
SmartOverlays: A Visual Saliency Driven Label Placement for Intelligent

Human-Computer Interfaces

Srinidhi Hegde

TCS Research

sri.hegde@tcs.com

Jitender Maurya

TCS Research

jitender.maurya@tcs.com

Ramya Hebbalaguppe

TCS Research

ramya.hebbalaguppe@tcs.com

Aniruddha Kalkar

Walchand College of Engineering

aniruddha.k97@gmail.com

(e) (f) (g) (h)

(a) (b) (c) (d)

Figure 1: Representative labels generated by our proposed SmartOverlays: Row 1: (a) and (c) are the output of the YOLOv2

[28] object detector; (b) and (d) depict the outcome from our SmartOverlays algorithm. Note that labels are closer to the

objects of interest, do not overlap each other, and do not occlude salient regions in a scene; (e) depicts the non overlapping

label placement in a cluttered surveillance scene; Row 2: (f) and (g) show placement of labels for outdoor and indoor sports

applications respectively; (h) depicts a comic style label placement feature. Note: SmartOverlays focuses on determining

the label position in a scene while the label content is either provided by the user or derived from AI algorithms. Refer

https://ilab-ar.github.io/SmartOverlays/ for more details.

Abstract

In augmented reality (AR), the computer generated la-

bels assist in understanding a scene by addition of contex-

tual information. However, naive label placement often re-

sults in clutter and occlusion impairing the effectiveness of

AR visualization. For label placement, the main objectives

to be satisfied are, non-occlusion to the scene of interest, the

proximity of labels to the object, and, temporally coherent

labels in a video/live feed. We present a novel method for

the placement of labels corresponding to objects of interest

in a video/live feed that satisfies the aforementioned objec-

tives. Our proposed framework, SmartOverlays, first iden-

tifies the objects and generates corresponding labels using

a YOLOv2 [28] in a video frame; at the same time, Saliency

Attention Model (SAM) [7] learns eye fixation points that

aid in predicting saliency maps; finally, computes Voronoi

partitions of the video frame, choosing the centroids of ob-

jects as seed points, to place labels for satisfying the prox-

imity constraints with the object of interest. In addition, our

approach incorporates tracking the detected objects in a

frame to facilitate temporal coherence between frames that

enhances the readability of labels. We measure the effec-

tiveness of SmartOverlays framework using three objective

metrics: (a) Label Occlusion over Saliency (LOS), (b) tem-

poral jitter metric to quantify jitter in the label placement,

(c) computation time for label placement.
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1. Introduction

Augmented Reality applications fuse contextual syn-

thetic data with the real visual data to enrich perception and

efficiency of the user performing a targeted task. Such con-

textual data superimposed on live video feed is referred as

overlays. The overlays can take the forms of, but not lim-

ited to, text, audio, 3D objects and GPS coordinates. In

this work, we propose SmartOverlays, a novel and a generic

label placement framework that enhances the effectiveness

of situated visualization across most of the computer vi-

sion and AR applications. SmartOverlays framework can be

ported on device (smart-phones, tablets, and head mounts)

for effective and unobtrusive label placement eventually.

SmartOverlays can be a great addition to low field of view

devices like head mounts, where any obstruction in an al-

ready constrained environment can greatly hamper the im-

mersive experience.

Overlays could take a variety of geometric shapes/sizes

as per application specifications. Thus we propose a so-

lution for text overlay/label with unconstrained geometry.

To demonstrate the generic nature of our framework and

also to automate label generation as a part of our proposed

work, we use an object detector to generate labels for de-

tected objects. The labels generated through object detec-

tor is spatially independent, making label placement generic

and challenging at the same time. The number of possi-

ble label positions grows exponentially with the number of

items to be labelled, making the problem NP-Hard [2].

Previous works employed either sensor information such

as GPS information, or used cues from the overlay features

such as configuration of fixed anchor points [9, 31] as a cri-

teria to place labels. In this work, we use visual saliency for

effective label placement as it is an inherent feature of the

image aiding in understanding the dynamics of the scene.

