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Abstract

As light field images continue to increase in use and ap-

plication, it becomes necessary to adapt existing image pro-

cessing methods to this unique form of photography. In this

paper we explore methods for applying neural style transfer

to light field images. Feed-forward style transfer networks

provide fast, high-quality results for monocular images, but

no such networks exist for full light field images. Because

of the size of these images, current light field data sets are

small and are insufficient for training purely feed-forward

style-transfer networks from scratch. Thus, it is necessary

to adapt existing monocular style transfer networks in a way

that allows for the stylization of each view of the light field

while maintaining visual consistencies between views. To

do this, we first generate disparity maps for each view given

a single depth image for the light field. Then in a fashion

similar to neural stylization of stereo images, we use dispar-

ity maps to enforce a consistency loss between views and

to warp feature maps during the feed forward stylization.

Unlike previous work, however, light fields have too many

views to train a purely feed-forward network that can styl-

ize the entire light field with angular consistency. Instead,

the proposed method uses an iterative optimization for each

view of a single light field image that backpropagates the

consistency loss through the network. Thus, the network ar-

chitecture allows for the incorporation of pre-trained fast

monocular stylization network while avoiding the need for

a large light field training set.

1. Introduction

Light field photography continues to be a technology

that presents many challenges and problems to overcome

including memory constraints and editing difficulties. How-

ever, it also presents fascinating capabilities that are not pos-

sible with regular images, such as novel view synthesis and

focal stack generation. In recent years, we have seen light

field technology adopted for more and more commercial

applications, from virtual- and augmented-reality systems

to dedicated light-field cameras such as those from Lytro

(based on the work of [32]). Many variants on multiple-

camera imaging configurations are beginning to become

more commonplace in the commercial market (ex. dual-

camera configurations increasingly found in cell phones),

Figure 1. Stylization of two views from a light field with 81 im-

ages. Even though there are minimal visual differences between

these two views from the same light field image (top), the styliza-

tion of these two views (middle) results in dramatic differences in

the coloring and features that are not present in the original. Our

proposed method results in consistency not only between these

two views (bottom) but the entire set of 81 views.

and methods for working with these images often draw from

concepts in light-field literature.

“Painterly” and other forms of non-photorealistic ren-

dering of one image based on the style of another have

a long history in computer graphics. We refer the inter-

ested reader to the original work of [13, 15, 16] as well as

more recent work in [29] and surveys in [12, 14]. This

area has seen a resurgence in recent years due to the ap-

plication of deep neural networks to the problem. Rather

than trying to analyze brush strokes, texture, or other prop-

erties explicitly, recent methods for neural style transfer

treat the problem as one of optimizing for preservation of

the content of one image and the stylistic properties of an-

other. The groundbreaking work of Gatys et al. [8] and the

feed-forward method presented by Johnson et al. [21] have

opened the door to many variations on these ideas, including

improved methods of direct optimization on the resulting

image [22,33], modifications to the feed-forward stylization

network [23,25,26], stylizing for texture synthesis [39,40],

using depth information to inform stylization [28], train-
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ing a single network to perform multiple stylizations [43],

providing greater control over the stylization [9], stylizing

video [2, 11, 17, 37], and stylizing stereo pairs [3, 10].

We seek to expand neural stylization to light-field im-

ages. This would present new possibilities in stylization

not seen before, such as novel viewpoint generation and dy-

namic refocusing of stylized images. Expanding stylization

to different types of photography has been done before for

360◦ video [37], RGB-D [28], and stereo imaging [3, 10],

but light fields present their own challenges that cannot be

solved by simply generalizing one of these methods.

The naive approach to stylizing a light field would be

to use a single-image style transfer network for each view

independently, but such a network has no notion of angu-

lar consistency between the images, which generally leads

to visual differences as shown in Fig. 1. Both [10] and [3]

note these inconsistencies when naively stylizing stereo im-

ages (what [10] refers to as the “baseline” method). This

problem is only exacerbated when one goes from two im-

ages for a stereo pair to the much larger number of views

in a light-field image (typically on the order of 50–200).

