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Abstract

Hashing has attracted attention in recent years due to

the rapid growth of image and video data on the web. Ben-

efiting from recent advances in deep learning, deep super-

vised hashing has achieved promising results for image re-

trieval. However, existing methods are either less efficient

in data usage or incapable of learning linearly discrimi-

native binary codes. In this paper, we revisit linear dis-

criminative analysis and propose a linear discriminative

hashing (LDH) objective that is efficient in training and

achieves better accuracy in retrieval. With the joint super-

vision of a classification loss, we design a robust deep net-

work to obtain binary codes that are inter-class separable

and intra-class compact, which provides better representa-

tions for image retrieval. We conduct extensive experiments

on three benchmark datasets, and our LDH algorithm per-

forms favorably against existing state-of-the-art deep su-

pervised hashing methods.

1. Introduction

Image hashing has attracted attention in recent years

due to the rapid growth of media data on the web [33,

13, 23, 29, 10, 36, 9, 2]. Generally, hashing aims to en-

code images/videos into compact binary codes while pre-

serving their mutual similarities. Due to the storage effi-

ciency and low computational cost of compact binary codes,

hashing has become one of the most widely-used tech-

niques for image or video search. Existing hashing meth-

ods can be grouped into two categories: data-independent

and data-dependent approaches. Data-independent methods

such as locality sensitive hashing (LSH) [12] and its vari-

ants [18, 15, 26] rely on random projections to construct

hash functions and do not require training data. In con-

trast, recent methods focus on the data-dependent scheme

that exploits various machine learning techniques to learn
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Figure 1. Illustration of our motivation. Compared with exist-

ing classification-based hashing methods, the projected data by the

proposed LDH method is intra-class compact and inter-class sep-

arable. Thus, given a query (denoted as the red rectangle), even

with the same classification accuracy, our method achieves better

retrieval performance.

more effective hash functions based on a given dataset and

usually achieves better performance. These methods can be

categorized as supervised and unsupervised schemes. When

annotations are not available, unsupervised methods [13, 3]

seek various metrics to supervise the learning of hash func-

tions. On the other hand, to utilize the semantic labels of the

training data, several supervised hashing methods [24, 29]

are proposed.

Following this trend, thanks to the joint learning of fea-

ture extraction and hash functions [2, 20, 36, 39], deep

supervised hashing has demonstrated state-of-the-art re-

trieval performance over conventional methods. Since the

“ground-truth” hash codes are not available, existing meth-

ods usually consider hash codes as representations to an

auxiliary task such as pair-wise/triplet similarity estimation

[2, 39, 32, 38] and image classification [20, 36, 37]. How-

ever, such auxiliary tasks may introduce drawbacks, such as

the loss in training efficiency or accuracy.

On one hand, the pair-wise/triplet similarity estimation

methods [2, 39, 32, 38] require heavy computation of inef-

ficient data sampling, e.g., the pair-wise hashing methods
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require C2
n = n(n−1)

2 sample pairs to train a model for n

images, i.e., with the data complexity of O(n2). The data

complexity becomes even more significant with O(n3) for

the triplet hashing methods. In addition, it takes an enor-

mous amount of time to sample enough pairs or triplets for

training. Without sufficient samples, hashing methods tend

to fit the mutual similarities locally and fail to model global

affinities, thereby degrading the retrieval performance. On

the other hand, the classification-based methods [20, 36, 37]

take binary codes as image representations for discrimina-

tion, which is more efficient in data utilization. Neverthe-

less, it is not clear whether learning such hash codes via the

classification task is optimal for image/video retrieval. As

shown in Figure 1(a), hash codes that are perfectly sepa-

rated may not work well for the retrieval application.