Our work does not focus on generating meaningful caption

which is an open problem in computer vision community,

neither do we address label content based on scene under-

standing of an image. However, these aspects can be com-

bined with the proposed SmartOverlays algorithm, to de-

liver promising artificial intelligence applications. Further-

more, SmartOverlays can be used generically as an exten-

sion to important problems in computer vision such as ob-

ject detection and instance segmentation algorithms. The

key contributions of our work are:

1. We propose SmartOverlays, a multi-label placement

framework on video frames/live feed. This method

comprises of a Saliency Attention Model for comput-

ing visual saliency, a real-time object detector such as

YOLOv2, followed by our novel label placement mod-

ule. The label placement module utilizes Voronoi par-

titioning to avoid label/lead-line overlap and adaptive

color scheme to facilitate contrastive label color for dy-

namic backgrounds. Figure 1 shows outcome of the

algorithm on diverse scenes.

2. We introduce object tracking based methods on de-

tected objects to place labels in a temporally coherent

fashion.

3. We introduce two metrics, Label Occlusion over

Saliency score (LOS) and Temporal Jitter metric, for

measuring the effectiveness of overlay placement spa-

tially and temporally.

2. Related Works

Optimal placement of labels in AR applications enhance

users’ perception and thereby, reducing cognitive load by

placing synthetic data on the real world view. However,

when the labels that convey the contextual information are

naively placed, they hinder visual perception. To overcome

this, Bell et al. [3] propose effective view management tech-

niques that address external labelling at run-time and also

use empty spaces in screen to overlay labels. The system

does not consider leader lines, it may suffer from crossing

leader lines or leader lines occluding annotations. To im-

prove the readability and intelligibility of the annotations

in the users’ view to ensure that the augmented virtual in-

formation show the desired contents intuitively and clearly,

view management algorithms are widely used to overlay an-

notations, which automatically generate layouts of annota-

tions for different applications [20]. Tatzgern et al [33] pro-

pose managing the placement of external labels in 3D object

space instead of 2D space as 2D view does not encompass

the temporal behaviour of a 3D scene and applies changes

to the layout based on the 3D geometry of the label.

A broad categorisation of text label placement mainly:

Geometry-based approaches, Image-layout based on aes-

thetic rule, and adaptive overlays. We briefly summarise

these approaches below: Geometric based approaches:

Christensen et al [6] demonstrated that point feature label

placement is an NP-hard problem. Thus [6, 15] proposed

simulated annealing and gradient descent as solutions. Wu

et al.[38] propose a genetic technique combined with image

analysis of a vector representation of a map. These com-

plex algorithms require high computational power which

can cause latency in execution. Image aesthetics based ap-

proaches: These approaches consider the visual aesthetics

of computer interfaces as a strong determinant of users sat-

isfaction [19]. They utilize a general design principle such

as spatial layout rules, symmetry, balance among the ele-

ment as well color schemes and harmony with the use-case

of photobook generation. Owing to occlusions, dim light

scenarios, scene variations in the live field of view, overlays

have their own challenges. Several approaches discussed

below work on comic content unlike our approach intended

for real-time augmented reality applications. Kurlander et
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Figure 2: Overview of SmartOverlays label placement framework: We take video frames as input to our pipeline. This is

passed to object detector with label generation module and Saliency Attention Module for saliency estimation. The object

detector and label generator produce bounding box for all the detected objects along with their respective class labels, thus,

creating object-label correspondences. SAM [7] computes the saliency maps for each of the video frames. In the Overlay

Placement module, we compute the overlay position for each label in a frame based on the object-label correspondences,

saliency maps and overlay placement objectives. Finally, the overlay location predictions are passed to Temporal Coherence

Module to obtain a jitter free label placement.

al. [18] propose Comic Chat comics generation, including

balloon construction and layout, the placement and orienta-

tion of comic characters while our method is designed for

any generic image. User has to enter the text overlay con-

tent and then the corresponding baloon is generated based

on comic style for a chatroom and then the layout is de-

termined by the set of rules of comic art. However, our

labelling is fully automated and is intended for a generic

scene that includes comics (refer to Figure 1).

For greedy approach based algorithm, such as ours, it is

very essential to have a good metric that decides the pri-

ority for choosing a particular location in the search space.

