periment described above 20 times, evaluating on all objects

in the 5,000 images of the COCO 2017 validation set. Ev-

ery line corresponds to a detector with a different reported

variance σ2. The true variance ŝ2 varies along the x axis.

We can see that the for each value of ŝ2, simulated detectors

with σ2 = ŝ2 give the best performance.

PDQ Explicitly Evaluates Label Uncertainty We per-

form a controlled experiment in a simulated scenario where

a single object is detected by a single detection with perfect

spatial quality. We vary the detection’s reported label proba-

bility for the correct class and ensure that it always remains

the dominant class in the probability distribution. The re-

sulting PDQ and mAP scores are compared in Figure 5. We

observe that PDQ is affected by the label probability of the
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correct class via its label quality term. This is in contrast

to mAP which uses label probability only to determine the

dominant class and for ranking detection matches.

7. Evaluation of Object Detectors

In this section we evaluate a number of state-of-the-art

conventional detectors and the recently proposed proba-

bilistic object detector MC-Dropout SSD [30] that is based

on Monte Carlo Dropout. We compare the ranking of all

tested detectors using PDQ and its components, as well as

the established measures mAP and moLRP [34], and dis-

cuss our most important observations and gained insights.

7.1. Experimental Set­up

Evaluated Detectors The state-of-the-art conven-

tional object detectors evaluated were SSD-300 [27],

YOLOv3 [37], FasterRCNN with ResNet backbone (FR-

CNN R) [51], FasterRCNN with ResNet backbone and

feature pyramid network (FPN) (FRCNN R+FPN) [28],

and FasterRCNN with ResNeXt backbone and FPN

(FRCNN X+FPN) [28]. To evaluate these conventional

detectors with PDQ, we set P (x ∈ Sf
j ) = 1 − ǫ for all

pixels x inside the provided standard bounding box, and ǫ
for all pixels outside, when performing the calculations in

equations (2) and (3), with ǫ = 10−14 to avoid infinite loss.

In addition to conventional object detectors, we evalu-

ate a probabilistic MC-Dropout object detector based on the

work by Miller et al. [29, 30]. We follow the established

implementation [29], where Monte Carlo Dropout [10] is

utilised in a SSD-300 object detector [27] with two dropout

layers inserted and activated during both training and test-

ing. Each image is tested with 20 forward passes through

the network with randomised dropout masks to obtain sam-

ples of detections. The recommended merging strategy was

used to cluster these samples [29], namely a BSAS cluster-

ing method [46] with spatial affinity IoU and label affinity

‘same label’ (we found an IoU threshold of 0.7 performed

better than the 0.95 threshold recommended in [29]). Final

probabilistic detections were obtained by averaging sample

label probability distributions and estimating N0 and N1

from the average and covariance of sample bounding boxes.

We furthermore modify a FasterRCNN with ResNeXt

backbone and feature pyramid network to approximate

probabilistic detections. We achieve this by the follow-

ing process: for every detection surviving the normal non-

maximum suppression, we find all of the suppressed de-

tections that have an IoU of above 0.75 with the surviving

detections and cluster them (including the survivors). We

then calculate the Gaussian corner mean and covariances of

each cluster, weighted by the detection’s winning label con-

fidences. We denote this method as probFRCNN in Table 1.

Evaluation Protocol and Datasets Evaluation was per-

formed on the 5,000 images of the MS COCO 2017 vali-

dation set [26], after all detectors have been trained or fine-

tuned on the 2017 training dataset. During the evaluation,

we ignored all detections with the winning class label prob-

ability below a threshold τ . We compare the effect of this

process for τ = 0.5 and 0.05.

7.2. Insights

Table 1 presents the results of our evaluation, comparing

PDQ and its components with mAP and moLRP. From these

results we observe the following:

1. PDQ exposes the performance differences between

probabilistic and non-probabilistic object detectors.

When evaluating using mAP or moLRP, both SSD-300 [27]

and FasterRCNN with ResNeXt and FPN [28], and their re-

spective probabilistic variants (MC-DropoutSSD [29] and

probFRCNN) show very similar performance. However,

evaluating with PDQ reveals their performance differences

in terms of probabilistic object detection: both probabilis-

tic variants perform significantly better than their non-

probabilistic counterparts. This is especially true for their

overall spatial quality and its foreground and background

quality components. Comparing probFRCNN with MC-

DropoutSSD, we found that probFRCNN achieved a higher

PDQ score, benefiting from its more accurate base network.

2. PDQ reveals differences in spatial and label quality.

Since PDQ comprises meaningful components, it allows a

detailed analysis of how well detectors perform in terms of

spatial and label quality. For example, in Table 1 we ob-

serve that the YOLOv3 detector achieves the highest label

quality (95.8%/92.8% for τ = 0.5/0.05), but the worst spa-

tial quality (6.2%/5.1%) of all tested detectors. This gives

important insights into worthwhile directions of future re-

search, suggesting YOLO can be more trusted to understand

what an object is than other detectors but is less reliable in

determining precisely where that object is.

