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Abstract

The employment of convolutional neural networks has

led to significant performance improvement on the task of

object detection. However, when applying existing detec-

tors to continuous frames in a video, we often encounter

momentary miss-detection of objects, that is, objects are

undetected exceptionally at a few frames, although they are

correctly detected at all other frames. In this paper, we ana-

lyze the mechanism of how such miss-detection occurs. For

the most popular class of detectors that are based on anchor

boxes, we show the followings: i) besides apparent causes

such as motion blur, occlusions, background clutters, etc.,

the majority of remaining miss-detection can be explained

by an improper behavior of the detectors at boundaries of

the anchor boxes; and ii) this can be rectified by improving

the way of choosing positive samples from candidate anchor

boxes when training the detectors.

1. Introduction

Detecting objects in an image is a fundamental problem

of computer vision. The employment of convolutional neu-

ral networks (CNNs) has led to significant performance im-

provement on the task in recent years [17, 11, 16, 9, 25,

26, 6], and the accuracy seemingly comes close to the up-

per bound of the task. However, when applying them to

a video, there often emerge cases where an object is mo-

mentarily miss-detected, i.e., undetected exceptionally at a

few frames, although it is successfully detected for all other

frames [24, 28, 22]; examples are shown in Figs. 1 and 2.

In this paper, we attempt to understand the mechanisms

of how such miss-detection, which we will call momentar-

ily missed detection (MMD), occurs. While in some cases

it is apparent what causes MMD, e.g., motion blur and oc-

clusion, as shown in Fig. 2, in others it is unclear, as in the

example of Fig. 1. We call the former external factors and

the latter internal factors.

To the authors’ knowledge, there is no study in the lit-
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Figure 1. An example of momentarily missed detection of an ob-

ject. The person riding a bicycle is continuously detected in a

sequence of frames but is not detected at the frame in the middle.

Unlike those in Fig. 2, there is no apparent cause explaining the

miss-detection.

Figure 2. Examples of the miss-detection cases for which we can

see apparent causes, i.e., external factors. The white boxes indi-

cate the ground-truth boxes and the red ones with a score indi-

cate the predictions with the highest scores amongst those with

IOU> 0.5. From left to right, the miss-detection is considered to

occur due to motion blur, occlusion, and cluttered background.

erature that shows detailed analyses as to how many out of

such miss-detection cases are attributable to external fac-

tors and internal factors, and what mechanisms are behind

the internal factors. This may be reasonable, since MMD

by definition occurs only rarely and thus has only small im-

pact on detection accuracy that is usually measured by mAP

(mean average precision).
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In this paper, aiming to answer these questions, we con-

duct a series of analyses on the class of detectors that use

anchor boxes, which is currently the most popular approach.

In our experiments, we analyzed how SSD [11] and M2Det

[26] work on 73 videos of diverse scenes contained in the

DAVIS dataset [15]. We then found that MMD occurs at a

few percent of about 8,000 frames in these videos, for which

we will show the followings:

• About 60 to 70% of the MMD cases are attributable to

external factors, such as motion blur, occlusion, back-

ground clutter, etc.

• About 20 to 30% of the MMD cases, for which there

is no apparent cause like the external factors, can be

explained by an improper behavior of the detectors at

the boundaries of anchor boxes. Specifically, when an

object moves in a video, its predicted score can drop

considerably at the very instant when the optimal an-

chor for the object is switched from one to its neighbor.

• This behavior can be rectified by improving the

method of choosing positive samples out of candidate

anchors when training the detectors. This prevents the

occurrence of MMD in most of the above cases with-

out sacrificing overall detection accuracy; it also con-

tributes to reduce MMD cases caused by the external

factors.

As MMD occurs only rarely, its removal contributes only

a little to improving detection accuracy that can be mea-

sured by mAP. Then, a practical value of our study, in ad-

dition to deeper understanding of how the detectors work,

is as follows. The major application of object detection is

arguably tracking moving objects in a video. To use a CNN-

based detector for this purpose, we will first apply it to each

video frame independently and then associate the detection

results over the frames. Before the emergence of powerful

CNN-based detectors, the second step of data association

was relatively important, as the first step can only be per-

formed with limited accuracy. The recent CNN-based de-

tectors achieve much higher accuracy, which is sometimes

nearly perfect. This lowers the relative importance of the

second step, except for some hard cases, e.g., when many

moving objects overlap with each other. If we can reduce

the occurrence of MMD toward zero, we may be able to

further accelerate this trend.

2. Related Work

In recent studies, object detection is posed as a regression

problem, in which the geometry of an object bounding box

in an image is predicted. There exist a few approaches of

formulating this regression problem. The major approach

is to use anchor boxes, which are default bounding boxes

with several predefined sizes and aspect ratios that are po-

sitioned at each grid cell of a feature map. The problem is

then formulated as prediction of offsets to the true bounding

box from its closest anchors, making it easier to deal with

bounding boxes which usually have high degrees of free-

dom. The methods based on this formulation are further di-

vided into two categories. One uses multiple feature maps

in different resolutions [11, 3, 8, 9, 25, 26] and the other

use a single feature map [17, 16]. These two strategies are

compared in [8, 14].

For these methods, in this paper, we analyze momentary

miss-detection that is often observed when applying them to

a video sequence. To the authors’ knowledge, there are few

studies on this issue in the literature. An exception we are

aware of is the study of Zhang et al. [24], in which consid-

ering the situation where a single-image object detector is

applied to a continuous sequence of a video, they propose a

new measure evaluating temporal (in)consistency of detec-

tion results and show that there is a trade-off between accu-

racy and stability. Our results in this paper do not disagree

with theirs but show that we can improve the trade-off. It

should also be noted that there are a number of studies that

consider video object tracking, such as [28] and [22], in

which the input is a set of multiple frames and the output is

the trajectories of objects.

