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We propose a novel method to efficiently estimate the

spatial layout of a room from a single monocular RGB im-

age. As existing approaches based on low-level feature ex-

traction, followed by a vanishing point estimation are very

slow and often unreliable in realistic scenarios, we build on

semantic segmentation of the input image. To obtain better

segmentations, we introduce a robust, accurate and very ef-

ficient hypothesize-and-test scheme. The key idea is to use

three segmentation hypotheses, each based on a different

number of visible walls. For each hypothesis, we predict the

image locations of the room corners and select the hypoth-

esis for which the layout estimated from the room corners

is consistent with the segmentation. We demonstrate the ef-

ficiency and robustness of our method on three challenging

benchmark datasets, where we significantly outperform the

state-of-the-art.

1. Introduction

Room layout estimation from a monocular RGB image

aims at finding the boundaries of the floor, ceiling, and the

individual walls in an image, as depicted in Fig. 1. Identi-

fying these semantically important regions is beneficial for

a wide range of applications, including indoor navigation,

object detection, scene reconstruction, and augmented real-

ity. For these applications, it would be highly relevant to

know which features are related to the fixed background or

to movable foreground objects (e.g., furniture) to guide ro-

bust object detection and recognition.

However, the task is inherently challenging, since indoor

scenes typically suffer from considerable amounts of clut-

ter, varying lighting, and large intra-class variance. More-

over, the region boundaries that we are interested in are of-

ten severely occluded by furniture, preventing a direct in-

ference. Hence, motivated by a large number of practical

applications and still unresolved problems, there has been a

considerable scientific interest within the last years. Most

of these approaches are based on the extraction of low-level

features followed by a ranking step in order to evaluate a po-

tentially huge number of layout hypotheses, which is com-

Figure 1: Estimating the room layout from a single given

RGB image: We divide the task into three sub-problems,

generate a segmentation and a layout hypothesis for each of

them, and select the one that has the highest consistency.

putationally expensive and severely limits their practical ap-

plication [3,7,10,11,15,17,20,23,27]. In contrast, [9] tries

to overcome this drawback by directly predicting an ordered

set of 2D keypoints, however, at the cost of requiring an ad-

ditional, vulnerable room type classifier in order to correctly

merge the keypoints into a layout.

To overcome these problems, we introduce an efficient

and robust approach, where the key idea, as shown in Fig. 1,

is to generate and evaluate three layout hypotheses (for one,

two, or three visible walls). To this end, we first compute a

segmentation based on each hypothesis and then predict the

locations of the 2D keypoints defining the layout. Finally,

we compare each layout generated from the 2D keypoints

to its corresponding image segmentation and select the hy-

pothesis that provides the best match.
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This approach has several advantages: First, it allows us

to automatically resolve the inherent ambiguity considering

the left, center, and right wall regions of a room [3]. Second,

in combination with the derived semantics, the wall-based

hypotheses can be used to directly infer the layout from the

keypoints. In particular, we do not rely on an additional

room classification step or require the evaluation of a large

set of layout hypotheses, which is an advantage over many

previous works such as [3, 7, 9, 15, 17]. Third, using the

semantic segmentation as an intermediate representation to

predict the 2D keypoints improves the generalization capa-

bilities, compared to predicting the 2D keypoints directly

from the image as in [9].

These benefits can also be seen from the experimen-

tal results, where we compare our approach to the state-

of-the-art on three different publicly available benchmark

datasets, namely the Large-scale Scene Understanding

Challenge (LSUN) room layout dataset [26], the Hedau

dataset [7], and the NYUv2 303 dataset [25]. In fact, our

method is not only very efficient, but also clearly outper-

forms existing approaches.

The remainder of the paper is organized as follows: First,

in Section 2, we discuss the related work on room lay-

out estimation. Then, in Section 3, we introduce our new

approach based on smart semantic hypothesis generation.

