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Abstract

Noise is ubiquitous in the world around us. Difficulty in

estimating the noise within a dataset makes learning from

such a dataset a difficult and challenging task. In this pa-

per, we propose a novel and effective learning framework

in order to alleviate the adverse effects of noise within a

dataset. Towards this aim, we modify a collaborative train-

ing framework to utilize discrepancy constraints between

respective feature extractors enabling the learning of dis-

tinct, yet discriminative features, pacifying the adverse ef-

fects of noise. Empirical results of our proposed algo-

rithm, Discrepant Collaborative Training (DCT), achieve

competitive results against several current state-of-the-art

algorithms across MNIST, CIFAR10 and CIFAR100, as well

as large fine-grained image classification datasets such as

CUBS-200-2011 and CARS196 for different levels of noise.

1. Introduction

Training a deep neural network on a large clean dataset,

such as ImageNet [38], is not considered as a challenge any

longer. However, it is expensive and time consuming to

create large and clean datasets. If one is willing and able

to accept noisy data in the training process, there is a vast

amount of information easily accessible online. The issue

of using such data is that the neural networks would easily

overfit to the noise [42, 28, 27]. [44] shows that deep neural

networks can easily fit random labels despite no apparent

structure. This is true in particular for deeper and wider

networks which may have the capacity to outrightly mem-

orize the training data. As argued in [7], a noise rate of 20

can have a significantly detrimental effect, in some cases,

halving the test accuracy.

Estimating the noise transition matrix directly is one of

the popular methods to deal with a noisy dataset. For ex-

ample, Goldberger et al.[12] added an additional softmax

layer on top of the original softmax layer to model the noise

transition matrix heuristically. However, when the number

of classes increases, it becomes considerably more difficult

to estimate the noise transition matrix. Additionally, the un-

derlying assumption of the transition matrix is very strong.

It assumes there is a fixed probability of an instance being

corrupted into one of the other classes. An improvement to

this could lead to focusing on identifying noisy samples by

attempting to select a set of clean images instead of correct-

ing the corrupt labels.

In order to move away from estimating the noise transi-

tion matrix, [19, 30, 35] proposed another direction which

is to select clean instances out of a noisy dataset. Intuitively,

an instance with a smaller loss has a greater probability of

being correctly labeled. A neural network can then either

use these examples to train or increase the proportion of

these data.

In this paper, we propose a simple but effective learning

paradigm called “Discrepant Collaborative Training”. The

proposed method allows us to make use of both clean and

noisy examples, and improve the ability to select clean in-

stances.

To identify clean samples from noisy ones, one can in-

spect the sample loss during training. Samples with a large

loss value are more likely to be noisy and, hence, can be

removed/weighted-down during the back propagation step.

The idea of Co-Training (Co-Tr) is to benefit from two

(or more) networks which are complementary to one an-

other and can help correct each other when they make mis-

takes. Naturally, the idea of Co-Tr suits the task of learning

from a noisy dataset as well. The underlying assumption,

here, is that the two networks are substantially different to

each other so their loss signal is complementary. To achieve

a discrepancy between the loss signals, one can choose to

use two different network architectures. This, however,

brings a new level of difficulty as, if the networks are not

similar in structure, one might adapt faster with the result

of the iterative procedure failing. Moreover, use of two dif-

ferent network architectures may lead to potential mismatch

between their individual expressive powers, with a potential

of one outperforming the other by a significant margin. As

such, it may be more desirable in practice to use a specific
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structure for both networks and initialize them differently

to achieve the necessary diversity [16, 19]. Unfortunately,

even with this, there is no guarantee that the networks re-

main substantially different for the purpose of collaboration

as required for the Co-Tr framework. In this work, we there-

fore propose a new method to ameliorate this shortcom-

ing. A max-discrepancy co-training framework is proposed,

where we achieve diversity by encouraging the networks

to be statistically different. The notion of maximum mean

discrepancy [17] is a simple yet powerful non-parametric

criterion that measures the discrepancy of two distributions

by mapping them to a Reproducing Kernel Hilbert Space

(RKHS) [2].

Our main contributions are:

• A novel method to introduce diversity between net-

works in a co-training setting.

• Demonstrated improvement in identifying clean sam-

ples in a noisy dataset.