We notice that rare efforts have been made to learning

discriminative binary codes in recent classification-based

hashing methods. In this work, we analyze the reasons for

the retrieval performance loss of classification-based meth-

ods and thus propose a linear discriminative hashing objec-

tive. Our intuition is to incorporate the linear discrimina-

tive analysis on top of a deep convolutional neural network

(CNN), which aims to produce linearly discriminative bi-

nary codes as shown in Figure 1(b). In addition to maxi-

mizing the likelihood of target labels for individual samples,

we minimize intra-class variances and maximize inter-class

variances w.r.t. centers of hash codes. We update the cen-

ters of hash codes by accumulating gradients in stored dec-

imal centers to maintain the precision, meanwhile training

the CNN with binary centers during forward and backward

passes. By encouraging the network to generate discrim-

inative hash codes, our LDH method performs favorably

against state-of-the-art deep hashing methods.

The contributions of this work are as follows. First, we

propose the linear discriminative hashing algorithm to learn

hash codes that are intra-class compact and inter-class sep-

arable. The proposed algorithm is efficient in data usage

and accurate in retrieval performance. Second, we intro-

duce a runtime sampling approach to effectively update the

centers of hash codes, which leads to performance gains.

Third, we conduct extensive experiments on three bench-

mark datasets, including CIFAR-10 [16], ImageNet [28]

and NUS-WIDE [4]. Experimental results demonstrate the

efficacy of the proposed algorithm.

2. Related Work

2.1. Hashing

Existing hashing methods can be broadly categorized

into unsupervised [13, 3] and supervised [24, 29] ap-

proaches. The optimization techniques of both categories

are similar to some extent, and the key difference is whether

data annotations are leveraged to supervise the learning pro-

cess of hash codes. For example, the Iterative Quantiza-

tion (ITQ) [13] method rotates the decimal feature vectors

to align them with the corresponding binary vertices, while

the Binary Autoencoder (BA) [3] algorithm aims to mini-

mize the reconstruction loss by treating hash codes as la-

tent representations in autoencoder. The Supervised Hash-

ing with Kernels (KSH) [24] method learns hash codes by

minimizing/maximizing Hamming distances between simi-

lar/dissimilar pairs.

Deep hashing, especially deep supervised hashing, has

recently demonstrated promising retrieval performance in

several benchmarks. A comprehensive review of hash-

ing can be found in [31] and here, we review two repre-

sentative classification-based deep hashing method that is

closely related to our work, namely, Supervised Semantics-

preserving Deep Hashing (SSDH) [36] and Deep Discrete

Supervised Hashing (DSDH) [20]. The SSDH [36] al-

gorithm constructs hash functions as a latent layer in a

deep network and softly binzarizes the output of the latent

layer via the sigmoid activation. In addition to minimizing

the classification error, SSDH also imposes other desirable

properties such as bit independence and bit balance on the

hash codes. DSDH [20] takes image classification as surro-

gate problem for learning binary code. It assumes that good

binary code for classification is also effective in retrieval.

Different from these work, our LDH method learns hash

codes that are intra-class compact and inter-class separable

via a linear discriminative objective.

2.2. Linear Discriminative Analysis

Linear Discriminant Analysis (LDA) is developed from

multivariate statistics which seeks a linear projection of

high-dimensional data samples into a lower-dimensional

space [11]. In order to achieve desirable linear decision

boundaries, minimum intra-class variance and maximum

inter-class variance are introduced to achieve the resulting

latent space. In addition, a deep learning-based extension

of LDA has been recently proposed in [8]. We also note

that an earlier work, LDAHash [30], aims to combine LDA

and hashing. However, this method relies on the linear

projection upon hand-crafted features and cannot be jointly

trained with CNN, which limits its capacity in learning ef-

fective hash functions.

To enhance the discriminative strength of deep neural

networks, Wen et al. [34] propose the center loss to simul-

taneously learn class centers and penalize the distances of

samples to their corresponding class centers. By jointly

training the center loss with the classification softmax func-

tion, this method achieves state-of-the-art performance in

face recognition and verification tasks. A more detailed

comparison to our method would be provided in the later

section.
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Table 1. Architecture of the light-weight network. (11 × 11)3×32 denotes a convolution layer with 32 filters of size 11 × 11. (2 × 2)
denotes the max-pooling layers with grid of 2× 2 and (64× 3) stands for a 64× 3 fully-connected layer. We use the Rectified Linear Unit

(ReLU) as the nonlinear activation function.