This inconsistency degrades the scene geometry that could

normally be calculated from a light field. Without this in-

trinsic consistency and geometry, none of the effects that

are normally associated with light fields can be processed

in a visually coherent manner.

This paper presents a method for stylizing light field im-

ages in a way that maintains angular consistency between

the different views. We first demonstrate an effective way to

generate disparity maps for each view of the light field given

only a single depth map. Then, we exploit the scene geom-

etry to inform the network of locations that are the same

between views, extending the concept of multiple-image

consistency used previously for video sequences [37] and

stereo pairs [3,10]. Additionally, the proposed method does

not require retraining the base feed-forward style transfer

network [21] specifically for light fields. This allows previ-

ously trained networks to be used and avoids the need for

large light-field datasets.

As light field technology continues to improve and be

adopted for more applications, the need for methods of light

field editing will continue to grow, especially as the capa-

bilities of image-processing neural networks also continue

to expand. Although this work is specific to neural style

transfer, it potentially lays a foundation for light-field con-

sistency optimizations that could generalize to other appli-

cations.

2. Related Work

Light field research continues to expand as light field

cameras become increasingly available for commercial ap-

plications. Light fields can be used to create novel views

and generate focal stacks [5, 24, 32]. Light fields can also

be used to calculate more accurate depth estimates using

epipolar images and light field features [4, 18, 19, 27]. The

multiple angles and views of a light field also allow for

separation of the diffuse and specular components of re-

flectance [1, 7]. Work has even been done to use light fields

for classification, especially of materials [42].

As described in the introduction, the work in this paper

seeks to extend the ideas of neural stylization to light field

images, for which the key challenge is maintaining angular

consistency between the multiple stylized views. Maintain-

ing such consistency in the result is an essential element of

any approach that edits multiple images with corresponding

content, such as video sequences or stereo pairs [30, 31].

The key in these approaches is to identify or use existing

methods to identify correspondences between the images

(optical flow for video, stereo correspondence, etc.) and en-

sure that the results maintain this correspondence.

Ruder et al. [37] first introduced the idea of using such

correspondences to extend neural style transfer to video se-

quences. They used optical flow to identify the correspon-

dences and extended the optimization-based stylization ap-

proach of Gatys et al. [8] to include an additional consis-

tency loss term. These ideas were extended by Chen et

al. [2] to train a feed-forward network (building on [21])

to produce similarly consistent video stylization.

Chen et al. [3] and Gong et al. [10] have each proposed

methods for photo-consistent style transfer for stereo pairs,

which can be thought of as a much smaller subset (two

images) of a light field. The approach of Chen et al. [3]

builds on a network structure similar to their earlier video-

stylization work [2] to train a feed-forward network to learn

to perform the stylization. Gong et al. [10] likewise train a

feed-forward network to perform stylization.

This paper incorporates elements of both [3] and [10],

but neither of these methods for stylizing image pairs di-

rectly generalize to the much larger number of views in light

fields because 1) both methods rely on having pairwise dis-

parity maps from each view to the other, 2) both depend on

a single network to stylize all views, and 3) both rely on re-

training the network on a large dataset. Extrapolating such

an approach to a full light field is simply not viable.

3. Multiview Angular Consistency

To enforce angular consistency between multiple views,

pixel-wise correspondence needs to be determined for each

view in the light field. The most effective way of doing

this is by using the depth map that is calculated from the

epipolar images of the light field (e.g., [4,18,19,27]), lever-

aging more information from the field than in two-image

stereo correspondence. Using such methods, the depth map

is generally precomputed for light field images in standard

datasets [35, 36] and is easily accessible. However, such

methods usually produce a depth map only for the cen-

tral (reference) view and not for each separate view in the

light field [20], which must be addressed for consistent styl-
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ization. The method proposed here is independent of the

choice of method used to estimate depth and assumes that

the depth map for the central view has been precomputed.

This paper adopts the notation of [19] and most other re-

cent work by indexing the subaperture views by (s, t) and

the pixels within each view by (x, y). Individual subaper-

ture views are thus denoted as Is,t with the central image

as I0,0 and others indexed using both positive and negative

relative (s, t) indices.