• Extensive experiments on different datasets and set-

tings.

• Competitive or State-of-the-Art results with respect to

comparable works on five different datasets, includ-

ing two large fine-grained image recognition datasets

(CUBS200-2011 [41] and CARS196 [22]).

2. Preliminaries

Notations: Throughout this paper, we use bold lower-

case letters (x) to show column vectors and bold upper-

case letters (e.g., X) to show matrices.[·]i is used to denote

the i-th element of a vector and In shows the n× n iden-

tity matrix. The Frobenius norm of a matrix is shown by

‖X‖F =
√
Tr(X⊤X), with Tr(·) indicating the matrix

trace.

In this work, we make use of the Maximum Mean Dis-

crepancy (MMD) [15] to measure the difference between

two distributions S and T . Let {XS
i }

n
i=1 and {XT

i }
m
i=1

denote i.i.d samples taken from S and T , respectively.

An empirical estimate of MMD between S and T is ob-

tained as

MMD(S, T ) =
∥∥∥ 1
n

n∑

i=1

Φ(XS
i )−

1

m

m∑

j=1

Φ(XT
j )

∥∥∥
2

H
(1)

Here, H denotes the induced Reproducing Kernel

Hilbert space [1]) and ‖·‖H denotes its norm. MMD(S, T )
is a measure of overlap between S and T such that increase

(or decrease) in overlap results in decrease (or increase) in

MMD(S, T ). Φ(p) represents a functional mapping of the

input p to a high-dimensional space. By the kernel trick,

the form in Eqn. (1) can be written as;

MMD(S, T ) =
1

n2

n∑

i

n∑

i′

k(XS
i ,X

S
i′)

−
1

nm

n∑

i

m∑

j

k(XS
i ,X

T
j ) +

1

m2

m∑

j

m∑

j′

k(XT
j ,X

T
j′)

(2)

In all our experiments, we have employed the Gaussian

kernel

k(u,v) = exp(−
‖u− v‖2

σ
) . (3)

The optimal value of σ used in Eqn. 3 is provided in the

supplementary material.

3. Methodology

In this section, we present our proposed methodology

i.e. Discrepant Colaborative Training (DCT). We formu-

late DCT with a cohort of two networks (see Fig. 1). The

two sub-networks used in DCT are represented as f and

g with its learnable parameters θ and θ̂, respectively. We

first briefly describe the selection strategy for choosing the

clean labels, followed by the description of the discrepancy

MMD module and the overall definition of the loss func-

tion.

3.1. Selection Strategy

Similar to [16, 19], we also employ the classification loss

based selection strategy. More specifically, we obtain the

classification loss of Xi for f and g as shown below:

Lf (Xi) = − log

(
exp(zf

i )∑m

1 exp(zf
j )

)

Lg(Xi) = − log

(
exp(zg

i )∑m

1 exp(zg
j )

)
,

(4)

where z
f
i = fθ(Xi) and z

g
i = g

θ̂
(Xi)

1. Similar to [16],

we select R examples for each f and g within a mini-batch

of size N that produces the R lowest Lg and Lf respec-

tively. Thereafter the loss to update θf is given as

Lf
1 =

R∑

i=1

Lf (Xi) ∀Xi ∈ Dg , (5)

where Dg represents set of images that results in the R low-

est Lg calculated in Eqn 4. Similarly, we calculate the loss

to update θg as

Lg
1 =

R∑

i=1

Lg(Xi) ∀Xi ∈ Df , (6)

where Df represents set of images that results in the R low-

est Lf as calculated in Eqn 4.

1Usually it is the output of the softmax layer for each of f and g.
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Figure 1. Forward (top) and backward (bottom) propagation of Discrepant Collaborative Training. [FORWARD] Five images are fed

into sub-networks independently, four (blue) are correctly labeled and one (red) is corrupted with noise. The first discrepancy module is

placed after Layer n between two networks. The second discrepancy module is placed after softmax layer. Then, the five images will be

ranked according to its own cross entropy loss calculated by each network. Then the two networks exchange information of the ranking.

[BACKWARD] According to the ranking information provided by its ”peer” network, each network chooses only a few images with

smaller loss value to update itself. We maximize the diversity of the first discrepancy module to learn diverse features in each of the

network, while the diversity of the second module is minimized so as to learn the same class distributions.

