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Abstract

In this work we propose a new computational frame-

work, based on generative deep models, for synthesis of

photo-realistic food meal images from textual list of its in-

gredients. Previous works on synthesis of images from text

typically rely on pre-trained text models to extract text fea-

tures, followed by generative neural networks (GAN) aimed

to generate realistic images conditioned on the text features.

These works mainly focus on generating spatially compact

and well-defined categories of objects, such as birds or flow-

ers, but meal images are significantly more complex, con-

sisting of multiple ingredients whose appearance and spa-

tial qualities are further modified by cooking methods. To

generate real-like meal images from ingredients, we pro-

pose Cook Generative Adversarial Networks (CookGAN),

CookGAN first builds an attention-based ingredients-image

association model, which is then used to condition a gener-

ative neural network tasked with synthesizing meal images.

Furthermore, a cycle-consistent constraint is added to fur-

ther improve image quality and control appearance. Ex-

periments show our model is able to generate meal images

corresponding to the ingredients.

1. Introduction

Computational food analysis (CFA) has become a piv-

otal area for the computer vision community due to its real-

world implications for nutritional health [3, 22, 11, 4, 2,

23, 13, 1, 15]. For instance, being able to extract food in-

formation, including ingredients and calories, from a meal

image could help us monitor our daily nutrient intake and

manage our diet. In addition to food intake logging, CFA

can also be crucial for learning and assessing the functional

similarity of ingredients, meal preference forecasting, and

computational meal preparation and planning [23, 9]. The

advancement of CFA depends on developing better frame-

works that aim at extracting food-related information from

different domains including text descriptions (e.g. recipe ti-

tle, ingredients, instructions) and meal images, as well as

exploring the relationships between different domains in or-

der to better understand food related properties.

This paper concentrates on generating meal images from

a set of specific ingredients. Although image genera-

tion from text is popular in the computer vision commu-

nity [20, 28, 27], similar work on generating photo-realistic

meal images has so far failed to materialize due to the com-

plex factors associated to meal images, these factors include

appearance diversity, dependency on the cooking method,

variations in preparation style, visual dissolution, etc. As a

consequence, the generative meal model has to infer these

key pieces of information implicitly.

In this work, we propose Cook Generative Adversar-

ial Networks (CookGAN), a model to generate a photo-

realistic meal image conditioned on a list of ingredients (we

will use ‘ingredient list’ or ‘ingredients’ interchangeably in

this paper). The efficacy of the model is analyzed by mod-

ifying the visible ingredients. The main contributions are:

1) Combining attention-based recipe association model [4]

and StackGAN [27] to generate meal images from ingre-

dients. 2) Adding a cycle-consistency constraint to further

improve image quality and control the appearance of the

image by changing ingredients.

2. Related Work

Generative neural networks (GAN) GAN is a popular

type of generative model for image synthesis [7]. It learns

to model the distribution of real images via a combination

of two networks, one that generates images from a random

input vector and another that attempts to discriminate be-

tween real and generated images.

Conditional GAN Work on generating images condi-

tioned on a deterministic label by directly concatenating the

label with the input was proposed by [16] and by adding the

label information at a certain layer’s output in [18, 17]. An-

other line of work conditions the generation process with

text information. [20] uses a pre-trained model to extract

text features and concatenate them with the input random
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Figure 1: The framework of the attention-based cross-modal association model.

vector, in order to generate text-based images. [27] extends

this concept by stacking three GAN to generate images at

different resolutions. These works are conditioned on short

textual descriptions of the image and rely on recurrent neu-

ral networks (RNN) to extract text features. RNNs treat

words sequentially and with the same importance. How-

ever, in the sparse list of ingredients of a meal, not all ingre-

dients occupy equally important roles in image appearance.

Inspired by [4], we combine attention mechanism with bi-

directional LSTM (a commonly used RNN model) to learn

the importance of each ingredient. The attention mecha-

nism helps locate key ingredients in an unsupervised way.