Layer type Conv + ReLU MaxPool Conv + ReLU MaxPool Fc + Sigmoid Softmax

Layer shape (11 × 11)3×32 (2 × 2) (5 × 5)32×16 (2 × 2) (64 × 3) (3 × 2)

(1,	92)

(0,	401)

(457,	1)

(2,	5)

(0,	1)
(24,	0)

(16,	0)

(a) Training set distributions.

(3,	12)

(1,	78)

(74,	1)

(7,	5)

(3,	1)
(6,	1)

(4,	2)

(2,	0)

(b) Testing set distributions.

Figure 2. Distribution of deeply learned hash codes. (a) The dis-

tributions of binary codes in the training set. (b) The distributions

of binary codes in the testing set. The circles with different col-

ors denote samples from different classes. The pair of numbers in

each bracket represents the number of circles in this vertex (best

viewed in color).

3. Proposed Algorithm

In this section, we first illustrate the unsatisfactory dis-

tribution of a general deep binary hashing through a toy ex-

ample. To tackle the issue, we propose the Linear Discrim-

inative Hashing (LDH) algorithm to improve the discrimi-

native power of the learned hash codes. We also introduce

an optimization method for updating centers of hash codes.

Finally, we discuss the merits of the proposed algorithm.

3.1. Distribution of Deeply Learned Hash Codes

To demonstrate how the distribution of deeply hash

codes could be unsatisfactory for retrieval, we conduct an

experiment on a toy dataset with the dog and airplane

classes sampled from the CIFAR-10 dataset [16], where

600 images are selected for both class with 500 training and

100 testing examples. We build a light-weight network (Ta-

ble 1) that consists of only two convolutional layers and one

fully-connected layer with output channel as 3, followed

by a sigmoid layer to softly binarize the outputs into hash

codes. The layers configuration are referenced from the

AlexNet [17]. We set the length of the binary codes as 3
for visualizing binary codes on a 3-D cube. We train the

network with the softmax loss function:

Lcls = −

n∑

i=1

log
e
WT

yi
xi+tyi

∑C

j=1 e
WT

yj
xi+tyj

, (1)

where n and C denote the size of mini-batch and the num-

ber of class respectively. We denote b as the dimension of

binary codes, xi ∈ [0, 1]b as the binary codes of i-th sam-

centers

Inter-class	Loss

Intra-class	Loss

Softmax	Loss

224

224

hashing	layer

AlexNet	Conv1-5,	fc6,	fc7

Figure 3. Linear discriminative hashing. We propose two loss

terms: the intra-class loss and the inter-class loss. The intra-class

loss is jointly trained with the conventional softmax loss, while the

inter-class loss is applied on the class centers of the binary codes.

The final hash codes are obtained via a sigmoid layer to softly

binarize the outputs.

ple that belongs to the yi-th class. In addition, Wj ∈ R
b is

the j-th column of the weight matrix W ∈ R
b×C in the last

fully connected layer and t ∈ R
C is the bias term.

We present the resulting 3-dimensional binary codes of

each class and visualize them in Figure 2. We observe

that: 1) under the supervision of softmax loss, the deeply

learned binary codes are separable, e.g., 499 out of 500 blue

points in the training set can be correctly classified; 2) the

binary codes are not sufficiently discriminative, since they

still show significant intra-class variations. For example,

only 401 out of 499 blue points share the same binary codes,

while there are 98 blue points that are correctly classified

but not compactly hashed. Consequently, it is not effective

to directly use these binary codes for retrieval.