3.2. Discrepancy Loss

In order for f and g to learn diverse features, we propose

to explicitly insert a MMD module in-between them. The

loss calculated is shown as:

L2 = MMD(Ai,Bi) (7)

where Ai = fθ(1:l)(Xi) and Bi = g
θ̂(1:l)(Xi), l denotes

the layer where the MMD module is used, and θ(1 : l) and

θ̂(1 : l) represent the parameters of the two networks f and

g till the layer l. It is to be noted that L2 is calculated ir-

respective of the presence or absence of noisy labels within

the mini-batch of the images.
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3.3. Consistency Loss

Even though we want both f and g to learn diverse

and distinct features, the final class probability distribution

learnt by f and g should not be very different from each

other. Thus we use another MMD module to explicitly re-

duce the discrepancy between the z
f
i and z

g
i for every Xi

as shown below:

L3 = MMD(zf
i , z

g
i ). (8)

The final loss for DCT is given below:

Lossf = Lf
1 + λ3L3 − λ2L2 (9)

Lossg = Lg
1 + λ3L3 − λ2L2 (10)

λ3 and λ2 are the combination weights for the consistency

and the diversity loss respectively. Eqn 9 and 10 are used to

update f and g respectively using stochastic gradient opti-

mizers. Algorithm 1 provides the pseudo code of our pro-

pose DTC algorithm.

4. Related Work

Co-Training : The seminal work was proposed by

Blum et al. [4], where they successfully demonstrated the

use of a Co-Tr framework to learn different insights in a

standard Web page classification problem. In general, a Co-

Tr algorithm attempts to learn two or more distinct and di-

vergent feature extractors and have been successfully used

across a multitude of tasks ranging from domain adapta-

tion [6], image classification [34, 16], data segmentation [5]

to tag-based image search [13] and many more. One such

well-known algorithm is Learning to Teach [18]. Similar

to Co-Tr, LT co-evolves a teacher and a student network(s)

to learn discriminative features thanks to an inherent feed-

back sharing mechanism between the two of them. Simi-

larly, model distillation algorithms [45, 29, 18] use an addi-

tional mimicry loss to align the final class-specific posterior

distributions of every student network. Chen et al. [6] learns

an Auto-encoder to benefit from using unlabeled data in the

Co-Tr learning framework.

Discrepancy Measurement. Comparing and match-

ing probability distributions between two different domains

forms the fundamental building block for the design and

development of several algorithms in the field of machine

learning and computer vision [21, 14, 36]. Several di-

vergences such as Kullback-Leibler (KL, [24]), Jensen-

Shannon [31], etc. have been successfully integrated in

learning similar/dissimilar distributions across various do-

mains. However, these diversity learning algorithms do not

take into account the geometry of the distributions, thereby

failing to either disentangle or join the distributions [11].

Fortunately, several algorithms such as Maximum Mean

Discrepancy (MMD) [17], Sinkhorn Divergence [11], Op-

timal Transport (OT) [3] etc. have been developed and suc-

cessfully utilized to address the aforementioned drawback.

MMD has been widely adopted as a discrepancy metric

module across domain adaptation ([2]), unsupervised learn-

ing [43], generative models [9] and many more.

Learning from noisy datasets Learning from a clean

dataset is not considered as a difficult task any longer [10,

37, 39]. Recently, there has observed a growing surge in the

interest of studying the robustness of any machine learn-

ing algorithm against noisy labels. In this regard, Mentor-

Net [19] trains an additional StudentNet network to select

clean labels which is in-turn used to further guide the main

training process. If a clean and unbiased validation set is not

available, MentorNet will discover new data-driven sample-

weight schemes from data which can be updated accord-

ing to feedback from StudentNe. Ren et al. [35] follow a

meta-learning paradigm and use a clean validation set to re-

weight the training samples. Importance weights for train-

ing samples which result in the decrease of the loss in a

clean validation set are increased, while the weights of those

that result in the increase of the loss are decreased during

the training process. One of the major drawbacks of [35] is

the calculation of the clean validation set based importance

weights after every gradient update of the network, which

increases the time complexity of the overall algorithm. On

the other hand, Decoupling [30] trains two different sub-

networks with the examples that are confusing to both of

them during the course of training2. Similarly, Co-Tr [16]

trains two different networks with one selecting the clean

examples, i.e. the examples with lower classification loss,

for the other in an intertwined fashion. However, without

any explicit discrepancy module between the networks that

enforce the features learnt to be distinct and different, the

solution learnt by the two aforementioned algorithm is not

optimal.