Meal Image Generation Most prior work for image gen-

eration from text implicitly assume the visual categories are

well-structured singular objects, consistent in appearance

(e.g. birds, flowers, or faces). Meal images, on the other

hand, have more variable appearance when conditioned on

ingredients. [24] and [29] use generative neural networks

to generate meal images as a constraint to improve cross-

modal recipe retrieval, however, they only generate low-

resolution (e.g. 128 × 128) images, and furthermore, be-

cause the synthesized image is only used to regularize the

retrieval model, image quality is not well evaluated. [19]

uses GAN to generate pizza images given step-by-step pro-

cedures, however, their model is only tested with pizza with

a pre-defined list of procedures and ingredients. Compared

with them, we aim at generating meal images with various

food types and ingredients.

[25] and [5] are more closely related to our work, how-

ever, we include a cycle-consistency regularizer to mini-

mize the semantic discrepancy between fake and real im-

ages. The guiding intuition is that if the generated image

is of high quality and captures the ingredients correctly, it

should extract similar feature as that from the real image.

Experiment shows this regularizer improves image quality

both qualitatively and quantitatively.

3. Methodology

To generate a meal image from an ingredient list, we first

train an attention-based association model to find a shared

latent space between ingredient list and image, then use the

latent representation of the ingredient list to train a GAN to

synthesize the meal image conditioned on the list.

3.1. Attention­based Association Model

In order to extract ingredient features, we train an

attention-based cross-modal association model [4] to match

an ingredient list and its corresponding image in a joint

latent space, denoted the FoodSpace. During train-

ing, the model takes a triplet as input, which includes the

recipe ingredient list, its corresponding image, and an im-

age from another recipe, (r+,v+,v−), respectively. Us-

ing two separate neural networks, one for the ingredient

list Fp and another for images Fq, the triplet is embed-

ded in the FoodSpace with coordinates (p+, q+, q−).
The networks are trained to maximize the association in

FoodSpace between positive pair (p+, q+), and at the

same time minimizing the association between negative pair

(p+, q−).

Formally, with the ingredients encoder p = Fp(r) and

image encoder q = Fq(v), the training is a maximization

of the following objective function,

V (Fp,Fq) =

Ep̂(r+,v+),p̂(v−) min
([

d
[

p+, q+
]

− d
[

p+, q−

]

− ǫ
]

, 0
)

+

Ep̂(r+,v+),p̂(r−) min
([

d
[

p+, q+
]

− d
[

p−, q+
]

− ǫ
]

, 0
)

,

(1)

where cos [p, q] = p⊺q/
√

(p⊺p)(q⊺q) is the cosine simi-

larity in FoodSpace and p̂ denotes the corresponding em-

pirical densities on the training set. We combine the cosine

similarity of the positive pair and that of the negative pair

together, and we add a margin ǫ to make the model focus
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on those pairs that are not correctly embedded. We empiri-

cally set ǫ to 0.3 by cross-validation. Fig. 1 shows a diagram

of the attention-based association model. The details of in-

gredients encoder Fp and image encoder Fq are explained

below.

Ingredients encoder Fp takes the recipe’s ingredi-

ents as input and outputs their feature representation in

FoodSpace. The goal is to find the embedding that re-

flect dependencies between ingredients, which could fa-

cilitate implicit associations even when some ingredients

are not visually observable. For this purpose, the model

first embeds the one-hot vector of each ingredient into a

low-dimension vector (ingri ∈ R
300) using a word2vec

model [14], treating the vectors as a sequence input of a

bi-directional LSTM1. Instead of using the output of the

last layer as the output of the LSTM, each hidden state

hi ∈ R
300 is used as the feature of the corresponding in-

gredient.

As not all ingredients play equally important roles in im-

age appearance, we apply attention mechanism to model the

contribution of each ingredient. During training, the model

learns a shared contextual vector u ∈ R
300 of the same di-

mension as the hidden state, and u is then used to assess the

attention of each ingredient,

{αi} = softmax
{

uT · hi

}

, i ∈ [1, N ], (2)

where N is the number of ingredients in the recipe. The

attention-based output of LSTM is a weighted summation

of all hidden states, h =
∑N

i=1 αihi. The contextual vector

u is optimized as a parameter during training and fixed dur-

ing testing. Our intuition is u can attend on certain ingredi-

ents that appear in a specific ingredient list by learning from

the training data. Finally, h is projected to FoodSpace to

yield the ingredients feature p ∈ R
1024 .