Although the central-view depth map is often not cali-

brated, it provides relative scene geometry and can be in-

verted and calibrated to produce a pixel disparity map D0,0

using a simple optimization algorithm to estimate the un-

known scaling due to focal length, imaging pixel density,

and the (effective) baseline separation of the subaperture

views [6]. Specifically, this optimization inversely scales

the depth map to produce the disparity map D0,0 that maxi-

mizes the correspondence between the central view and the

adjacent view to the right, giving us the mapping I0,0 →
I1,0. For many light fields, including those shown in our

results, there is also an additional translation and cropping

for each view, resulting in a planar horopter at an unknown

depth and a mix of both positive and negative disparities. To

accommodate such cases, we add a second optimized cali-

bration parameter that adds a translation bias. This allows

for negative disparities even though the inverted depth map

is all positive values.

Because stereo images are typically separated along a

horizontal baseline, disparity is often mistakenly thought

of solely as the degree of opposite horizontal movement as

one moves in a horizontal direction. But it is important to

remember that disparity is the degree of apparent opposite

movement as one moves the camera in any direction. Thus,

the reference disparity map D0,0 thought of as horizontally

mapping I0,0 → I1,0 can just as easily be used to provide

the mapping I0,0 → I0,1 as one moves vertically. Similarly,

the vector field that maps I0,0 → Is,t can be calculated us-

ing D0,0(x, y) [s, t]
T .

As noted previously, depth maps for light fields are of-

ten computed only for the central (reference) view, allow-

ing computation of a disparity map for this view only. A

disparity map for an image allows for forward-mapping of

each pixel to where it maps to in another view, which can

be many-to-one in the case of occlusion or none-to-one in

the case of disocclusion. Instead of using forward warping,

however, we desire to use backward warping of the cen-

tral view to the other views, which requires disparity maps

Ds,t(x, y) for each of the other views.

We assign disparity Ds,t(x, y) for each pixel in each

view through a simple search to find the set of pixels (po-

tentially empty, one, or more than one) in the central im-

age that map to that pixel (x, y) in view (s, t). While

this might seem to be an expensive search, it can be

constrained in multiple ways: 1) epipolar geometry con-

strains the corresponding points to match along the line

Figure 2. Reversing the central disparity map D0,0 to produce

(partial and masked) disparity maps Ds,t for other viewpoints.

Top: Views I0,0 and I2,0 of the light field. Middle: The dispar-

ity map from I0,0 → I2,0 (left) and the reversed disparity map

from I2,0 → I0,0 (right). Red denotes areas of occlusion that are

not seen in the central view. Bottom: The consistency mask Ms,t

with fuzzy values for partial occlusions or low-confidence corre-

spondences, with zero (black) for points with no correspondence.

(x − s Ds,t(x, y), y − t Ds,t(x, y)), and 2) the minimum

and maximum disparities in the central disparity map D0,0

can be used to bound the search range along, or near, the

epipolar line. For each candidate matching point (x′, y′),
we consider all candidate matches that satisfy

∥

∥(x′ + s D0,0(x
′, y′), y′ + t D0,0(x

′, y′))− (x, y)
∥

∥ < ǫ (1)

for some small value of ǫ large enough to account for dis-

crete pixel sampling. (We use ǫ = 1.4.)

Using the idea of stereo symmetries and plausible dis-

parities from [38], we then select the potentially matching

candidate with the largest disparity D0,0(x
′, y′), which en-

sures that the front-most surface is chosen when occlusion

causes a many-to-one forward mapping for the point. If no

satisfactory match is found, this indicates the disocclusion

that would result in a none-to-one forward mapping. An ex-

ample of inverting the central disparity map can be found in

Fig. 2, with “no correspondence” disoccluded regions indi-

cated in red.