Next, in Section 4, we give a quantitative and qualitative

comparison of our approach to the state-of-the-art and also

provide an ablation study. Finally, in Section 5, we summa-

rize and conclude our work.

2. Related Work

We classify existing room layout estimation approaches

into three main categories: (1) Bottom-up approaches,

which first extract low-level features from the image and

then generate and rank layout hypotheses based on van-

ishing points estimated from the aggregated features; (2)

segmentation-based approaches, which follow a similar

strategy but avoid the usage of hand-crafted features; (3)

top-down approaches, which directly estimate an ordered

set of 2D keypoints that define the layout.

Bottom-Up One of the first bottom-up methods was pre-

sented by Hedau et al. [7], who cluster line segments in

order to detect three orthogonal vanishing points, gener-

ate layout candidates from the obtained points, and finally

rank them using a structured SVM. Ramalingam et al. [17]

follow a similar approach but replace the line segments by

line junctions. Lee et al. [11] introduce an orientation map

based on line segments in order to reason about the layout.

Schwing et al. [20] try to speed up the structured layout pre-

diction by transferring the concept of integral images [22]

to geometry. Wang et al. [23] use latent variables in order to

jointly infer the layout and the clutter, and Lee et al. [10] in-

corporate object hypotheses to improve the final layout pre-

diction. The main drawback of such methods, however, is

that for many practical applications the required low-level

features cannot be reliably estimated, making these meth-

ods prone to errors in realistic scenarios that contain lots of

occlusions, clutter, and diverse lighting.

Segmentation-based With the development of Deep Learn-

ing, there has been considerable interest to improve the low-

level feature extraction by leveraging recent advances in se-

mantic segmentation [3,15,18,27]. Building on fully convo-

lutional networks (FCNs) [14], Mallya and Lazebnik [15],

Ren et al. [18], and Zhao et al. [27] estimate “informative

edge maps”, whereas Dasgupta et al. [3] directly predict se-

mantic surface labels (i.e., floor, ceiling, left, center, and

right wall). The main differences between these approaches

are amount and complexity of the required training data,

ranging from simple box layouts typically available for the

task at hand [3, 15, 18] to very rich and detailed furniture

segmentation masks that are hard to acquire [27]. More-

over, these methods still rely on vanishing point/line sam-

pling followed by a layout generation and ranking step or

require a computationally expensive optimization based on

physical constraints in order to fit the final layout, which is

cumbersome and slow.

Top-Down Lee et al. [9], on the other hand, follow a more

direct, top-down approach. In particular, they try to directly

estimate an ordered set of 2D keypoints that fully defines

the layout. While this allows them to avoid the slow layout

generation and ranking step, they require an explicit clas-

sification of the room type to infer the correct layout from

the keypoints. However, given the inherent imbalance in

the distribution of room types in typical indoor images, the

accuracy of the classifier is rather low, specifically on the

underrepresented types.

In this work, we also follow a top-down strategy by first

estimating a set of ordered 2D keypoints, which can then

be directly connected to generate the full layout. In con-

trast to [9], however, we avoid such an explicit room type

classifier and instead exploit powerful semantic segmenta-

tion, which allows us to merge the obtained keypoints into

a layout prediction much more conveniently. Specifically,

we show that this can be achieved by evaluating only three

layout hypotheses, which makes our approach also pretty

fast.

Besides these main directions, there are also approaches

that ease the problem by exploiting additional informa-

tion such as depth [25], floor plans [12], full 360°-

panoramas [29], or by assuming that people are present in

the scene in order to be able to reason about the layout [2].

However, these requirements are often not fulfilled in real-

istic scenarios, which severely limits the practical applica-

bility of these approaches.
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Figure 2: Overall system: Given an RGB input image, we first generate three hypotheses A, B, and C each assuming a

different wall configuration, then predict the corresponding layouts, and finally select the one that best fits its associated

segmentation. In the depicted example, hypothesis B provides the best fit, whereas A tries to fit a third wall that is not

present, and C is too simplistic, not being able to explain the two wall configuration. Best viewed in color.