Image encoder Fq takes a meal image as input and

outputs a feature representing the image in FoodSpace.

Resnet50 [8] pre-trained on ImageNet [6] is applied as the

base model for feature extraction. In order to get a more

meaningful feature of the image, we follow [4] and fine-

tune the network on UPMC-Food-101 [26], we use the ac-

tivation after the average pooling (R2048) and project it to

FoodSpace to get q ∈ R
1024.

3.2. Generative Meal Image Network

Generative meal image network takes the ingredient list

as input and generates the corresponding meal image. The

base model StackGAN-v2 [27] contains three branches

stacked together. Each branch is responsible for generating

image at a specific scale and each branch has its own dis-

criminator which is responsible for distinguish the image at

that scale. The framework is shown in Fig. 2.

1Hence, we assume a chain graph can approximate arbitrary ingredient

dependencies within a recipe.

Generator: The ingredients r+ are first encoded us-

ing the pre-trained Fp (fixed during training StackGAN-v2)

to obtain text feature p+. Subsequently, p+ is forwarded

through a conditional augmentation network Fca to estimate

the distribution p(c|p+) of the ingredient appearance factor

c, modeled as the Gaussian distribution
(

µp+ , Σp+

)

= Fca(p
+), (3)

c ∼ p(c|p+) = N (µp+ , Σp+), (4)

where µp+ and Σp+ are the mean and the covariance given

the ingredients encoding p+ in FoodSpace. This sam-

pling process introduces noise to p+, making the model ro-

bust to small perturbations in FoodSpace. Variational reg-

ularization [12] is applied during training to make p(c|p+)
close to the standard Gaussian distribution,

Lca = DKL

[

N (µp+ , Σp+)|| N (, I)
]

. (5)

Subsequently, c is augmented with Gaussian noise z ∼
N (, I) to generate the latent feature h0 = F0(z, c)
for the first branch and the low-resolution image ṽ+

0 =
T0(h0), where F0 and T0 are modeled by neural net-

works. Similarly, the medium and high resolution images

are generated by utilizing the hidden feature of the pre-

vious branches, h1 = F1(h0, c), ṽ+
1 = T1(h1) and

h2 = F2(h1, c), ṽ+
2 = T2(h2). Overall, the genera-

tor contains three branches, each responsible for generat-

ing the image at a specific scale, G0 = {F0, T0}, G1 =
{F1, T1}, G2 = {F2, T2}. Optimization of the generator

will be described after introducing the discriminators.

Discriminator: Each discriminator’s task is three-fold:

(1) Classify real, ‘correctly-paired’ v+ with ingredient ap-

pearance factor c as real; (2) Classify real, ‘wrongly-paired’

v− with c as fake; and (3) Classify generated image ṽ+

with c as fake. Formally, we seek to minimize the cross-

entropy loss

L
cond
i =− E

v
+
∼pdi

[logDi(v
+
, c)]

+ E
v
−
∼pdi

[logDi(v
−

, c)]

+ E
ṽ
+
∼pGi

[logDi(ṽ
+
, c)],

(6)

where pdi
, pGi

, Gi and Di correspond to the real image dis-

tribution, fake image distribution, generator branch, and the

discriminator at the ith scale. To further improve the quality

of the generated image, we also minimize the unconditional

image distribution as

L
uncond
i =− E

v
+
∼pdi

[logDi(v
+)]

− E
v
−
∼pdi

[logDi(v
−)]

+ E
ṽ
+
∼pGi

[logDi(ṽ
+)]

(7)

Losses: During training, the generator and discrimina-

tors are optimized alternatively by maximizing and min-

imizing (6) and (7) respectively. All generator branches
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Figure 2: Framework of the generative model. G0, G1, G2 represent the branches in generator. D0, D1, D2 represent the

discriminators for images of low, medium and high resolution. Fq is the image encoder trained in the association model.

are trained jointly as are the three discriminators, with fi-

nal losses

LG =

2
∑

i=0

{

Lcond
i +λuncond L

uncond
i

}

+ λca Lca (8)

LD =

2
∑

i=0

{

Lcond
i +λuncond L

uncond
i

}

, (9)

where λuncond is the weight of the unconditional loss and

λca the weight of the conditional augmentation loss. We

empirically set λuncond = 0.5 and λca = 0.02 by cross-

validation.