Bell et al.[3] presents a priority constraint which they sat-

isfy while placing the labels. We are inspired by [9, 27]

which use visual saliency as a primary constraint in decid-

ing the optimal position for labels. These works use method

proposed by Achanta et al. [1] which is one of the first

baselines in estimating visual saliency in images. But [27]

focuses on single label placement unlike our generic multi

label formulation. Traditional saliency prediction models

were inspired by the biological features that captured low

level features in image such as color, edges, texture and se-

mantic abstractions of certain objects of interests such as

human faces, people and text [10, 14, 35]. With the rapid

advancements in specific deep learning architectures and

large annotated datasets [11, 17, 25], data driven saliency

prediction approaches have become popular in mainstream

computer vision community. These deep learning based

approaches outperform the traditional methods for predict-

ing visual saliency in scenes. As per the MIT Saliency

Benchmark [5], Liu et al., Cornia et al. and Kruthiventi

et al.[7, 16, 22] are the leaders in the visual saliency esti-

mation challenge. All of these approaches use deep neural

network models for saliency prediction in images.

Previous methods are not generic for multi-label place-

ment scenario. Our intent is to use visual saliency as metric

for the label placement framework that does not use any ex-

ternal sensor information apart from the image/video them-

selves. Furthermore, to improve readability of overlays, we

propose techniques to improve temporal coherence in the

label placement. To the best of our knowledge, no tech-

niques have been proposed for solving temporal jitter in la-

bel placements in videos capturing dynamic scenes.

3. Proposed Method

We formulate the label placement problem as fol-

lows: the input for our pipeline is an RGB video

V < f1 , f2 , ... , fn > with frame sequence of length n

and each frame of dimension Fw×Fh. Our proposed model

outputs an image coordinate P = (xi, yi), for the ith label

in a frame, where 1 ≤ xi ≤ Fw and 1 ≤ yi ≤ Fh. P

represents the most suitable coordinate in the frame space

for placing the ith overlay. This point corresponds to the

top left corner of the overlay or overlay bounding box if the

overlay is non rectangular. SmartOverlays aims to handle

overlays that can have unconstrained geometry and not just

restricted to rectangular labels. In case of unconstrained

overlays, we consider the tightest bounding box surround-

ing the overlay. Figure 2 shows an overview of our Smar-

tOverlay algorithm. Subsections below provide a detailed

overview of each of the modules of the pipeline.
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3.1. Object Detection and Saliency Map Computa­
tion

Object detection algorithms can be used for evaluating

the effectiveness of the label placement. For multiple label

placement, it is necessary to have correspondences of la-

bels with object of interest; the labels as placed as close to

the relevant objects as possible. Hence, we detect and label

objects in the scene using a YOLOv2[28].

We then use Saliency Attention Model (SAM) proposed

by Cornia et al.[7], for computing saliency maps. Origi-

nally, SAM is used for computing saliency maps on static

image datasets but, in this work, we use SAM on videos

showing its effectiveness on a temporal data. SAM is

trained on video frames along with its saliency ground truth

in the form of both saliency density map and eye-fixation

points. Visual information is given as input to the loss func-

tion, for learning to predict saliency maps. Cornia et al.[7]

propose a loss function that is a combination of different

scoring metrics for saliency maps, given by:

L(ŷ, y, yFix) = αNSS(ŷ, yFix)+βCC(ŷ, y)+γKL(ŷ, y)
(1)

where ŷ, y and yFix are the predicted saliency maps,

ground truth saliency maps and eye-fixation points respec-

tively and α, β and γ are three scalars which balance the

three loss functions. NSS, CC and KL are saliency evalua-

tion metrics(NSS is the Normalized Scanpath Saliency, CC

is the Linear Correlation Coefficient and the KL, Kullback-

Leibler Divergence as defined in [13]).

These metrics help learn saliency maps for video frames

as it is helpful in estimating similarity and dissimilarity be-

tween two saliency maps [13]. We quantify the pixel values

of y at the eye fixation locations, y
fix
i , and normalize it with

the variance of y.