3.2. Linear Discriminative Hashing

As shown in Section 3.1, the ensuing question is to make

the learned binary codes more discriminative rather than

just linearly separable. Intuitively, it is desirable to group

the binary codes of the same class close together, and scat-

ter the binary codes of the different classes far apart. To this

end, we propose the linear discriminative hashing objective

with the following loss function:

LD = α

N∑

i=1

||xi − cyi
||22 − β

C∑

i=1

C∑

j=1,j 6=i

||ci − cj ||
2
2, (2)

where N is the number of samples in the training set, and

{ci}i=1,...,C are a set of binary centers corresponding to

each class. The first term in (2) is referred as the intra-

class loss since it reflects the variations within each class,

while the second term is the inter-class loss as it indicates
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the inter-class separability. We use α and β to balance the

weight of two loss terms. Our final objective is to optimize

(1) and (2) with a deep neural network. The binary features

are jointly supervised by (1) and intra-class loss, while the

centers are optimized w.r.t. intra-class loss and inter-class

loss.

Since it is inefficient to take the entire training set into ac-

count in one iteration, we thus compute the intra-class loss

over a mini-batch of data. This modification allows us to

update network parameters with mini-batch using stochas-

tic gradient descent (SGD). In Figure 3, we show the overall

framework integrating (2) on top of a deep neural network

for learning discriminative hash codes.

Nevertheless, it is unclear how to update the centers of

hash codes. Ideally, we should update {cyi
} during the

optimization step. However, since {cyi
} are binary vec-

tors in our case, it is not possible to perform SGD on bi-

nary centers. In the supplementary material, we show that

naively relaxing the binary constraints on centers of hash

codes leads to performance drop. To this end, we propose a

runtime sampling approach that tackles this problem intro-

duced below.

3.3. Runtime Sampling Approach

The class centers of hash codes are desired to be binary,

such that CNN features are encouraged to be discrete. On

the other hand, the centers of hash codes should be deci-

mal, such that we can perform SGD optimization. To handle

such conflicting factors, we propose to treat the centers of

hash codes as binary during forward and backward passes,

while using decimal ones during the parameter update.

Specifically, the binary centers are sampled from

Bernoulli distributions that use decimal numbers of centers

as probabilities during each batch. Similar to the setting

of [27, 5], we consider the back-propagation at 3 different

steps: 1) forward pass to compute the loss, 2) backward pass

to compute the gradients, and 3) parameter update by us-

ing gradients of hash code centers. The parameter update at

step 3 is performed on the decimal centers, and the sampling

of binary centers in the next training batch will be affected

accordingly. Although the changes to decimal centers are

small via gradient descent, we expect that such updates are

accumulated to move the centers of hash codes toward the

direction that mostly improves the training objective. Since

we need to keep the decimal centers within [0, 1] to be valid

probabilities for Bernoulli distributions, we clip the deci-

mal centers within the [0, 1] interval after the update. The

decimal centers would otherwise grow too large due to the

existence of the inter-class loss. The main steps of our ap-

proach are summarized in Algorithm 1.

Algorithm 1 Updating centers of hash codes with SGD

Require: a minibatch of (inputs, targets), decimal centers Cd in

previous batch, and learning rate η

Ensure: decimal centers Cd is updated

1: For each epoch:

2: Initialize Bernoulli distributions as

m = Bernoulli(Cd)
3: For each batch:

4: Sample binary centers Cb = m.sample()
5: Forward with binary centers Cb and compute the loss L
6: Backward w.r.t. binary centers Cb for the gradient ∂L

∂Cb

7: Update Cd = Cd − η
∂L

∂Cb

8: Clip Cd to ensure it within [0, 1]
9: return

3.4. Discussions

Comparison with Center Loss. Our linear discriminative

hashing algorithm is different from the method using the

center loss [34] in two key aspects. First, the center loss is

proposed in the decimal space, and thus it only emphasizes

to decrease the intra-class variance and ignores to increase

the inter-class variance due to its decimal nature. Second,

since each bit in hash codes is supposed to fire 50% of the

time [33, 37], it is important to maximize the inter-class

variance as it helps fully utilize the discriminative strength

of all hashing bits. In [34], the inter-class variance is not

well exploited based on the center loss.