During this search we simultaneously compute a corre-

spondence confidence map Ms,t (as also shown in Fig. 2)

where Ms,t(x, y) ∈ [0, 1] is determined by comparing

the quality of the pixel correspondences (using normal-

ized RGB distance) determined through the just-described

search process:

Ms,t(x, y) = 1− ||Is,t(x, y)−W (I0,0, Ds,t)(x, y)||/
√
3 (2)

where W (I0,0, Ds,t) denotes the backward warping from

image I0,0 based on the disparity map Ds,t:

W (I0,0, Ds,t)(x, y) = Î0,0(x− s Ds,t(x, y), y − t Ds,t(x, y)) (3)
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Figure 3. Network architecture for neural stylization of light field images. The lower channel stylizes I0,0 to produce I ′0,0 with intermediate

feature map F0,0, all of which are then held fixed. The upper channel is repeated for each other view Is,t. The encoded feature map for

this image Fs,t is then fused with the warped F0,0 using the confidence map Ms,t and decoded to produce I ′s,t. The masked disparity loss

between I ′s,t and a warped I ′0,0 is calculated and is backpropagated through the entire network updating only the encoding and decoding

parts of the pre-trained feed-forward stylization subnetwork. This process is repeated for some number of epochs for each view Is,t to

optimize the result.

with Î denoting interpolation of image I and all pixel val-

ues assumed to be in the range [0, 1] for each color channel.

If no correspondence was found through the search using

Eq. 1, the backward warping is undefined and Ms,t(x, y) is

set to 0. We use this confidence map as a mask when enforc-

ing consistency (similar to the function of the “gate map”

in [10]). This allows greater inconsistency where the orig-

inal correspondences are uncertain, when partial-pixel ef-

fects near object edges produce imperfect correspondence,

or when there is otherwise angular inconsistency (e.g., spec-

ular reflections [41]) and not enforcing consistency at all

where no correspondence exists.

4. Style Transfer for Light Fields

Training a feed-forward style-transfer network is a time-

consuming process that generally requires thousands or

even millions of training images [21]. Since light field

images require relatively large amounts of storage com-

pared to typical single or even stereo images, existing light

field datasets are very small and not sufficient for the task

of training a feed-forward style-transfer network. Thus,

any consistency constraints that are instituted must work

within the framework of existing pre-trained style-transfer

networks.

We propose a method for light field style transfer that

maintains angular consistency between views. For this

method, we use a pre-trained feed-forward network as de-

scribed in Johnson et al. [21], specifically the implemen-

tation found at [34]. While we choose to work with this

specific implementation, our method could also be adapted

to fit within the structures of more recent feed-forward styl-

ization networks, such as those found in [23] and [25]. An

overview of our architecture is shown in Fig. 3.

To stylize the light field, we first encode the features F0,0

of the central image I0,0 using the first (encoder) half of the

stylization network. These features are then decoded using

the second (decoder) half of the network to produce I ′
0,0.

These are then held fixed as we stylize the rest of the views.

For each other view Is,t of the light field, the features

Fs,t are also encoded and blended using the correspondence

confidence map Ms,t with a version of the central-view fea-

tures warped to view (s, t) using Ds,t:

F ′

s,t = Ms,t ⊙W (F0,0, Ds,t) + (1−Ms,t)⊙ Fs,t (4)

This is similar to the process described in [10] (one of

the dual channels) and [3] (single-directional variant). The

warped-and-fused feature map is then decoded into the styl-

ized image I ′s,t.

A disparity (angular consistency) loss [3, 10] is calcu-

lated using I ′s,t and a warped version of I ′
0,0, again modu-

lated by correspondence confidence map Ms,t:

Ldisparity = ||Ms,t ⊙ (I ′s,t −W (I ′
0,0, Ds,t))||

2. (5)

The disparity loss is then backpropagated through the net-

work. This repeats until convergence or a maximum num-

ber of iterations is reached.