3.3. Cycle­consistency constraint

A correctly-generated meal image should ”contain” the

ingredients it is conditioned on. Thus, a cycle-consistency

term is introduced to keep the fake image contextually sim-

ilar, in terms of ingredients, to the corresponding real image

in FoodSpace.

Specifically, for a real image v+ with FoodSpace co-

ordinate q+ and the corresponding generated ṽ+ with q̃+,

the cycle-consistency regularization aims at maximizing the

cosine similarity at different scales, LCi
= cos [q+, q̃+].

Note that the images in different resolutions need to be

rescaled for the input of the image encoder. The final gen-

erator loss in (8) now becomes

LG =

2
∑

i=0

{

Lcond
i +λuncond L

uncond
i −λcycle LCi

}

+ λca Lca,

(10)

where λcycle is the weight of the cycle-consistency term,

cross-validated to λcycle = 1.0.

4. Experiments

Dataset Data used in this work was taken from

Recipe1M [22]. This dataset contains ∼1M recipes with

titles, instructions, ingredients, and images. We focus on

a subset of 402 760 recipes with at least one image, con-

taining no more than 20 ingredients or instructions, and no

less than one ingredient and instruction. Data is split into

70% train, 15% validation and 15% test sets, using at most

5 images from each recipe.

Recipe1M contains ∼16k unique ingredients, we reduce

this number by focusing on the 4k most frequent ones.

This list is further reduced by first merging the ingredients

with the same name after a stemming operation and semi-

automatically fusing other ingredients. The later is achieved

using a word2vec model trained on Recipe1M, where the

ingredients are fused if they are close together in their em-

bedding space and a human annotator accepts the proposed

merger. Finally, we obtain a list of 1989 canonical ingredi-

ents, covering more than 95% of all recipes in the dataset.

Implementation Details Specific network structures

follow those in [4] for the association model2 and [27] for

the generator.

1453



im2recipe recipe2im

MedR↓ R@1↑ R@5↑ R@10↑ MedR↓ R@1↑ R@5↑ R@10↑

1K
attention [4] - - - - - - - -

ours w/o attn 5.400 0.229 0.510 0.621 5.736 0.230 0.502 0.610

ours w/ attn 5.500 0.234 0.503 0.618 5.750 0.230 0.491 0.615

5K
attention [4] 71.000 0.045 0.135 0.202 70.100 0.042 0.133 0.202

ours w/o attn 24.000 0.105 0.260 0.360 25.300 0.094 0.261 0.358

ours w/ attn 24.000 0.099 0.265 0.364 25.100 0.097 0.259 0.357

10K
attention [4] - - - - - - - -

ours w/o attn 47.500 0.065 0.183 0.270 48.500 0.061 0.189 0.272

ours w/ attn 47.700 0.065 0.185 0.267 48.300 0.061 0.178 0.261

Table 1: Comparison with the baseline [4] for using image as query to retrieve recipe and vice versa. ‘w/o attn’ means without

attention, ‘w/ attn’ means with attention. ‘↓’ means the lower the better, ‘↑’ means the higher the better, ‘-’ stands for score

not reported in [4].

Figure 3: Sample results of using ingredients as query to

retrieve images on a 1K dataset. Left: query ingredients.

Right: top 5 retrieved images (sorted). Corresponding im-

age is indicated by the green box.

4.1. Effect of Canonical Ingredients

To evaluate the effect of the proposed canonical ingredi-

ents, we compare with the attention-based model [4]. Given

a query in one modality, the goal is to retrieve the paired

point in the other modality by comparing their similarities

in FoodSpace. The association model is trained on four

Tesla K80 for 16 hours (25 epochs) until convergence.

Metrics. We applied the same metrics as [4], including

the median retrieval rank (MedR) and the recall at top K

(R@K). MedR is computed as the median rank of the true

positive over all queries, a lower MedR ≥1.00 suggests bet-

ter performance. R@K computes the fraction of true pos-

itives recalled among the top-K retrieved candidates, it is

a value between 0 to 100 with the higher score indicating

2Here we use LSTM instead of GRU because they have similar perfor-

mance as stated in their paper.

better performance.