5. Empirical Evaluations

Dataset. We verify the effectiveness of our approach

on five benchmark datasets: MNIST [26], CIFAR10 [23],

CIFAR100 [23], CUB200-2011 [41] and CARS196 [22].

More details are listed in table 2.

Noise Type. We test our design on noisy-supervised im-

age classification task. Since all datasets are clean, fol-

lowing [16, 33], we corrupt these datasets manually by the

noise transition matrix Q ∈ R
K×K , where Qij = Pr(ỹ =

j|y = i) gives the probability that noisy ỹ is flipped from

clean y. In this paper, we test our methods on two differ-

2Both the networks produce different predictions with high confidence.
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Data: θ and θ̂ (parameters of network f and g), learning rate η, epoch number T , l the layer number for the Diversity

module.

Algorithm DCT

1 for t = 1, . . . , T do

2 Shuffle training set D;

3 Fetch mini-batch D̄ from D;

4 Obtain Df = argminD̄ l(f, D̄); sample R(T) instances with small cross entropy loss

5 Obtain Dg = argminD̄ l(g, D̄); sample R(T) instances with small cross entropy loss

6 Update θ = θ − η
[
∇l(θ,Dg)− λ2∇MMD(fθ(1:l)(D̄), g

θ̂(1:l)(D̄)) + λ3∇MMD(fθ(D̄), g
θ̂
(D̄))

]
;

7 Update θ̂ = θ̂ − η
[
∇l(θ̂,Df )− λ2∇MMD(fθ(1:l)(D̄), g

θ̂(1:l)(D̄)) + λ3∇MMD(fθ(D̄), g
θ̂
(D̄))

]
;

end

Algorithm 1: Discrepant Collaborative Training. Details of how to update R(T) is referred to [16].

Table 1. Structure of Network trained by MNIST, CIFAR10 and

CIFAR100. The slope of all all LReLU functions in the network

are set to 0.01. K denotes the number of training classes for the

dataset used.

#Layer Input Image

1 3× 3 conv, 128 LReLU

2 3× 3 conv, 128 LReLU

3 3× 3 conv, 128 LReLU

2× 2 max-pool, stride 2

dropout, p = 0.25

4 3× 3 conv, 256 LReLU

5 3× 3 conv, 256 LReLU

6 3× 3 conv, 256 LReLU

2× 2 max-pool, stride 2

dropout, p = 0.25

7 3× 3 conv, 512 LReLU

8 3× 3 conv, 256 LReLU

9 3× 3 conv, 128 LReLU

avg-pool

10 fc-layer 128 → K

softmax

ent noise transitions matrix: (1)Symmetry flipping; (2) Pair

flipping. Noise transition matrices are shown in figure 2(a)

and 2(b). For easy understanding, we take noise rate ǫ = 45
for pair flip and ǫ = 20, 50 for symmetry flip.

In our experiments, we test three different noise condi-

tions: (1) 45 pair flip noise; (2) 50 symmetry flip noise; (3)

20 symmetry flip noise. Since this paper mainly focuses on

the value of noisy data and robustness of our proposed DCT,

we choose high noise rate values i.e. 45 and 50. It is to be

noted that, for pair flip noise, ǫ should be lower than 50,

otherwise the neural network will need additional informa-

tion to learn discriminative features. In order to verify the

robustness of our DCT method under lower noise condition,

we also test on 20 symmetry flip noise.

(a) Pair flip noise (b) Symmetry flip noise

Figure 2. Noise transition matrices [16]. We have shown for 5

classes as an example.