Comparison with Triplet Loss and Contrastive Loss. Re-

cently, contrastive loss [6] and triplet loss [32, 38] have been

proposed to train deep hashing networks. However, both

these losses suffer from significant data expansion when

drawing pair or triplet samples from the training set. The

proposed linear discriminative hashing method inherits the

advantage as the softmax loss, while requiring less com-

plex arrangements of training samples. Consequently, the

supervised learning process of our discriminative hashing

method is efficient and is easy to implement. Furthermore,

our loss function targets more directly at learning compact

intra-class and separable inter-class variances, which are ef-

fective for learning discriminative hash codes for the re-

trieval application.

4. Experiments

We conduct extensive experiments to evaluate our algo-

rithm against several state-of-the-art hashing methods on

three standard benchmarks. All the source code and trained

models will be made available to the public.

4.1. Setup

We evaluate the proposed algorithm on three image re-

trieval benchmarks: CIFAR-10 [16], ImageNet [28], and

NUS-WIDE [4]. We also present ablation studies to ana-
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Table 2. Retrieval performance in terms of mean average precision (mAP%) for different code length as 16, 32, 48 and 64 bits.

Method
CIFAR-10 ImageNet NUS-WIDE

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

SH [33] 12.2 13.5 12.1 12.6 47.9 49.1 49.8 51.5 20.8 32.7 39.5 41.0

CCA-ITQ [13] 31.4 36.1 36.6 37.9 26.6 43.6 54.8 58.0 50.9 54.4 56.8 67.6

DHN [40] 56.8 60.3 62.1 63.5 31.1 47.2 54.2 57.3 63.7 66.4 66.9 67.1

DNNH [19] 55.5 55.8 58.1 62.3 29.7 46.3 54.0 56.6 68.1 71.3 71.8 72.0

DPSH [21] 64.6 66.1 67.7 68.6 32.6 54.6 61.7 65.4 71.5 72.6 73.8 75.3

DSH [22] 68.9 69.1 70.3 71.6 34.8 55.0 62.9 66.5 71.8 72.3 74.2 75.6

HashNet [2] 70.3 71.1 71.6 73.9 50.6 62.9 66.3 68.4 73.3 75.2 76.2 77.6

PGDH [39] 73.6 74.1 74.7 76.2 51.8 65.3 70.7 71.6 76.1 78.0 78.6 79.2

Ours 77.5 78.4 78.8 79.2 61.8 66.7 69.0 69.0 76.9 78.9 78.7 80.3

lyze the contributions of the main modules in the proposed

algorithm.

CIFAR-10. The CIFAR-10 [16] dataset contains 60,000

images of 32 × 32 pixels in 10 categories. Similar to the

protocol in Deep Quantization Network [1], we randomly

select 100 images per class as the query set, 500 images

per class as the training set, and remaining images as the

database for retrieval.

ImageNet. The ImageNet [28] dataset is widely used for vi-

sual recognition tasks such as the Large Scale Visual Recog-

nition Challenge (ILSVRC 2015). It contains over 1.2M

images in the training set and 50K images in the validation

set, where each image is single-labeled by one of the 1,000

categories. We randomly select 100 categories, use all the

images of these categories in the training set as the database

for retrieval and utilize all the images in the validation set as

queries. Furthermore, we randomly select 100 images per

category from the database as the training set.

NUS-WIDE. The NUS-WIDE [4] dataset contains 269,648

images collected from Flickr. This is a multi-label dataset

where each image is associated with one or multiple labels

from the given 81 concepts. Similar to the setting in [2, 39],

we use a subset of 195,834 images that are associated with

the 21 most frequent concepts, where each concept consists

of at least 5,000 images. We randomly sample 2,100 images

with 100 images per category to form the query set and use

remaining images as the database. We uniformly sample

500 images per category from the database to form the train-

ing set. Since our method requires to associate each input

image to a center, we split an image with multiple labels

into multiple training samples, each of which corresponds

to one of its label. For images with relatively fewer labels,

we draw samples multiple times to keep data balanced. We

also discuss alternative strategies for handling multi-label

datasets in the later section.