3.2. Overlay/Label Placement

At this point, we have multiple objects and their corre-

sponding labels in the scene. We now consider each object

sequentially, in the decreasing order of saliency occlusion,

for placing labels on the frame. Once we place an over-

lay we mark the region occupied by the overlay as highly

salient. We see that this region is unsuitable for placing

other overlays as it will increase occlusion with salient re-

gion. We need a metric to decide the saliency occlusion by

label and object to decide the order in which we place the

labels. We rank the object label pairs as per the label occlu-

sion over saliency (LOS) score of bounding box of object

of interest.

LOS(N,G) =

∑
(x,y)∈N G(x, y)

|N |
(2)

where N is the set of pixels (x, y) that is occluded by

overlay and G is the ground truth saliency map. LOS score

ranges from 0 to 1, where LOS score of 0 represents no oc-

clusion with any salient region and 1 means complete over-

lap with highly salient region. As we place the overlays in

the decreasing order of LOS score, the overlays will become

a high saliency regions in the corresponding saliency map.

Furthermore, we explicitly put a hard constraint for avoid-

ing placement of labels on detected objects and previously

placed labels.

Apart from the order of object-label pairs, there are four

additional objectives that need to be considered while plac-

ing any overlay - (a) The overlay should be placed to mini-

mize the occlusion with highly salient regions, (b) The over-

lay must be as close to the corresponding object as possible,

(c) Connector or leader lines, connecting objects and over-

lays, should not intersect with each other, (d) The overlay

must satisfy diagonal heuristic and central bias.

For minimising occlusion, we use LOS score as metric

which is used to determine occlusion that might result with

label placement. We compute LOS for each label over the

saliency maps that are generated from the SAM discussed

in the Section 3.1.

3.2.1 Proximity to Objects of Interest

We propose an approach based on a strict Voronoi par-

tioning [36] (boundary excluded) of the image space. We

choose the seed points of the Voronoi partitions as the cen-

troids of the bounding boxes that are generated from the

YOLOv2 detector. The Voronoi formulation ensures that

the label’s top left corner, P , is placed close to the cor-

responding objects due to the following property of the

Voronoi partitions.

Theorem 3.1 Voronoi partitions, generated using centroid

of object bounding box, enforces the label to be closest

to the corresponding object centroid than any other object

centroid.

We use greedy approach for searching the best location

for overlay placement. For such approaches, reducing the

search space is a big challenge. These Voronoi partitions,

which are much smaller than the image space in size, are

the new search space for finding the minimum LOS score.

If we have multiple minima in the search space we select the

one which has the least Euclidean distance from centroid of

object bounding box. The number of seed points are equal

to the number of detected objects. Also we can see that the

size of Voronoi partitions decrease as the number of seed

points increase. Thus with more objects in scene the size of

Voronoi partition, that is the search space, decreases.
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3.2.2 Avoiding Intersection of Connectors

For clarity of object-label pair correspondences, we use

connectors or leader lines - a path of line segments that

connects the center of the object bounding box to one of

the corners of the corresponding label. We choose the la-

bel corner that (i) has the least Euclidean distance to the

object bounding box centroid and, (ii) is strictly within the

same Voronoi partition as that of the object bounding box

centroid. In our work, we use only a single line segment,

C(s1, s2) where s1 and s2 are the endpoints of the line seg-

ment, as connectors. As per the widely accepted aesthetic

rule, a connector should not intersect with any other con-

nector [30].

Corollary 3.2 The proposed connector placement method

prevents intersection of a connector, C(s1, s2), with other

connectors.

Proof Let p1 and p2 be object bounding box centroids,

which are also the seed points for the respective Voronoi

partitions, V1 and V2. Consider two distinct connectors,

C(p1, p
′

1) between endpoints p1 and p′1, and C(p2, p
′

2) be-

tween endpoints p2 and p′2. We know that Voronoi partitions

are convex polygons [36]. From the definition of convexity,

all the points s on the line segment C(s1, s2) also lie in

the corresponding Voronoi region, i.e., if p lies on the line

segment C(p1, p
′

1), it also lies within V1. Let us assume

that C(p1, p
′

1) and C(p2, p
′

2) intersect at x, which implies

that x ∈ V1 ∩ V2. But we know for a strict Voronoi parti-

tion, V1 ∩ V2 = ∅, and hence, the connectors are the same.