Results. In Tab. 1, we report the scores of the baseline

model [4] and that of the same model with our canonical

ingredients (with and without attention). The performance

is greatly improved on 5K samples, which clearly shows the

advantage of using our canonical ingredients instead of the

raw ingredients data. Fig. 3 illustrates the top 5 retrieved

images using the ingredients as the query. Although the

correct images do not always appear in the first position,

the retrieved images largely belong to the same food type,

suggesting commonality in ingredients.

4.2. Effect of Attention

To evaluate the effect of the attention mechanism men-

tioned in Sec. 3.1, we report the performance of our model

for retrieval with or without attention. Interestingly, our

model with attention does not achieve better performance.

This is somewhat counter-intuitive since it can be seen in

Fig. 4 that the model with attention tends to focus on visu-

ally important ingredients. For example, in top-left recipe,

the model attends on green beans and chicken soup; in top-

right recipe, the model attends on mushroom and leeks. It

should be noted that the model does not simply attend on

ingredients that appears more frequently in the dataset (e.g.

olive oil, water, butter) but learns to focus on the ingredi-

ents that are more visible for the recipe. We suspect the

reason that attention mechanism does not improve to the

performance scores is that the RNN model learns the im-

portance of each ingredient implicitly. Nevertheless, the at-

tention mechanism can exist as an unsupervised method to

locate important ingredients for a recipe.
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Figure 4: Attention of the ingredients.

salad cookie muffin

IS ↑
StackGAN-v2 3.07 4.70 2.60

ours w/ CI 3.46 2.82 2.94

ours w/o CI 3.29 3.53 2.79

real 5.12 5.70 4.20

FID ↓
StackGAN-v2 55.43 106.14 104.73

ours w/ CI 78.79 87.14 81.13

ours w/o CI 62.63 89.33 80.22

(a) Inception score (IS) and Frechet inception distance (FID).

salad cookie muffin

random 450.00 450.00 450.00
StackGAN-v2 58.40 194.45 217.50
ours w/ CI 66.15 103.30 211.00
ours w/o CI 82.42 125.23 232.30
real 12.15 47.35 65.00

(b) Median rank comparison.

Table 2: Performance analysis: (a) Comparison of StackGAN-v2 and our model on different subsets by inception scores

(IS) and Frechet inception distance (FID). (b) Comparison of median rank (MedR) by using synthesized images to retrieve

recipes in subsets. We choose 900 as the retrieval range to adhere to the maximum number of recipes among test-sets for

salad, cookie and muffin. ‘w/ CI’ means with canonical ingredients, ‘w/o CI’ means without canonical ingredients.

4.3. Meal Image Generation

We present the results of synthesizing meal image given

an ingredient list. To mitigate the diversity caused by dif-

ferent preparation methods, we focus on narrow meal cat-

egories where the cutting and cooking methods are largely

consistent within each category. In the following experi-

ments, we only train on specific types of food within three

commonly-seen categories: salad, cookie, and muffin. Im-

ages from these categories usually contain key ingredients

that are easily recognized, which can be used to verify the

model’s ability to manipulate meal image by changing those

ingredients. The number of samples in train/test dataset

are 17209/3784 (salad), 9546/2063 (cookie) and 4312/900
(muffin).

Metrics. Evaluating the performance of synthesized im-

ages is generally a challenging task due to the high com-

plexity of images. We choose Inception Score (IS) [21] and

Frechet Inception Distance (FID) [10] as our quantitative

evaluation metrics.

Results. We computed IS and FID on 900 samples ran-
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Figure 5: Example results by StackGAN-v2 [27] and our model conditioned on target ingredients, the real images are also

shown for reference.