Evaluation Metric. Using the standard evaluation proto-

col in the literature [35, 19, 1], two images are considered

similar if they share at least one semantic label. We evalu-

ate the retrieval performance of generated binary codes us-

ing the following metrics: mean average precision (mAP),

precision-recall (P-R) curve, precision at top retrieved sam-

ples (P@N) and Hamming lookup precision within a Ham-

ming radius r = 2 (HLP@2). We evaluate the perfor-

mance using binary codes of 16, 32, 48 and 64 bits. Note

that for the ImageNet dataset, we employ mAP@1000 as

each category contains only 1,300 images. For the CIFAR-

10 and NUS-WIDE datasets, we adopt mAP@54000 and

mAP@5000 respectively.

Implementation Details. For the proposed algorithm, we

utilize the AlexNet architecture and implement it using

the PyTorch framework. We initialize convolutional layers

conv1 - conv5 and fully-connected layers fc6 - fc7 with the

pre-trained model on ImageNet. The final hashing layer is

initialized with the Gaussian distribution. The parameters

are obtained by 10-fold cross validation. For the weights in

the loss function, we fix α = 0.01 and β = 0.001 for all

the experiments and more analysis is provided in the sup-

plementary material. During training, the learning rate for

updating CNN and centers of hash codes are set to 0.01 and

0.001, respectively.

4.2. Results and Analysis

Comparisons with State-of-the-art Methods. We eval-

uate the proposed LDH algorithm against 8 state-of-the-

art hashing methods, including SH [33], CCA-ITQ [13],

DHN [40], DNNH [19], DPSH [21], DSH [22], HashNet [2]

and PGDH [39]. For DNNH [19] and PGDH [39], we use

the reported results in their paper. For all the other methods,

we use the released source codes for performance evalua-

tion. For conventional hashing methods like SH [33] and

CCA-ITQ [13], we use the DeCAF7 [7] features as input.

For deep hashing methods, we directly use raw images as

input and resize images to fit the adopted network. Note

that we adopt the AlexNet model for all deep hashing meth-

ods for fair comparisons unless specified otherwise.

Table 2 shows the retrieval performance of different

hashing methods in terms of mAP using different code

lengths. Overall, the proposed LDH algorithm performs
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Figure 4. Experimental comparisons on the CIFAR-10 dataset using three evaluation metrics.
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Figure 5. Experimental comparisons on the NUS-WIDE dataset using three evaluation metrics.
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Figure 6. Experimental comparisons on the ImageNet dataset using three evaluation metrics.

favorably against all evaluated methods. Compared to the

state-of-the-art PGDH [39] method, our algorithm performs

favorably on the CIFAR-10 and NUS-WIDE datasets, and

achieves competitive results on the ImageNet dataset. The

performance gains of the proposed LDH are more espe-

cially when the hash codes are compact, e.g., our mAP is

10% higher than that of PGDH [39] with 16-bit codes on the

ImageNet dataset. In addition, deep hashing methods sig-

nificantly outperform conventional hashing schemes on all

three datasets by large margins, even when CNN features

are used by all evaluated approaches. The results suggest

that the end-to-end learning scheme facilitates in learning

effective hash codes for image retrieval.

More Results. The average precision in terms of different

numbers of top retrieved results (P@N) is shown in Fig-

ure 4(a), 5(a) and 6(a), where the code length is fixed at 64

bits. For presentation clarity, only the results by deep learn-

ing based methods are presented. For performance evalua-

tion on all the three datasets, N ranges from 100 to 1,000

here. Overall, the proposed LDH algorithm consistently

performs well against all the evaluated hashing methods for

the same amount of retrieved samples. We note that more

images that have similar semantic labels are retrieved by the

proposed LDH algorithm, which is desirable for numerous

applications using hash codes.

The evaluation results on the CIFAR-10, NUS-WIDE
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Table 3. Effect of different loss functions on the CIFAR-10 dataset.