However, this leads to a contradiction since C(p1, p
′

1) and

C(p2, p
′

2) are distinct. Thus C(p1, p
′

1) and C(p2, p
′

2) never

intersect.

3.2.3 Diagonal Heuristics and Central Bias

Figure 3: Modeling diagonal heuristic. The figure shows

diagonal heuristic mask which consists of angle bisectors

of each corner angle of the image.

Malu and Indurkhya [24] show that placing labels on the

diagonal angle bisectors tends to increase the user experi-

ence in viewing. To improve user experience, we add diag-

onal heuristics to the saliency map (refer to Figure 3). Fur-

thermore, studies have shown that eye-fixation points tend

to cluster towards the centre of the scene [32, 34]. This hu-

man tendency is known as central bias. To model this phe-

nomenon, while generating saliency maps, SAM [7] incor-

porates a combination of multiple learned priors to model

the central bias.

Initially we tried black and white color scheme for a con-

sistent coloring patterns used in [27]. For improving the

legibility of text in labels, we use an adaptive color scheme

where the text color adapts to the texture present in the la-

bel’s background. Strong color contrast supports efficient

text reading and to achieve contrast we use Maximum HSV

Complement[8].

3.3. Temporal Coherence in Label Placement

To make a label readable, it should be placed such that

the movement of label is coherent with the object through-

out the video. However, real-time label placements can

be jittery due to dynamic scene changes and drastic object

movements in the input videos. Furthermore, since we for-

mulate determining label position as an optimization prob-

lem for every frame independently, the placement of labels

can vary from frame to frame resulting in jitter in labels

placed in videos. To address this, we employ two schemes

which are based on object tracking for maintaining temporal

coherence in the label locations - Fixed Label and Tracking

by Optical Flow methods.

In Fixed Label method, we assume the motion of mov-

ing objects to be small. Therefore, for a small time interval

within ∆k frames, we update the anchor points of the con-

nectors without changing the label location. We track the

locations of the corresponding objects by taking bounding

box locations with the maximum IoU among all the bound-

ing box pairs (with IoU greater than 0.75). If such bounding

box pairs are not found for an object then we stop tracking

for that object.

For Tracking by Optical Flow method, we extend the

Fixed Label method. Along with centroid, here, we also

update the location of centroid of object bounding box,

Cn
i , along with label location, Ln

i , in frame fi and n ∈
{1, .., NO} (NO being the number of tracked objects). We

update Cn
i to UCn

i using exponential weighted average as

follows

UCn
i = (1− β)Cn

i + βTn
(i−1), (3)

with β being the weight. Exponential weighted average en-

sures a smooth flow of label resulting in minimum jitter.

Figure 4 shows that we choose centroid and 8 points around

centroid for robust object centroid tracking. We select mul-

tiple points as there might be an error in tracking only a few

points. More than 9 points could be used but empirically we

found that using 9 was enough to maintain symmetry and

reduce computation. We track these 9 points in subsequent

frames, using optical flow tracking [4]. In the correspond-

ing object Voronoi partition a location, Li, is computed with
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minimum saliency. Now the updated label location, ULn
i ,

is calculated by taking exponential weighted average again,

as

ULn
i = (1− γ)Ln

i + γULn
(i−1), (4)

with γ being the weight. We give more weightage to the

information obtained from previous frames and, thus, set β

and γ to 0.9.

(a)

(b)

Figure 4: Tracking detected objects with optical flow to

reduce temporal jitter. (a) We select 9 points in the ob-

ject bounding box (centroid and 8 points around the center

that are exactly midway between the centroid and bound-

ing box edge midpoints and corners). (b) Visualization of

robust tracking of detected objects with optical flow. Leg-

end: Green-Detected centroid and Red-Corrected centroid,

Blue-Jittery label location, Yellow-Corrected Label Loca-

tion from method proposed in Section 3.3.

4. Experiments and Results

4.1. Experimental Setup

We performed all the experiments on a Linux platform

system with an Intel Xeon CPU E5-2697 v3 2.60GHz with

an Nvidia Tesla K40c GPU with 12GB RAM. The deep

learning models for object detection and SAM were trained

in PyTorch. For label generation and object detection, we

use an YOLOv2 pretrained on COCO [21] dataset that has

80 classes. We resize input video frames to 608 × 608 be-

fore passing it to YOLOv2. For computing saliency maps,

we use a SAM that is pretrained on SALICON dataset [12]

containing eye fixation ground truths for images. We use

the values of the hyperparameters α = −1 = , β = −2 and

γ = 10, in loss function as specified in [7].