Network and optimizer. For experiments on MNIST, CI-

FAR10 and CIFAR100, we use the CNN architecture as

shown in Table 1. We follow the settings of “Tempo-

ral Ensembling” ([25]) and “Virtual Adversarial Training”

([32]) which is the well-acknowledged standard test bed for

weakly-supervised learning. Here, we use Adam [20] opti-

mizer with momentum and initial learning rate set to 0.9 and

0.001 respectively. The batch size is fixed to 128 and we run

DCT for 600 epochs. We choose [16] as our baseline and we

follow their detailed settings. For experiments on CUB200-

2011 and CARS196, we use Inception-V1 [40] architecture

pretrained on Imagenet [8]. Here, we use RMSProp and

Adam optimizer for CUB200-2011 and CARS196 dataset

respectively.The initial learning rate for both the optimizers

is set to 0.0001. The batch size is fixed to 32 and we report

the results after 50 epochs of training.

Note: We report the optimal value of the hyper-parameters

λ2, λ3 and σ used in DCT for all the datasets in the supple-

mentary material.

Baselines. For MNIST, CIFAR10 and CIFAR100, we

compare our results with the baseline methods: (i) F-

correction [33], which corrects the prediction by using a

noise transition matrix; (ii) Decoupling [30],which updates

the parameters only using the samples where the two net-

works are not confident in their predictions; (iii) Mentor-
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Table 2. Dataset Information
dataset # of train images # of test images # of class image size

MNIST 60,000 10,000 10 28× 28
CIFAR10 50,000 10,000 10 32× 32
CIFAR100 50,000 10,000 100 32× 32

CUB200-2011 5,864 5,924 200 227× 227
CARS196 8,054 8,131 196 227× 227

Table 3. Comparison of our proposed DCT against several baseline algorithms. We report the average accuracy (%) after 5 runs for DCT.

noise Dataset F-correction [33] Decoupling [30] MentorNet [19] Co-Teaching [16] DCT

pairflip-45% MNIST 0.24 58.03 80.88 87.63 88.54

symmetric-50% MNIST 79.61 81.15 90.05 91.32 94.21

symmetric-20% MNIST 98.82 95.70 96.70 97.25 98.54

pairflip-45% CIFAR10 6.61 48.80 58.14 72.62 72.91

symmetric-50% CIFAR10 59.83 51.49 71.10 74.02 78.50

symmetric-20% CIFAR10 84.55 80.44 80.76 82.32 85.41

pairflip-45% CIFAR100 1.60 26.05 31.60 34.811 35.33

symmetric-50% CIFAR100 41.04 25.80 39.00 41.37 42.11

symmetric-20% CIFAR100 61.87 44.52 52.13 54.23 56.11

Net [19], where an extra teacher network is pre-trained and

used to filter out the noisy instances for its student net-

work to learn robustly under noisy labels. (iv) Co-Teaching

([16]), which trains two identical sub-networks with one se-

lecting the possible clean labels for the other. Results of

the above baselines are reported from [16]. Furthermore, in

order to verify the robustness of the performance of DCT

method on the fine-grained image recognition datasets such

as CUB200-2011 and CARS196; we consider two baselines

model trained with the (a) conventional cross-entropy loss

and (b) Co-Teaching algorithms.

5.1. Analysis on MNIST, CIFAR10 and CIFAR100

MNIST. As observed in Table 3, all the baseline meth-

ods obtain competitive results against each other for a low

value of noise rate (i.e. symmetry 20%). Our DCT method

obtains competitive 98.54% against the best method i.e. F-

correction (which achieves 98.82%) accuracy on the test

set. A drop in performance for F-correction and Decou-

pling baseline methods is observed when the noise rate is

increased to 50%. On the other hand, MentorNet and Co-

Teaching are pretty reboust in dealing with a higher noise

rate. Our proposed DCT method outperforms all the base-

lines and obtains the state-of-the-art accuracy of 94.21%,

outperforming the current best algorithm (i.e. Co-Teaching)

by 2.89%. Further increase in the complexity of the nosie

(i.e. pair-flip noise with ǫ = 45%) F-correction and De-

coupling fail to classify images. Again, one can evidently

observe that DCT outperforms all the baselines by a signif-

icant margin. More specifically, we outperform MentorNet

by 7.66% in terms of accuracy on the test-set.