This process is repeated for each subaperture view as de-

scribed in Algorithm 1. In our implementation, we use a

learning rate of 1e-2 and run it for a maximum of 50 epochs

(though we found most views converge after 40 epochs ap-

proximately). We also use the overfit stylization network

from one view as the initial stylization network for the next

view rather than resetting the network. We have found that

this works best when the shift from one view to the next is

small, so we visit the different views Is,t by alternating the

ordering on successive rows (i.e., boustrophedonically) so

that the shift in viewpoint is always to an adjacent view. We

also double the epochs for the first view visited to increase

stability of stylization.

Although our integration of warped and fused feature is

similar to the approaches in [3] and [10], there are distinct

modifications necessary to allow such an approach to work

for light fields beyond simply the number of views.

In [3], these features are warped to a common hypothet-

ical view that is located halfway between the two images in
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Algorithm 1 Light Field Style Transfer

Require: Pre-trained Style Transfer Network θ on Image S

Require: Light Field I , Disparity Maps D, and Consistency Masks M

Returns: Style Transferred Light Field I′

1: F0,0 ← θencode(I0,0)
2: I′

0,0 ← θdecode(F0,0)

3: for s, t in I do

4: for epochs do

5: Fs,t ← θencode(Is,t)
6: F ′

s,t ←Ms,t ⊙W (F0,0, Ds,t) + (1−Ms,t)⊙ Fs,t

7: I′s,t ← θdecode(F
′

s,t)

8: Ldisparity ← ||Ms,t ⊙ (I′s,t −W (I0,0, Ds,t))||2

9: θ ←BackProp(θ,Ldisparity)

10: Fs,t ← θencode(Is,t)
11: F ′

s,t ←Ms,t ⊙W (F0,0, Ds,t) + (1−Ms,t)⊙ Fs,t

12: I′s,t ← θdecode(F
′

s,t)

13: return I′

the stereo pair, and then the two are fused. In a light field for

which only a central-view depth map has been computed,

however, the only reference point that can act as a common

view for all N × N images is the central view. Thus, only

the central view features are warped and fused with other

view features. This is done using bilinearly resized versions

of the disparity maps and consistency masks to match the

resolution of the features.

In [10], the features are warped and fused in both direc-

tions, providing a more consistent version of the features

between the pair. While this process provides good results

for an image pair, it does not generalize to light fields. Al-

lowing all N ×N views of a light field to have an influence

on the central view leads to an aggressively averaged set of

features, which leads to very blurry output images. Thus, in

the method proposed here, the central view features are held

fixed during all stages of the algorithm. This restriction on

the central view is necessary in order to force the network to

converge in a way that keeps consistency between all views

of the light field while maintaining high-quality output.

It is important to note that our architecture is not used to

train a feed-forward network for light fields. Instead, our

algorithm provides a method for optimizing a single light

field image in a reasonable amount of time. It is similar to

the optimization presented by Gatys et al. [8], but warping

of the features and initializing with feed-forward stylization

allows the optimization to converge much faster and does

not require training on perceptual loss.

5. Results and Evaluation

Since there are no other methods for neural stylization of

light fields to compare against, we present qualitative results

(visual examples) and quantitative evaluation of the degree

to which the resulting stylization preserves both perceptual

factors (content and style loss) and inter-view angular con-

sistency (disparity loss).

Figure 4. “Swans” light field image stylized with our method. A

subset of the full set of stylized views is shown. The views are

selected with a stride of 3 to each side of the central view.

a) b)

c) d)

Figure 5. a) The central view of the “Swans” light field image. b)

The epipolar image in the highlighted region part a. c) The central

view of the stylized light field image. d) The epipolar image of the

highlighted region part c.

5.1. Qualitative Evaluation

Our method works for a variety of models and images.

Fig. 4 shows subsets of the views from light fields stylized

with the proposed method. To more clearly see the con-

sistency and shift between views, We also provide epipolar

images of the stylized light fields in Fig. 5. Additional re-

sults can be found in the supplemental materials accompa-

nying this paper, which include a video that better shows the

angular consistency between shifting subaperture views.

In addition to visually inspecting the individual views

for angular consistency, we can also determine how well

the stylized light field maintains geometric properties of the

original. One way to verify this is to recompute depth maps

from the stylized light fields and compare them to those of
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a) Naive b) Proposed c) Unstylized

Figure 6. Depth maps computed [19] from stylized light fields.