3. Smart Hypothesis Generation for Room

Layout Estimation

In the following, we introduce our new robust room lay-

out estimation approach, which is illustrated in Fig. 2. In-

stead of forcing a single model to handle all possible cases,

we generate three layout hypotheses assuming that one,

two, or three walls are visible in the image. For each hy-

pothesis, we first compute a semantic segmentation of the

input image and estimate the 2D location of the layout’s

keypoints (Sections 3.1 and 3.2). To obtain the final layout,

we then select the hypothesis that best fits its associated seg-

mentation (Section 3.3).

3.1. Segmentation­based Keypoint Prediction

Directly predicting an ordered set of keypoints to esti-

mate the layout of a room has proven to be superior to meth-

ods that first aggregate a set of low- or mid-level features

and then generate and rank a multitude of layout hypothe-

ses based on the gathered image cues [9]. Thus, we follow

this direction and design a network that takes an RGB im-

age as input and outputs a set of ordered keypoint locations.

In contrast to [9], however, we exploit a semantic segmen-

tation as an intermediate network representation, which, in

combination with the task-specific hypothesis generation

described in Section 3.2, enables us to avoid an explicit

room type classifier.

Specifically, similar to [9], we employ SegNet [1] as the

base architecture of our network, since it is time and mem-

ory efficient and has shown good performance in various

segmentation tasks. Like most semantic segmentation ar-

chitectures, it consists of two sub-networks, an encoder and

a decoder. The encoder applies a series of convolution and

pooling operations, mapping the input image to lower res-

olution feature maps. The decoder then samples the low-

resolution feature maps back up to the full image resolu-

tion for pixel-accurate classification. This is achieved by

a series of non-linear upsampling operations based on the

corresponding pooling indices in the encoder. Since the up-

sampled maps are sparse, they are convolved with learnable

filters in order to produce dense feature maps.

The first part of our network is a standard SegNet, taking

an RGB image of a size of 320×320 pixels as input and pro-

ducing a semantic segmentation consisting of the following

five classes: floor, ceiling, left, center, and right wall. How-

ever, we do not sample the low-resolution feature maps back

up to the full image resolution, but cap the decoder at a size

of 80×80 pixels, since we found this to be accurate enough

in order to predict the keypoint locations. The second part

of our network is a reduced version of SegNet, where both

the encoder and decoder are capped at 80 × 80 pixels. It

takes the output of the first part as input and predicts a set

of ordered keypoint locations in the form of 2D Gaussian

heatmaps [9] of size 80× 80 pixels.
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3.2. Wall­based Hypothesis Generation

If we could always assume the same room type (i.e., a

fixed keypoint configuration), predicting the 2D keypoints

of a room via a semantic segmentation as an intermediate

representation would be rather easy. However, in practice,

the room type is not known in advance, making the problem

more difficult. Hence, Lee et al. [9] predict the 48 keypoint

locations for all 11 room types defined in [26] simultane-

ously and then rely on an explicit type classifier attached to

their network in order to identify the correct subset and or-

der of keypoints. However, this approach is rather vulnera-

ble, since its performance crucially depends on the accuracy

of the classifier1. This is particularly evident in images of

less common room types, as we will show in Section 4.

In contrast, we propose a more robust, integrated solu-

tion, where we tackle the problem by generating three lay-

out hypotheses based on the number of visible walls. Thus,

we start by first identifying three groups of rooms within the

set of 11 types defined in [26] and shown in Fig. 3:

• Group A: 3 visible walls (room types 0, 1, 2, and 7)

• Group B: 2 visible walls (room types 3, 4, 5, and 10)

• Group C: 1 visible wall (room types 6, 8, and 9)

Rooms within one group share large parts of their lay-

out configuration, except for the optional floor and ceiling

region. This consistency can be exploited, not only to in-

crease the accuracy and robustness of the segmentation and

keypoint prediction, but also to infer the correct layout from

the keypoints without requiring an auxiliary classification

step. Additionally, it also allows us to implicitly handle the

inherent ambiguity in the labels of the left, center, and right

wall [3]. To the best of our knowledge, we are the first to

take advantage of this consistency in the room layouts.