CIFAR10. From Table 3, it is observed that all the base-

line methods obatin similar results in terms of accuracy on

the test set for symmetry flip noise with ǫ = 20%. Unlike

MNIST dataset, DCT outperforms all the baselines includ-

ing F-correction by 0.86% for CIFAR10 dataset. On further

increasing the complexity of the noise properties, it is easily

observed that DCT is the best performing method against all

the baselines, thereby validating the design choices of using

two different MMD modules to learn distinct and discrimi-

native features.

CIFAR100. It is observed from Table 3 that for symmet-

ric noise with ǫ = 20%, DCT outperforms all the compet-

itive baseline algorithms except F-correction. It is evident

that F-correction is a reliable approach to learn from noisy

labels for a lower value of noise rate. However, one can

definitely observe that F-correction lacks robustness when

the noise rate is increased. On the other hand, it is evi-

dent that DCT is more robust against the increase in noise

percentages in comparison to the baseline methods; thereby

reinforcing the choice of our algorithmic design.

5.2. Analysis on CUB200­2011 and CARS196

Figure 3(a) and 3(b) shows some exemplar images from

CUB200-2011 and CARS196 dataset respectively.

CUB200-2011 The results are reported in Table 4. The

baseline model trained with the conventional cross-entropy

classification loss achieves a test accuracy of 63.78% for

the symmetric noise with ǫ = 20%. An increase of 8.56%
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Table 4. Comparison of our proposed DCT against several baseline algorithms for large fine-grained image recognition datasets in terms

of accuracy on the test set (%).

noise Dataset Cross Entropy Co-Teaching DCT (ours)

symmetric-50% CUB200-2011 40.80 54.64 57.24

symmetric-20% CUB200-2011 63.78 72.34 74.57

symmetric-50% CARS196 38.86 66.75 67.80

symmetric-20% CARS196 71.76 86.00 86.62

Table 5. Study of the importance of using noisy samples. The average accuracy (%) is reported after 5 different runs of DCT.

noise Dataset Co-Teaching DCT-clean DCT

symmetric-50% MNIST 91.32 92.92 94.21

symmetric-20% MNIST 97.25 98.14 98.54

symmetric-50% CIFAR10 74.02 76.81 78.50

symmetric-20% CIFAR10 82.32 84.47 85.41

symmetric-50% CIFAR100 41.37 41.55 42.11

symmetric-20% CIFAR100 54.23 55.54 56.11

is observed over the cross-entropy baseline for the Co-

Teaching algorithm. Morever, DCT outperforms all the

baseline methods and achieves an accuracy of 74.57% for

the same noise setting. Further increase in the ǫ to 50%
evidently results in the decrease of the classification accu-

racy, however DCT still outperforms the rest by a significant

margin. These results clearly demonstrate the effectiveness

and robustness of DCT for large scale fine-grained image

recognition dataset.

CARS196 As seen by the results obtained in Table 4, it

is observed that our proposed DCT algorithm outperform

both the Cross-Entropy baseline by a significant margin in

terms of accuracy on the test set. It is however also observed

that the performance gain over Co-Teaching is not substan-

tial for CARS196 dataset in comparison to the performance

gain obtained in CUBS200-2011. One plausible explana-

tion that can be attributed to this trend is that CARS196 is a

difficult dataset to train in comparison to CUBS200-2011.

According to the results shown in table 3 and 4, we verify

the effectiveness and robustness of our DCT method, irre-

spective of the properties of the noise present in the datasets.

Note: One of the key aspects of the fine-grained image

recognition datasets is that the inter-class variance is low

and intra-class variance is high, and therefore are more vul-

nerable to noise. From the results obtained in Table 4, it

is noted that the performance of Cross-Entropy baseline is

substantially inferior against Co-Teaching and DCT. This

observation clearly demands the need of two (or more) fea-

ture extractors in order to learn discriminative features in

presence of noise with the fine-grained dataset.

6. Ablation Study

In this section, we perform extensive ablation study re-

garding the various design choices that have been consid-

ered for DCT.