Depth maps computed from naively stylized light fields (a) demon-

strate errors due to the lack of angular consistency while those

reconstructed from light fields stylized using our method (b) are

similar to those computed from original unstylized light fields (c).

a) b)

c) d)

Figure 7. The focal stack of an example stylization. Near focus

for the a) original and b) stylized light field. Far focus for the

c) original and d) stylized light field.

the unstylized light fields. Fig. 6 shows an example of this

using the “Swans” light field, the “Mosaic” style image,

and the depth computation method from [19]. As shown

in Fig. 6a, naively stylized light fields do a poor job retain-

ing depth properties due to the lack of angular consistency.

Light fields stylized with our method do a better job pre-

serving depth properties (6b) and are similar to those of the

unstylized original (6c).

Light field images are often used to render dynamically

refocused images of the captured scene as first described

in [32]. If the light field is angularly consistent, it should

maintain the ability to refocus even in the stylized format.

This ability to refocus the stylized light field is demon-

strated in Fig. 7.

5.2. Quantitative Evaluation

The primary metric for neural style transfer is percep-

tual loss [21], combining the ideas of content loss and style

loss from [8]. As in [3] and [10], for multiview stylization

we can combine this metric with disparity loss (Eq. 5) to

Perceptual Loss

Candy Mosaic Rain Princess Udnie

Naive 3954244 4520050 3628793 830148
Ours 3954242 4520043 3628792 830148

Disparity Loss

Naive 6044 8807 3845 690
Ours 113 139 102 40

Table 1. Evaluation of perceptual and disparity loss for multiple

stylization models. Our method keeps similar perceptual loss to

the naive method while greatly decreasing the disparity loss.

evaluate angular consistency. An ideal light field stylization

method should be able to minimize the disparity loss with-

out increasing the perceptual loss. In Table 1, we compare

our results to the baseline of naively stylizing each view in-

dependently. This evaluation uses four different styles and

presents the per-view average loss. The proposed method

causes only an extremely small increase in perceptual loss

across all four styles, which is to be expected since this is

balanced against disparity loss.

The most significant change is in the disparity (angu-

lar consistency) loss, which drops by an order of magni-

tude or more, quantitatively validating the visual consis-

tency demonstrated in Figs. 1 and 4.

6. Variations and Experiments

In addition to evaluating the proposed method, we also

explore several variations and simplifications to evaluate the

relative contributions of various elements of the approach.

As noted in Section 4, our approach begins with a pre-

trained style transfer network and then iteratively optimizes

the network variables to reduce the disparity loss for a single

image rather than trying to train a single network to function

in a purely feedforward way that generalizes to other im-

ages. This raises the question of whether one could simply

use a purely optimization-based approach such as a Gatys-

like network that incorporates perceptual loss and the ad-

ditional disparity loss term to encourage consistency. We

have explored that option and found that although it pro-

duces good results, the optimization does all of the work

from scratch instead of being able to leverage a pre-trained

stylization network and explicitly warped-and-fused feature

maps. As such, it requires significantly more iterations and

typically takes about twice as long to run as the proposed

method.

We explore other variations of the full method proposed

in Section 4 and illustrated in Fig. 3. These variations are

described in the following subsections and summarized in

Table 2. For comparison of the possible variations, we ana-

lyze the average per-view perceptual loss and disparity loss

for a set of light fields, the results of which are given in

Table 3.

For the Naive method (independently stylized views), we

again see that the disparity loss is high because no angular

consistency was enforced. For a consistently stylized light
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field, we would expect the disparity loss to greatly decrease

while the perceptual loss remains unchanged. Table 3 shows

that all of the variations explored here produce light fields

with nearly identical perceptual loss. This is to be expected

since any given view considered in isolation maintains the

properties of the stylization, even if inconsistent with the

other views. Thus, rather than focusing on perceptual loss,

we use disparity loss as the main comparison metric when

comparing and discussing the following variations.