First, we re-arrange the keypoints defined in [26] to max-

imize the coherence within each group. For each group, we

select the room type that contains all the keypoints, i.e., the

type that contains both, floor and ceiling, as the prototype

(see Fig. 3). Then, we re-arrange the keypoints of the other

types to match the order of their respective prototype, as il-

lustrated in Fig. 4 for type 4. Since keypoints belonging to

the floor or ceiling are optional, the sequence of keypoint

IDs is no longer required to be continuous.

Once the keypoints are re-arranged, we can use the same

network architecture for all rooms within the same group,

since they all share the same keypoint configuration. Thus,

for each group, we train a separate CNN which tries to pre-

dict the keypoint locations of the respective room prototype,

i.e., 8 keypoints according to type 0 for group A, 6 key-

points according to type 5 for group B, and 4 keypoints

according to type 6 for group C. When inferring the lay-

out from the keypoints, we have to decide whether to take

1Note that the classification accuracy reported in [9] is only 81.5%.

the optional floor and ceiling keypoints into account. Con-

veniently, we can again exploit our obtained semantic seg-

mentation for this task, by simply checking for a floor and

ceiling region in the segmentation mask. This way, we can

automatically derive the proper layout for each group, with-

out an explicit classification step.

3.3. Hypothesis Selection

However, given an input image, we still have to decide

which of the three groups to choose for the final layout. Al-

though initial experiments indicated that directly classifying

the layout group from the image works better than predict-

ing the exact room type as in [9] (which is no surprise since

the task is easier), the performance was still not satisfac-

tory. Thus, we introduce a more robust, integrated solution,

where we forward the input image to all three groups si-

multaneously, generating three layout hypotheses. Then, in

order to select the correct layout hypothesis, we can once

more exploit our semantic segmentation. In particular, for

each hypothesis, we compare the layout prediction to the

semantic segmentation and pick the one that best fits its cor-

responding segmentation mask, as illustrated in Fig. 2. For

evaluating the hypotheses, we define

Si = Nmr(Li, Si) + λ · mIoU(Li, Si) (1)

as the matching score, where i ∈ {A,B,C}, Nmr is the

number of matching regions, mIoU is the mean intersection

over union (IoU) over all regions between layout Li and

segmentation Si, and λ is a weight term. The number of

matching regions describes how many regions can be de-

scribed by the layout, i.e., how many of the corresponding

regions have an IoU greater than 80%. Note that we do not

normalize Nmr by the overall number of regions since we

want to put more emphasis on layouts that can “explain”

many regions of their respective segmentation. Otherwise,

simpler layouts would be preferred, as it is often easier to

fit a single wall instead of two or three individual walls. In

our case, setting λ to 1 gave us the best results.

The key aspect is that each CNN is only trained on rooms

from its specific group. Thus, both the segmentation and the

keypoint prediction are very likely to fail if confronted with

an image showing an unfamiliar type, which results in a low

matching score. This can be seen very well from hypothesis

A in Fig. 2. As a result, only the proper hypothesis achieves

a high score and will be automatically selected. Moreover,

by dividing the task into three sub-problems and tackling

each of them with a specifically trained version of our CNN

defined in Section 3.1, we can also appropriately handle the

ambiguity typically encountered in the labels of the walls.

This is in contrast to approaches that try to force a single

CNN to handle all cases, which typically results in mixed up

wall labels, as can be seen in [3] (similar to the center/right

wall from hypothesis A in Fig. 2).
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Type 0 Type 1 Type 2 Type 7 Type 5 Type 3 Type 4 Type 10 Type 6 Type 8 Type 9

Figure 3: The 11 room types with their respective keypoint order as defined in [26]. Note that rooms within the same group

share parts of their configuration, only differing in the optional floor and ceiling regions. The configuration that contains both

of the optional regions is considered the prototype of the corresponding group. Group A is marked in red, group B in green,

and group C in blue, with the respective prototypes being highlighted. Best viewed in color.