16 bits 32 bits 48 bits 64 bits

Cls Loss Only 75.2 75.5 76.0 76.6

Cls Loss + Intra-class Loss 75.1 76.5 76.9 77.8

Intra-class Loss + Inter-class Loss 74.5 75.8 76.2 77.0

Ours (Cls Loss + Inter-class Loss + Intra-class Loss) 77.5 78.4 78.8 79.2

query Top	10	retrieved	images

Figure 7. Retrieval results on CIFAR-10 dataset.

Top	10	retrieved	images

query

Figure 8. Retrieval results on NUS-WIDE dataset.

and ImageNet datasets in terms of Precision-Recall (PR)

curves for 64-bit binary codes are shown in Figure 4(b), 5(b)

and 6(b). In this setting, LDH performs favorably against all

evaluated methods, which shows that effective hash codes

are learned for image retrieval.

Figure 4(c), 5(c) and 6(c) show the Hamming lookup

precision (within Hamming radius 2, HLP@2) with various

code lengths. This evaluation metric measures the precision

of retrieved results falling into the buckets within the Ham-

ming radius of 2. The results validate the compactness of bi-

nary codes learned by our LDH algorithm. We also observe

that the best performance is achieved at a moderate length

of binary codes. This is because that longer binary code

makes the data distribution in the Hamming space sparse,

such that fewer samples fall within the Hamming radius.

Some retrieval examples are shown in Figure 7, 8 and 9.

The LDH algorithm is able to retrieve images that share the

same semantic labels with the input query. More results are

shown in the supplementary material.

Visualization of Hash Codes. We visualize the hash codes

generated by the HashNet [2] and LDH methods on the

CIFAR-10 dataset using t-SNE [25] in Figure 10. The hash

Top	10	retrieved	images

query

Figure 9. Retrieval results on ImageNet dataset.
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Figure 10. Visualization of hash codes usisng t-SNE. Our LDH

produces more discriminative embeddings that are intra-class

compact and inter-class separable. The two classes relatively close

in the bottom-right of (b) are automobile and truck.

codes generated by our LDH algorithm show clear discrim-

inative embeddings, in which different categories are well

separated. The results suggest that LDH learns more dis-

criminative hash codes than HashNet for more accurate im-

age retrieval.

4.3. Ablation Study

We analyze the contributions of different components of

the LDH algorithm. In addition, we use the 50-layer Deep

residual Net (ResNet-50) [14] as our backbone model for

performance evaluation.

4.3.1 Effect of Loss Functions

We experimentally evaluate the contributions of different

components of our loss. Table 3 shows the retrieval per-

formance using variants of the LDH algorithm, where we

use the same learning rate and batch size for experiments.

As shown in the table, the LDH algorithm consistently
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Table 4. Different approaches for applying the LDH algorithm to

the multi-label datasets.

16 bits 32 bits 48 bits 64 bits

BCE Loss (Nearest) 73.9 75.2 76.4 77.3

BCE Loss (Average) 72.4 73.5 73.3 74.5

Softmax 74.2 77.5 77.8 78.6

Balanced Softmax 76.9 78.9 78.7 80.3

outperforms the other 3 variants, which shows that all com-

ponents are necessary for achieving the best retrieval re-

sults. Note that the evaluation setting of Cls Loss with Inter-

class Loss is omitted as it is equivalent to Cls Loss Only.

4.3.2 Handling Multi-label Dataset

We discuss several alternative strategies for training the pro-

posed LDH algorithm on multi-label dataset such as NUS-

WIDE. A straightforward approach is to consider it as a

multi-label classification problem and minimize the binary

cross entropy (BCE) loss. We propose two methods to com-

pute intra-class loss in the context of BCE Loss, i.e., BCE

Loss (Nearest) and BCE Loss (Average). Specifically, for

BCE Loss (Nearest), we dynamically select the nearest cen-

ter according to the hash code of the input image, and then

use the nearest center for computing intra-class loss. For

BCE Loss (Average), we compute the mean of the intra-

class loss to all centers that the input image is labeled to.