4.2. Performance Evaluation

Figure 5 shows the results of SmartOverlays and it also

compares with the naive label placement of object detector.

We also compared the saliency prediction accuracy with dif-

ferent state-of-the-art and baseline methods. The saliency

metrics considered in the study are - NSS, CC, AUC(Judd),

sAUC and KL, as defined in [14]. Table 1 shows that the

SAM (with Resnet) offer competitive results on all of the

saliency evaluation metrics on SALICON [12] dataset.

Metrics
DF

[16]

SGAN

[26]

SAM-R

[7]

SAM-V

[7]

NSS(↑) 2.26 2.04 2.34 2.30

CC(↑) 0.78 0.73 0.78 0.77

AUC-J(↑) 0.87 0.86 0.87 0.87

sAUC(↑) 0.71 0.72 0.70 0.71

KL(↓) 0.63 1.07 1.27 1.13

Table 1: Comparison of different saliency prediction tech-

niques evaluated on SALICON dataset.

On analysing the runtimes of different sub-modules on

DIEM dataset1, we found object detector, SAM and over-

lay placement module to be taking 1.17s, 2.53s and 0.51s

respectively. On a whole the entire pipeline took 4.34s per

frame for execution.

We also investigated a few user defined specifications

and their effects in the framework. Firstly, the user can de-

fine the shape and size of the labels that we overlay. In cases

where the size of a label is larger than that of the corre-

sponding Voronoi partition the search space will be empty.

As a result the placement module misses out on such labels

and this helps in filtering labels in a cluttered environment

(see Figure 6). Secondly, in the cases where the overlay text

is long our system will create labels that will wrap around

the user provided text.

4.3. Temporal Coherence

We compare the temporal coherence of our label place-

ment algorithms (refer to Section 3.3) with naive label

placement technique which involves skipping frames to

make the label appear stable. We computed the label lo-

cations after skipping 20 frames for a 30 fps video based on

the user evaluation. For evaluating the methods we define

a metric, temporal jitter metric, Mj , as Mj = dl

do+ǫ
where

do and dl are the distance traveled by an object and its cor-

responding label throughout the duration of the video and

ǫ is a small constant added to avoid division by zero. Mj

measures jitter as more distance travelled by the label corre-

sponds to more temporal jitter. Mj also captures the relative

motion of label with respect to the its corresponding object

due to the do in the denominator. Figure 8 shows the ef-

fectiveness of the proposed algorithms in terms of low Mj

which evaluates to less jitter in videos with varying num-

ber of stationary and moving objects (also shown in Figure

8). Figure 8(a) depicts an important observation that jitter

1https://thediemproject.wordpress.com/
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Original Frame SmartOverlaysVoronoi Partitions Predicted SaliencyYOLOv2 Placement

Figure 5: Comparing results of SmartOverlays framework. Column 2 corresponds to YOLOV2 output [28] placement of the

column 1 images. YOLOv2 uses a fixed template based label placement method that places the label on top left corner of

the object detector. (Other current state-of-the-art object detection templates such as the faster RCNN[29], SSD[23] also use

top left corner to place labels on a scene.) We address labelling problems, associated with state-of-the-art object detectors,

which include rendering labels out of image space (row 1), label occlusions (rows 2 and 3), label overlap (row 2) and so

on using SmartOverlays. Columns 3 and 4 show the Voronoi partions and the predicted saliency maps respectively of the

corresponding original frames in column 1. SmartOverlays, whose outputs are shown in Column 5, is applicable to generic

object detection techniques as well.