Figure 4: Keypoints of room type 4 are re-arranged to match

the order of the corresponding prototype (type 5). Note that

the keypoint IDs are not required to be continuous.

4. Experiments

In this section, we evaluate our approach on three chal-

lenging room layout benchmarks, in particular the Large-

scale Scene Understanding Challenge (LSUN) room layout

dataset [26], the Hedau dataset [7], and the NYUv2 303

dataset [25]. LSUN contains 4000 training, 394 valida-

tion, and 1000 test images that are sampled from the SUN

database [24]. Hedau consists of 209 training, 53 valida-

tion, and 105 test images collected from the web and from

LabelMe [19]. NYUv2 303 is a randomly chosen subset of

202 training and 101 test images from the NYU-RGBD-v2

dataset [21]. All three benchmarks provide a diverse and

challenging collection of indoor scenes containing clutter,

occlusions, and varying lighting.

4.1. Experimental Setup

In our experiments, we follow the common practice of

re-scaling all input images to 320× 320 pixels, and training

our model on the LSUN training set only [3, 9]. For test-

ing, we run our method and a re-implementation of Room-

Net (basic) [9] as a baseline on the corresponding test sets

on the original image scales, using the LSUN room layout

challenge toolkit [26]2.

In order to evaluate the performance of our method, we

use two standard metrics:

• Pixel Error (PE): pixelwise error between predicted

surface labels and ground truth labels averaged over

all images

2As the code for [9] is not available, we re-implemented the method

closely following the given implementation details. For LSUN, the ground

truth for the test set is not available, so we evaluated on the validation split.

• Keypoint Error (KPE): Euclidean distance between

predicted keypoints and ground truth positions, nor-

malized by the image diagonal and averaged over all

images

When training our three CNNs, we found that jointly

training the segmentation and the keypoint prediction was

difficult, in particular due to a more elaborate data augmen-

tation used in the segmentation stage, which was not appli-

cable to the keypoint predictor. Hence, we first trained the

segmentation stage alone, followed by training the whole

network while keeping the segmentation weights fixed.

Naturally, the three networks A, B, and C were only trained

on images corresponding to their respective group. How-

ever, for the segmentation part, learning turned out to be

more stable by initializing the three specialized models with

the weights of a general base model trained on all images.

For the segmentation part, we use the following training

setup: stochastic gradient decent (SGD), batch size 14, mo-

mentum 0.99, weight decay 5e−4, and dropout rate 0.5. At

the beginning, all weights are initialized using the method

presented in [6]. Furthermore, we apply batch normaliza-

tion [8] and the ReLU activation function [16] after each

convolution layer. The base model is trained for 200K it-

erations with an initial learning rate of 1e−3, which is re-

duced by factor of 5 after 100K and 150K iterations, re-

spectively. As expected, the resulting model has difficulties

assigning the correct wall labels due to the inherent ambigu-

ity, as has also been reported in [3]. For fine-tuning the spe-

cialized versions, we train each of them for another 100K
iterations with an initial learning rate set to 1e−4, reduced

by a factor of 5 after 50K and 75K iterations. Note that for

network C, a slightly lower initial learning rate of 1e−5 is

required, presumably caused by the rather limited amount

of training images for that group. As data augmentation,

we randomly apply horizontal mirroring, small variations

in image lightness, and gentle affine transformations.

Training the keypoint prediction part seems to be easier,

most likely due to the well-suited intermediate representa-

tion obtained via the semantic segmentation stage. Thus, we

can directly learn each of the three keypoint predictors from

scratch, without having to train a common base model for

initialization first. The settings are equal to those used for
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segmentation stages A and B, i.e., all three keypoint predic-

tion stages A, B, and C have an initial learning rate of 1e−4.