Figure 6: Example results from different ingredients c with

same random vector z in the salad subset.

domly generated on the test-set for each category, which is

the maximum number of recipes among test-sets for salad,

cookie and muffin. The IS of real images are also com-

puted as a baseline. Tab. 2a shows the results obtained on

different categories. We compare with StackGAN-v2 [27],

one of the state-of-the-art GAN model for text-based image

synthesis. ours w/o CI uses the original ingredients and

the proposed cycle-consistency constraint, while ours w/

CI uses the canonical ingredients and the proposed cycle-

consistency constraint. We observe the model achieves bet-

ter IS and FID on most subsets by using cycle-consistency

constraint. However, using canonical ingredients does not

always lead to better scores for the generative model. We

argue that image quality is more related to the design of the

generative model while the canonical ingredients help more

on the conditioning on the text.

To evaluate the conditioning on the text, we investi-

gate the median rank (MedR) by using synthesized im-

ages as the query to retrieve recipes with the association

model in Sec. 3.1. Tab. 2b suggests using cycle-consistency

constraint outperforms the baseline StackGAN-v2 [27] on

most subsets, indicating the utility of the ingredient cycle-

consistency. We also observe that applying canonical ingre-

dients always leads to better MedR which demonstrates the

effectiveness of our canonical-ingredients-based text em-

bedding model. Still, the generated images remain apart

from the real images in their retrieval ability, affirming the

extreme difficulty of the photo-realistic meal image synthe-

sis task.

Fig. 5 shows examples generated from different sub-

sets. Within each category, the generated images cap-

ture the main ingredients for different recipes. Compared

with StackGAN-v2 [27], the images generated using cycle-

consistency constraint usually have more clear ingredients

appearance and looks more photo-realistic.
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Figure 7: Example results from same ingredients with dif-

ferent random vectors. 8 synthesized images are shown for

each real image (top-left).

4.4. Components Analysis

Our generative model in Fig. 2 has two inputs, an ingre-

dients feature c and a random vector z. In this section we

analyze the different roles played by these two components.

Fig. 6 shows examples generated from different ingredi-

ents with the same random vector z in the salad subset. the

generated images contains different ingredients for differ-

ent recipes while sharing a similar view point. This demon-

strates the model’s ability to synthesize meal images condi-

tioned on ingredient features c while keeping nuisance fac-

tors fixed through vector z.

Fig. 7 further demonstrates the different roles of ingredi-

ents appearance c and random vector z by showing exam-

ples generated from same ingredients with different random

vectors. The synthesized images have different view points,

but still all appear to share the same ingredients.

To demonstrate the ability to synthesize meal images

corresponding to specific key ingredient, we choose a tar-

get ingredient and show the synthesized images of linear

interpolations between a pair of ingredient lists ri and rj (in

the feature space), in which ri contains the target ingredient

and rj is without it, but shares at least 70% of remaining

ingredients in common with ri
3. One can observe that the

3The reason for choosing the partial overlap is because very few recipes

Figure 8: Example results of synthesized images from the

linear interpolations in FoodSpace between two recipes

(with and without target ingredient). Target ingredient on

the left is tomato and the model is trained with salad subset;

target ingredient on the right is blueberry and the model is

trained with muffin subset. The interpolation points from

left to right are with
without

=
{

4
0 ,

3
1 .

2
2 ,

1
3 ,

0
4

}

model gradually removes the target ingredient during the

interpolation-based removal process, as seen in Fig. 8.

5. Conclusion

In this paper, we develop a model for generating photo-

realistic meal images based on sets of ingredients. We in-

tegrate the attention-based recipe association model with

StackGAN-v2, aiming for the association model to yield

the ingredients feature close to the real meal image in

FoodSpace, with StackGAN-v2 attempting to reproduce

this image class from the FoodSpace encoding. To im-

prove the quality of generated images, we reuse the image

encoder in the association model and design an ingredient

cycle-consistency regularization term in the shared space.

Finally, we demonstrate that processing the ingredients into

a canonical vocabulary is a critical key step in the synthesis

process. Experimental results demonstrate that our model is

able to synthesize natural-looking meal images correspond-

ing to desired ingredients, both visually and quantitatively,

through retrieval metrics. In the future, we aim at adding ad-

ditional information including recipe instructions and titles

to further contextualize the factors such as the meal prepa-

ration, as well as combining the amount of each ingredient

to synthesize images with arbitrary ingredients quantities.

differ in exactly one key ingredient.
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