However, neither one performs well as shown in Table 4.

As the LDH algorithm performs well on the single-label

dataset, we split a multi-label image into several single-

label ones such that we can train our method using the soft-

max loss. In Table 4, the Softmax approach denotes that

each annotation of an image is repeated once, i.e., if a train-

ing sample is labeled to 5 semantic classes, it is split into 5
different training entries with distinct labels. Although this

Softmax approach already performs significantly better than

the ones using the BCE Loss, it tends to ignore images with

relatively fewer labels. To address this issue, for each train-

ing sample with less than 5 labels, we repeatedly sample it

for 5 times and each time we randomly select a label. We

call this sampling strategy as Balanced Softmax. The im-

provements in Table 4 demonstrate the effectiveness of this

Balanced Softmax approach for using the LDH algorithm

on the multi-label dataset.

4.3.3 Effect of Runtime Sampling

We carry out experiments to verify the effectiveness of our

runtime sampling approach. Recall that our approach in Al-

gorithm 1 decomposes a propagation process into forward

pass, backward pass and parameter update. We adopt bi-

nary centers fixed in the forward pass and backward pass,

and utilize decimal centers in parameters update. A straight-

forward relaxation is to adopt decimal centers in all 3 steps,

i.e., there are no binary centers involved. This relaxation

Table 5. Different strategies for updating centers of hash codes.

16 bits 32 bits 48 bits 64 bits

CIFAR-10

center loss 74.2 75.5 76.3 77.0

center loss + inter-class loss 75.6 77.1 77.9 78.5

LDH 77.5 78.4 78.8 79.2

ImageNet

center loss 53.1 62.0 64.9 65.1

center loss + inter-class loss 55.6 63.3 66.8 67.8

LDH 61.8 66.7 69.0 69.0

NUS-WDIE

center loss 70.8 75.9 76.5 78.0

center loss + inter-class loss 73.2 76.4 77.2 78.4

LDH 76.9 78.9 78.7 80.3

Table 6. LDH with different backbone models.

16 bits 32 bits 48 bits 64 bits

CIFAR-10
AlexNet 77.5 78.4 78.8 79.2

ResNet-50 86.9 87.2 88.3 88.1

ImageNet
AlexNet 61.8 66.7 69.0 69.0

ResNet-50 84.9 87.0 88.1 88.0

NUS-WIDE
AlexNet 74.6 78.3 78.8 79.8

ResNet-50 80.0 82.6 82.3 82.4

approach degrades to the method using the center loss [34]

if we further remove the inter-class loss. Table 5 shows the

results using different approaches.

Our runtime sampling strategy requires the least relax-

ation on binary constraints on centers, hence achieving the

best performance. Also, it can be observed in Table 5 that

inter-class loss can help boost the retrieval results, which is

consistent with what we observe in Table 3.

4.3.4 ResNet-50 as Backbone Model

It is worth mentioning that most existing state-of-the-art

deep hashing methods use the AlexNet [17] as backbone

model. We evaluate the proposed LDH algorithm using the

ResNet-50 [14] model and present experimental results in

Table 6. The ResNet-50 model is pre-trained on the Ima-

geNet. As expected, the proposed algorithm performs better

when a stronger backbone model is utilized.

5. Conclusions

In this work, we propose the Linear Discriminative

Hashing (LDH) algorithm for image retrieval. By enforcing

the intra-class compactness and inter-class separability, the

proposed LDH learns linearly discriminative binary codes

that are effective for retrieval tasks. A runtime sampling ap-

proach is developed to enable the training of binary centers

with stochastic gradient descent. We evaluate the LDH al-

gorithm on three benchmark datasets, including CIFAR-10,

ImageNet, and NUS-WIDE, with ablation studies to ana-

lyze the contributions of main components of our loss func-

tions. Experimental results show that the proposed LDH

algorithm performs favorably against other state-of-the-art

hashing approaches.
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