For data augmentation, we use random horizontal mirror-

ing only, since robustness to lighting variations is already

achieved by the segmentation part, and affine transforma-

tions could easily lead to losing keypoints near the image

borders, thus, invalidating the layout.

4.2. Quantitative Results

In the following, we quantitatively compare our method

to related works and our re-implementation of RoomNet

as a baseline. First, in Table 1, we present results on the

LSUN dataset. As can be seen, our method clearly out-

performs all other methods on both error metrics, including

a more advanced, recurrent version of RoomNet presented

in [9]. This is in particular notable, since [3, 9, 15] also

employ powerful semantic segmentation networks. How-

ever, these works force a single network to handle all cases,

which validates our choice of dividing the task into three

sub-problems.

Next, in Table 2, we show results on the Hedau dataset,

which already dates back to 2009. Thus, it was widely used,

allowing us to give a more thorough comparison to exist-

ing approaches, including timing information (if available).

Again, our method based on smart hypothesis generation is

able to outperform all competing approaches, also including

recent works based on Deep Learning [3, 9, 15, 29]. In ad-

dition, it can be seen that our method is also competitive in

terms of run-time, making it suitable for real-time applica-

tion. In particular, it runs with approximately 12 frames per

second on an NVIDIA Titan Xp GPU, which is orders of

magnitude faster than most other approaches [3,4,5,17,27].

Finally, in Table 3, we present our performance on the

NYUv2 303 dataset, where we again outperform all other

RGB-based methods, and even come close to the method of

Zhang et al. [25] that additionally uses depth information.

Method PE (%) KPE (%)

Hedau et al. (2009) [7] 24.23 15.48

Mallya et al. (2015) [15] 16.71 11.02

Dasgupta et al. (2016) [3] 10.63 8.20

Ren et al. (2016) [18] 9.31 7.95

Zhao et al. (2017) [27]3 5.29 3.84

RoomNet (rec. 3-iter.) (2017) [9] 9.86 6.30

RoomNet (re-imp.) 11.24 7.14

Our method 7.79 5.84

Table 1: Quantitative results on LSUN [26].

3Note that [27] cannot be directly compared to the other works, as it

uses much richer training data that is not provided by the benchmarks.
4Excluding feature computation.

Method PE (%) Time

Hedau et al. (2009) [7] 21.2 -

Lee et al. (2010) [10] 16.2 -

Wang et al. (2010) [23] 20.1 -

Del Pero et al. (2012) [4] 16.3 12 min

Schwing et al. (2012) [20] 12.8 150 ms4

Del Pero et al. (2013) [5] 12.7 15 min

Ramalingam et al. (2013) [17] 13.34 6 s4

Zhao et al. (2013) [28] 14.5 -

Mallya et al. (2015) [15] 12.83 -

Dasgupta et al. (2016) [3] 9.73 30 s

Ren et al. (2016) [18] 8.67 -

Zhao et al. (2017) [27]3 6.60 1.79 s

Zou et al. (2018) [29] 9.69 39 ms

RoomNet (rec. 3-iter.) (2017) [9] 8.36 166 ms

RoomNet (re-imp.) 12.19 20 ms

Our method 7.44 86 ms

Table 2: Quantitative results on Hedau [7].

Method Input PE (%)

Schwing et al. (2012) [20] RGB 13.66

Zhang et al. (2013) [25] RGB 13.94

Zhang et al. (2013) [25] RGBD 8.04

Liu et al. (2018) [13] RGB 12.64

RoomNet (re-imp.) RGB 12.31

Our method RGB 8.49

Table 3: Quantitative results on NYUv2 303 [25].

4.3. Qualitative Results

In addition, in Fig. 5, we present qualitative results

generated with our method and compare it to the re-

implementation of RoomNet [9]. First, it is apparent that the

semantic segmentation is quite robust to even severe clutter

and occlusions, as can be seen from the top row for instance.