6.1. Fusion Variations

Our method, like [3] and [10], pairwise fuses elements

of two images in the feature map domain. This raises the

question of whether such feature-map fusion is preferable

to image-space fusion (i.e., fusing I ′
0,0 and I ′s,t instead of

F0,0 and Fs,t) or is even required at all. When we ana-

lyze the methods that use fusion in the image domain (rep-

resented as the middle column in Table 3), it is clear that

these methods have the lowest masked disparity loss. How-

ever, visual analysis of the stylized light fields produced

with these methods shows that artifacts appear frequently

in the unmasked regions, which are not factored into the

quantitative masked disparity loss. Warping and fusing in

the image domain also relies heavily on the notion that this

process is done with perfect disparity maps. In reality, noise

in the image data, featureless regions, ambiguous matches,

discrete pixel sampling, and other factors cause imperfect

depth or disparity estimates, all of which are well known

issues with stereo, multi-view stereo, and light-field depth

estimation. This over-reliance on the accurate disparities

can cause additional artifacts that are undesirable in the fi-

nal images as shown in Fig. 8. We believe that fusing fea-

ture maps and then decoding them results in visually better

(more artifact-free) stylizations than image-space fusion af-

ter decoding because the decoding of the feature maps mit-

igates such artifacts.

Warp/Fuse Features Warp/Fuse Images No Fusion

Full BP BPFuseFeatures1 BPFuseImg BPNoFuse

Post-optimize OptFuseFeatures OptFuseImg OptNoFuse

No iteration NaiveFuse WarpBlend Naive2

1 The full method proposed in Section 4
2 What [3] refers to as “baseline”

Table 2. Variations on the proposed method explored in Section 6

Perceptual Loss

Warp/Fuse Features Warp/Fuse Images No Fusion

Full BP 3193389 3193389 3193388

Post-optimize 3193386 3193388 3193380

No iteration 3193392 3193389 3193391

Disparity Loss

Full BP 98 16 363

Post-optimize 15 14 14

No iteration 2089 25 4846

Execution Time (seconds)

Full BP 308 304 304

Post-optimize 135 137 136

No iteration 43 45 42

Table 3. Comparison of perceptual loss, disparity loss, and execu-

tion time for variations of the proposed method

Figure 8. Two views of “Swans” stylized using the WarpBlend

variant (image-space fusion without subsequent optimization).

Methods that fuse in the image domain are highly dependent on

accurate disparity maps. Errors in the disparity maps lead to vi-

sual artifacts in the final stylized light field, such as those shown

in the red and blue callouts.

Since the fusion step takes time, we also consider

whether fusion is even necessary for the optimization to

converge and whether it could be discarded in order to save

processing time. While the disparity loss is comparable to

that of other backpropagating methods, the lack of a fusion

step causes the network to take longer to converge on each

individual view, especially the earliest optimized views. If

this method is trained with the same learning rate, number

of epochs, and optimization sequence as described in Sec-

tion 4, it results in some views having ghosting artifacts,

especially in areas with high frequency content. Thus, the

number of optimization epochs must be increased to pro-

duce results comparable to the proposed method, more than

offsetting any potential time savings.

6.2. Optimization Variations

Our method performs optimization by backpropagating

all the way back through the stylization encoder/decoder,

essentially the same as extreme overfitting of the network to

a single set of light-field views. Another option would be to

use the feed-forward stylization network, including warping

and fusion of the feature maps, to produce initial estimates

of I ′s,t and then post-optimize with the pixels of I ′s,t as the

only updated variables. Such a method is essentially the

same as generating the I ′s,t images using warped and fused

feature maps and then running it through a Gatys-like opti-

mization including the additional disparity loss term. It is

also worth considering if a light field can be stylized with-

out the need for an optimization at all, but relying solely

on warping and fusing feature maps to create consistency.

Upon experimenting with these optimization variations, we

find three key findings.

First, fusing features and then post-optimizing I ′s,t to

reduce disparity loss without backpropagating through the

network (OptFuseFeatures) results in worse angular consis-

tency than propagating the loss back through the stylization

encoder/decoder (BPFuseFeatures, our primary method).