(a) (b) (c)

Figure 6: Characterization of label and leader lines intersections. (a) The plot shows the percentage of objects intersecting

leader lines in the entire video. As the label dimensions decrease the label-leader line intersections decrease owing to the

increase in inter label distances. (b) The plot shows the total number of labels placed in the entire video sequence. From the

plot (c) we see the effect of label filtering for larger label dimensions due to unavailability of space for placement. As the

label dimensions decrease the filtering effect reduces due to a reduction in the number of empty search spaces for optimal

label locations. All the analysis for (a), (b) and (c) are performed on videos with different density of labels per frame and

over different label dimensions (which are a function of image dimension, D).

in Fixed Label method is lesser than Optical Flow Track-

ing method. This could be because Optical Flow Tracking

method takes into account the motion of the object which

could be jittery due to the inaccuracies in object detection

step. Figure 8(b) shows that lower number of stationary ob-

jects can also result in jittery label placement highlighting

the effectiveness of tracking based methods for label place-

ment in videos.

5. Discussion, Comparison and Future Works

Azuma et al.[2] compare and evaluate different algo-

rithms for searching for optimal overlay positions in the im-

age. They use various evaluation metrics such as counting
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(a) (b)

Figure 7: Failure cases. (a) Leader line over label (over-

flowing label problem). (b) Incorrect anchor point due to

inaccuracies in object detectors.

Figure 8: Comparison of temporal coherence in label place-

ment by SmartOverlays without temporal coherence, fixed

label method and optical flow tracking method. (a) Compar-

ison of changes to temporal jitter metric on different types

of videos (y-axis in log-scale), and (b) the number of sta-

tionary object vary for different techniques as we track the

centroid of object bounding box for motion.

overlaps among labels, computation time, and number of

labels moved. However, we do not assume an initial ran-

dom placement of overlays that are moved to optimal lo-

cations by the algorithm. Instead, we predict the optimal

label locations for every frame in a video. Thus, metrics

analysing motion, like number of overlays moved, are un-

suitable in our case. Metrics such as number of overlaps

among labels is 0 for our algorithm as we mark every placed

label as highly salient and our algorithm avoids placing la-

bels on such regions. Hence, we propose a new evaluation

metric, Label Occlusion over Saliency (LOS) which objec-

tively quantifies the effectiveness of label placement. Al-

though LOS metric might seem similar to Intersection Over

Union (IOU), there are two major differences between the

two. Firstly, IOU is used to evaluate fraction of overlap

between two bounding boxes (or sets in general) but it ig-

nores the content of the bounding box. We need a metric

that considers the content, which is visual saliency in our

case, of the region occupied by the label. Secondly, IOU is

a function of 2 sets whereas LOS is a function of a set and

a heatmap (saliency map in our case).

Regarding the computation time, We observe that the

SAM and the object detector are bottlenecks to achieve real-

time performance. Thus to make the framework function in

real-time seamlessly, in future, we intend to explore com-

putationally efficient methods for detecting objects and pre-

dicting saliency maps. We also intend to look at the usage of

saliency computation models such as [37] which take tem-

poral element of the data into consideration. We also look

forward to create a compressed version of smartOverlays

that could run on portable devices such as smartphones and

HMDs. In our proposed system there are some constraints

which is determined by the user. We discuss some of these

constraints and their effects in the system. One of the con-

straints is the shape and size of the label that we overlay. In

cases where the size of a label is larger than that of the corre-

sponding Voronoi partition the search space will be empty.

This will cause the placement module to miss out on certain

labels. Another constraint in consideration is content of the

overlay. If the overlay texts are long, then our system will

create labels that will wrap around the entire text which is

provided by the user. In such cases the text regions them-

selves may block the saliency objects (see Figure 7). But

this would not hamper the placement of the other labels as

the previously placed labels will be marked highly salient

before we start to place the new labels.

6. Conclusion

We present SmartOverlays, a visual saliency driven

multi-label placement algorithm that works on videos and

real-scenes unlike the previous attempts that work solely on

images. We have addressed the label placement objectives

that render non-overlapping labels, avoids label occlusion

over salient regions and prevents intersection of leader lines.

Further, we facilitate temporal coherence in label placement

and overlay labels contrastively on a dynamic background.

In addition, we have introduced a new metric to evaluate

label placement and provided valid proofs for the overlay

placement objectives using Voronoi space partitioning. To

the best of our knowledge, smartOverlays is the first deep

learning based approach for label placement. Here, saliency

is learnt to simulate the human visual attention behaviour

while viewing a particular scene.
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