Second, evaluating three specialized layout hypotheses in

parallel gives our method a clear advantage over competing

approaches. This is particularly evident in the example in

the fifth row, where we can reconstruct the correct layout

even though the input image provides only very little evi-

dence. Specifically, although hypothesis B already provides

a good match, hypothesis A is even able to detect the sub-

tle center wall in the back, giving it a higher score than B.

RoomNet, on the other hand, is not able to detect this wall

and generates a wrong layout estimation. Furthermore, our

method is also able to correctly predict the layout in case of

the rather rare room type 6 in the fourth row, whereas the

explicit type classifier of RoomNet predicts the more com-

mon type 9.
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Ground Truth Hypothesis A Hypothesis B Hypothesis C Our Result RoomNet

Figure 5: Qualitative results showing the ground truth, our three layout hypotheses, our final result, and the result obtained

with our re-implementation of RoomNet [9]. Rows 1–6 present results from LSUN [26], row 7 from Hedau [7], and row 8

from NYUv2 303 [25]. Note that the latter two do not offer ground truth keypoints, just surface labels. Best viewed in color.
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Ground Truth Hypothesis A Hypothesis B Hypothesis C Our Result RoomNet

Figure 6: Failure cases on LSUN [26]. The column setup is the same as in Fig. 5. In the first example, the beam structures in

the upper part of the image trigger a spurious ceiling region. In the second example, the cuboid layout assumption is violated.

Finally, Fig. 6 shows two failure cases. In the first ex-

ample, the beam structures in the upper part of the image

trigger a spurious, but plausibly looking ceiling region, so

the predicted layout confirms it. The second example shows

a room that does not follow the cuboid layout assumption,

as can be seen from the tilted ceiling region in the left part of

the image. Nevertheless, our method is still able to provide

a reasonably good, cuboid approximation.

4.4. Segmentation as Intermediate Representation

To demonstrate the benefits of our intermediate repre-

sentation, we perform an ablative study: Like [9], we pre-

dict the keypoints from the original image rather than from

the segmentation and use the semantic segmentation only

for inferring the final layout using Eq. (1). As shown in

Table 4, the results clearly deteriorate across all datasets.

Thus, the semantic segmentation is indeed a good interme-

diate representation for robustly inferring room layouts.

Method LSUN Hedau NYUv2

PE (%) KPE (%) PE (%) PE (%)

KPs f. Img. 12.47 7.36 11.03 14.33

KPs f. Seg. 7.79 5.84 7.44 8.49

Table 4: Keypoint prediction from image vs. segmentation.

4.5. Depth Estimation from Room Layouts

Finally, in Fig. 7, we show depth images estimated from

our generated room layouts. Specifically, given a 2D lay-

out that provides enough information (i.e., is of type 0 ac-

cording to Fig. 3) and initializing the 3D room layout as

a unit cube, we can estimate the room’s height/width ratio,

the focal length, and the 3D camera pose up to scale. This is

achieved by iteratively minimizing the re-projection error of

the four corner points at the center wall as well as auxiliary

Figure 7: Estimating the relative depth (bottom row) from

2D room layouts (top row) on LSUN [26] examples.

points along the four perpendicular edges. For the latter, we

minimize the distance to the corresponding 2D line.

5. Conclusion

Estimating the layout of rooms from single images is an

important but hard task. To overcome drawbacks of existing

works in terms of accuracy and computational complexity,

we introduce a robust and efficient hypothesize-and-test ap-

proach based on the number of visible walls. In particular,

we divide the task into three sub-problems, generate a se-

mantic segmentation and a layout hypothesis for each of

them, and then select the one that has the highest consis-

tency between these two representations. As can be seen

from the experimental results, we clearly outperform the

state-of-the-art on three challenging benchmark datasets,

demonstrating the benefits of our approach.
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