3. Probabilistic localisation performance of existing ob-

ject detectors is weak. Spatial quality in PDQ measures

how well detectors probabilistically localise objects in an

image. Conventional object detectors assume full confi-

dence in their bounding box location and achieve low spa-

tial qualities between 5.1% and 17.6%, indicating they are

spatially overconfident. Since conventional object detectors

have comparatively high label qualities, we conclude that

for probabilistic object detection tasks where spatial uncer-

tainty estimation is important, improving the localisation

performance and the estimation of spatial uncertainty has

the biggest potential of improving performance.

4. PDQ does not obscure false positive errors. Unlike

mAP and moLRP, PDQ explicitly penalises a detector for

spurious (false positive) detections, as well as for missed
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Table 1: PDQ-based Evaluation of Probabilistic and Non-Probabilistic Object Detectors. Legend: mLRP = 1 − moLRP, Sp

= Spatial Quality, Lbl = Label Quality, FG = Foreground Quality (exp(−LFG)), BG = Background Quality (exp(−LBG),

TP = True Positives, FP = False Positives, FN = False Negatives. pPDQ, Sp, Lbl, FG and BG averaged over all TP.

Approach (τ ) mAP mLRP PDQ pPDQ Sp Lbl FG BG TP FP FN

(%) (%) (%) (%) (%) (%) (%) (%)

probFRCNN (0.5) 35.5 32.2 28.4 56.7 45.0 90.7 77.8 60.7 23,434 10,016 13,347

MC-Dropout SSD (0.5) [29] 15.8 15.6 12.8 47.3 39.9 74.0 73.1 57.3 10,510 2,165 26,271

MC-Dropout SSD (0.05) [29] 19.5 16.6 1.3 26.1 27.3 35.9 60.1 46.2 24,843 461,074 11,938

SSD-300 (0.5) [27] 15.0 14.3 3.9 18.1 9.7 80.2 57.5 25.1 8,999 4,746 27,782

SSD-300 (0.05) [27] 19.3 16.0 0.6 9.7 6.4 40.2 38.1 32.3 21,961 324,067 14,820

YOLOv3 (0.5) [37] 29.7 30.8 5.7 14.6 6.2 95.8 52.2 20.4 17,390 7,728 19,391

YOLOv3 (0.05) [37] 30.1 27.7 3.3 12.2 5.1 92.8 44.6 22.9 23,447 50,074 13,334

FRCNN R (0.5) [51] 32.8 29.1 6.7 19.1 10.3 88.8 62.2 23.6 19,930 20,044 16,851

FRCNN R (0.05) [51] 34.3 29.1 3.0 17.1 9.5 78.5 57.8 25.1 23,081 93,141 13,700

FRCNN R+FPN (0.5) [28] 34.6 31.2 11.8 27.1 16.9 86.5 60.6 35.7 22,537 14,706 14,244

FRCNN R+FPN (0.05) [28] 37.0 30.4 4.2 23.1 15.8 69.5 54.4 38.7 29,326 123,511 7,455

FRCNN X+FPN (0.5) [28] 37.4 32.7 11.9 27.9 17.6 88.2 60.8 36.8 24,523 20,444 12,258

FRCNN X+FPN (0.05) [28] 39.0 32.1 4.4 24.8 16.7 74.4 55.6 39.1 29,922 130,009 6,859

(a) FRCNN X+FPN (0.05) (b) FRCNN X+FPN (0.5)

Figure 6: Visualisation of all TPs (blue segmentation mask

and corresponding BBox), FPs (orange BBox), and FNs (or-

ange segmentation mask) as defined by PDQ for FRCNN

X+FPN with τ = 0.5 (a) and τ = 0.05 (b). We see here

that a lower τ leads to far more FPs that are strongly pe-

nalised by PDQ but are largely ignored under mAP.

(false negative) detections. We observe that decreasing the

label threshold τ and consequently massively increasing the

number of false positive detections (see Fig. 6 for an ex-

ample) actually increases mAP, and does not tend to affect

moLRP much. In contrast, PDQ scores decrease signifi-

cantly. PDQ is designed to evaluate systems for application

in real-world systems and does not filter detections based

on label ranking or calculating the optimal threshold τ . It

involves all reported detections in its analysis.

8. Conclusions and Future Work

We introduced Probabilistic Object Detection, a chal-

lenging new task that is highly relevant for domains where

accurately estimating the spatial and semantic uncertainties

of the detections is of high importance such as embodied AI

(such as robotics, autonomous systems, driverless cars), and

medical imaging. To foster further research in this direc-

tion, we introduced the probability-based detection quality

(PDQ) measure which explicitly evaluates both spatial and

label uncertainty.

PDQ is not meant to replace mAP, but to complement

it. Both evaluation measures are designed for two differ-

ent problems. While mAP has been the established perfor-

mance measure for conventional object detection, we de-

veloped PDQ specifically for the new task of probabilistic

object detection.

After evaluating a range of object detectors, including

the first emerging probabilistic object detector in Section 7,

we are confident that PDQ is a useful performance measure

that can guide and inform the research of even better prob-

abilistic object detectors in the future. In future work we

will investigate how to train object detectors to directly opti-

mise for PDQ by incorporating it into the training loss func-

tion. The concept of probabilistic object detection can also

be easily extended to Probabilistic Instance Segmentation

where each pixel would contain a probability of belonging

to a certain object instance, along with a label distribution.
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