This can be attributed to the initial fusing of features F0,0

with Fs,t, which essentially alpha-blends features maps

from a network that has not trained on disparity loss. Allow-

ing the feed-forward stylization encoder/decoder to train on
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disparity loss allows these to learn to produce more consis-

tent feature maps.

Second, the WarpBlend method, which uses image-

space warping and blending with no subsequent optimiza-

tion, gives reasonable results with a roughly 12x speedup

compared to the method proposed in this paper since it re-

quires no iterative optimization. This method essentially

involves independently stylizing each view using the pre-

trained stylization network and then employing a purely

image-space approach to warp the stylized central view I ′
0,0

to each of the other views and blending it with the initial

stylization I ′s,t for those views using the correspondence

confidence map Ms,t. This means it could serve as an al-

ternative to the proposed method if greater speed is desired.

However, we reiterate that because it relies entirely on ac-

curate disparity-based warping in image space, it is suscep-

tible to qualitative visual artifacts from disparity errors as

discussed earlier in Section 6.1 and shown in Fig. 8. These

are not factored into the masked disparity loss.

Third, we find all methods of post-optimization on the

output image to be undesirable. Since it can only optimize

on the disparity loss, it eventually converges to give essen-

tially the same results as the WarpBlend method (which can

be thought of as the minimization of the disparity loss), and

thus retains all the same visual artifacts.

6.3. Loss Function

For the results described so far in this section, we ei-

ther backpropagate through the stylization network or post-

optimize the output image using only disparity loss. Given

that the stylization network has been pre-trained to min-

imize perceptual loss [21], we consider the question of

whether it is effective to include perceptual loss to mini-

mize visual artifacts along occlusion boundaries. However,

we have found that backpropagating perceptual loss and dis-

parity loss produces results that are nearly indistinguishable

visually from those created using disparity loss alone, as

shown in Fig. 9 and in Table 4. This is also evident when

analyzing the disparity loss for each view of the light field

as shown in Fig. 10. Excluding perceptual loss from the op-

timization also avoids having to backpropagate through the

VGG-16 network at the end of the overall network, reducing

the computation required. We have found that this reduces

Perceptual Loss

BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 3193389 3193389 3193388
Disp. Loss Only 3193389 3193389 3193388

Disparity Loss

BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 98 16 363
Disp. Loss Only 99 16 366

Execution Time (seconds)

BPFuseFeatures BPFuseImg BPNoFuse

Both Loss Terms 566 565 565
Disp. Loss Only 308 304 304

Table 4. Comparison of backpropagating / optimizing using com-

bined perceptual and disparity loss to using disparity loss alone

Figure 9. “Lake” light field stylized using BPFuseFeatures opti-

mized with the disparity loss and perceptual loss (top) and the dis-

parity loss only (bottom). Results are visually indistinguishable.

Figure 10. Visualization of disparity loss by view for a) Naive,

b) BPNoFuse optimized on disparity loss only, c) BPNoFuse op-

timized on disparity and perceptual loss, d) BPFuseFeatures opti-

mized on disparity loss only, and e) BPFuseFeatures optimized on

disparity and perceptual loss.

the execution time by approximately 35% with comparable

results.

7. Conclusion

This paper presents the first neural style-transfer method

for light fields that achieves high-quality visual results while

maintaining angular consistency. The method uses a given

central-view depth map to create masked and confidence-

weighted disparity maps for each other view, allowing back-

ward warping from the central view to all other views. This

warping and masking is vital to the optimization process

and consistently stylized results. As with recent methods

for stereoscopic neural stylization, we fuse warped fea-

ture maps using a confidence-weighted mask. Unlike these

methods, we do not try to train a single network to stylize

different light fields in a purely feed-forward fashion. In-

stead, we incorporate pre-trained monocular style-transfer

networks and iteratively optimize them for each view.

These results are validated both qualitatively (visually)

and quantitatively. We also present variants of this method

that allow for trade-offs between angular consistency, sen-

sitivity to errors in the original depth map, and execution

time.
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