6.1. Importance of the selection strategy

As mentioned in § 3.2, L2 in Eqn. 7 is not influenced

by the selection strategy mentioned in § 3.1 as the entire

mini-batch of is used to calculate L2. In order to obtain

more insights into the importance of the Diversity discrep-

ancy module in the overall learning framework of DCT, we

employ the selection strategy based on the ranking of the

cross entropy loss to choose the samples for maximizing the

divergence between the networks. In other words, we prune

the noisy samples for the networks and attempt to increase

the difference between the two networks 3. We refer to this

setting as DCT-clean. Similar to Eqn. (7), this operation is

shown as follows:

L2 = MMD(Âi, B̂i)

s.t. Âi = fθ(1:l)(Xi) ∀Xi ∈ Df

B̂i = g
θ̂(1:l)(Xi) ∀Xi ∈ Dg

(11)

The results are shown in Table 5. As observed, one can

obtain better performance without such pruning of noisy la-

bels, thereby successfully demonstrating the need of noisy

labels to learn diverse features. One plausible explanation

for this observation is that noisy labels perturb the overall

decision boundary learnt by the two networks, thereby lead-

ing to optimal solution.

3It is to be noted that the clean labels of one network is chosen by the

other network and vice-versa.
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(a) CUBS200-2011 (b) CARS196

Figure 3. Exemplar images from the fine-grained image recognition datasets.

Table 6. Study of the importance of the two discrepancy modules

used in DCT. w denote either of the feature extraction networks

i.e., f and g. (please refer to § 6.2 for more details.) The average

accuracy (%) is reported after 5 different runs of DCT.

noise Dataset LossDw LossCw DCT

symmetric-50% MNIST 93.14 91.35 94.21

symmetric-20% MNIST 97.89 97.04 98.54

symmetric-50% CIFAR10 77.11 74.35 78.50

symmetric-20% CIFAR10 84.08 82.42 85.41

symmetric-50% CIFAR100 41.89 41.29 42.11

symmetric-20% CIFAR100 55.48 54.13 56.11

6.2. Importance of the Discrepancy Modules

In this section, we evaluate the importance of the two

discrepancy modules, namely Diversity loss (i.e., Eqn. (7))

and Consistency loss (i.e., Eqn. (8)) in the DCT learning

framework. We train the networks with the following loss

functions

LossDw = Lw
1 + L3 ∀ w = f, g (12)

LossCw = Lw
1 − L2 ∀ w = f, g (13)

for the former and the later case respectively. The results

are shown in Table 6. It is clearly observed that without

use of diversity loss, the performance of DCT drops signif-

icantly. Surprisingly, with the removal of the consistency

loss, no such drastic drop in the performance is observed.

This clearly indicates the need of the Diversity loss module

in DCT to learn distinct and discriminative features.

6.3. Importance of the Position of the Diversity
Module

In this section, we study the effect of the position l in

calculating the Diversity loss (please refer to Eqn. 7). In

the original DCT algorithm, we have added the discrepancy

module after the 5th layer of the CNN. As an additional

Table 7. Study of position l for the Diversity loss module in the

DCT framework. (please refer to § 6.3 for more details.) The

average accuracy (%) is reported after 5 different runs of DCT.

noise Dataset DCT(7th) DCT(5th)

symmetric-50% MNIST 93.27 94.21

symmetric-20% MNIST 97.49 98.54

symmetric-50% CIFAR10 77.69 78.50

symmetric-20% CIFAR10 84.67 85.41

symmetric-50% CIFAR100 41.90 42.11

symmetric-20% CIFAR100 55.72 56.11

experiment, we also study the effect of fixing the discrep-

ancy module after the 7th layer. The results are shown in

Table 7. As observed, fixing the discrepancy module after

the 5th layer leads to better results in comparison to the 7th,

although the difference in performance is not significant.

7. Conclusion

In this paper, we present a novel yet effective method

(i.e. Co-Tr with Discrepancy) for training deep neural net-

works in the presence of noise. Specifically, we equip the

Co-Tr framework with two different discrepancy modules,

(a) Diversity and (b) Consistency. The former is aimed

at enforcing discrepancy between the two feature extrac-

tion networks in the Co-Tr learning module, thereby learn-

ing distinct features; while the latter enforces the networks

to learn similar class probability distributions. Our em-

pirical evaluation across several datasets for different com-

plex noise conditions clearly demonstrates the need of us-

ing such discrepancy modules in CTD. As an extension, the

performance of different discrepancy modules other than

MMD can be studied. Furthermore, noisy multi-label clas-

sification tasks is an area where similar approaches may

prove successful.
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