Recently, several methods have been proposed that do

not use anchor boxes, such as CornerNet [6] and CenterNet

[1]. Instead of predicting the offset from anchor boxes, they

directly predict key points associated with bounding boxes,

such as their top-left and bottom-right corners. Tian et al.

[19] propose a method that directly predicts the location of

an object at each grid point of a feature map, which is in-

spired by FCN-based architectures [5]. Although these ap-

proaches seem promising, it is too early to say that they will

fully replace anchor-based methods. It is noteworthy that

several researchers have proposed to use additional compo-

nents to improve the anchor-based methods. Yang et al. [23]

propose a method that dynamically generates appropriate

anchor boxes from the input by using an additional network

called the anchor function generator. Zhu et al. [27] propose

to choose the best one of multi-scale feature maps for each

input and predict bounding boxes at its grid points, which is

integrated with predictions from the standard anchor-based

method.

3. Momentarily Missed Detection

We are interested in cases where detection of an object

fails at a particular frame of a sequence and is successful

for all the other frames in the sequence. We call such miss-

detection momentarily missed detection (MMD).
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3.1. Definition

To conduct systematic analyses, we declare the frame t
to be a MMD frame if it satisfies the following conditions:

pct−1 ≥ γmin and pct+1 ≥ γmin, (1a)

pct/p
c
t−1 ≤ γratio, (1b)

pct < γmax, (1c)

where pct is the score of the object of class c that is given by

our detector for frame t. Rigorously, we select the anchor

box providing the largest score from those having IOU>
0.5 with its ground truth box; pct is the score for the anchor.

The first condition (1a) ensures that the last and next frames

(i.e., t−1 and t+1) provide sufficiently high detection score.

The second one (1b) requires that detection score drop at

this frame t from the last frame t − 1, at least to a certain

extent. The last one (1c) eliminates frames at which the

detection score is very high although the first two conditions

are met.

When a detector detects objects successfully (except for

MMD frames), the score pct defined as above is usually

greater than 0.7 (for any t), and thus (1c) with γmax having

a lower value with a certain gap suffices to find most of the

MMD frames of our interest. Thus, we set γmax = 0.6 in

our experiments. However, there are additional cases where

the score is continuously close to (but greater than) a natu-

ral threshold 0.5 and exhibits an exceptionally lower score

at a single particular frame t. For completeness, we want

to extract such frames as well, employing (1a) and (1b); we

set γmin = 0.5 and γratio = 0.9 in our experiments.

3.2. Factors Causing MMD

3.2.1 External Factors

We now consider why MMD occurs, i.e., why an object that

is continuously detected suddenly ceases to be detected at a

particular frame. The most likely cause will be bad imaging

conditions that momentarily emerge at that frame, such as

motion blur, illumination changes, occlusion by other ob-

jects, cluttered background, etc. Figure 2 shows typical

examples, which are selected from those automatically se-

lected by the conditions (1). It should be noted that several

solutions to these cases are proposed in [10, 12, 20]. We

refer to these causes as external factors.

3.2.2 Anchor Boundary

However, there are cases where we cannot find such appar-

ent causes, as shown in Fig. 1. What causes MMD in such

cases? We conjecture it is attributable to (suboptimal) use

of anchor boxes.

We are considering detectors that use anchor boxes.

They are created at each grid point of a feature map with

a number of sizes and aspect ratios, aiming at easing re-

gression of bounding boxes with high degrees of freedom.

Thus, there are usually a large number of anchor boxes with

various locations, sizes, and aspect ratios. However, they

are only sparsely sampled in these parameter space. Thus,

when a moving object continuously changes its location,

size, and shape in a video, the optimal anchor that is re-

sponsible for its detection will be switched from one to its

neighbor, as shown in Fig. 3. It is noteworthy that as the

fewer the anchors are, the faster the overall computation is,

it is not reasonable to use an excessive number of anchors.

Based on this structure of the detectors, we introduce the

following hypothesis as to how MMD emerges that cannot

be explained by the external factors:

Hypothesis 1 MMD can emereg at the boundaries of two

neighboring anchors having either different scales, loca-

tions, or aspect ratios.

We will experimentally validate this hypothesis. To do

so, we first propose a method for analyzing the behavior of

detectors at around anchor boundaries.

4. Analysis and a Solution

4.1. Understanding Behaviors of a Detector

4.1.1 Image Warp Simulating Object Motion around

Anchor Boundaries

Suppose we find MMD that occurs at an image of a se-

quence and wish to analyze how our detector behaves on

that image and its neighbors in the sequence. To do this,

we simulate the image motion of the object by warping the

image at which the MMD occurs and examining detector

behaviors on the warped images.

To be specific, we first apply a series of geometric warp

to the image, generating image sequences, in each of which

the object appears in either different sizes, positions, or as-

pect ratios. Then, the optimal anchor for the object will

be switched from one to another in the images in each se-

quence, as shown in Fig. 4. Next, we run the detector on

each image sequence and examine its outputs. If MMD

does occur at a boundary of anchors, we should be able

to observe a decrease in the predicted score for the object

at around the switch of the optimal anchor.

To consider the three types of anchor boundaries shown

in Fig. 3, we consider scaling, horizontal shift, and change

in aspect ratio for the image warping. Their details are as

follows:

Scaling: The image is enlarged and shrunk by a factor of

1.02n and 0.98n respectively, for n = 1, . . . , 29, yielding

59 images including the original.

Shifting: We consider only horizontal shift. The image is

shifted in the x axis by 3n pixels, for n = −29, . . . , 29,
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Scale boundary Grid boundary Aspect boundary

Figure 3. Three types of boundaries between neighboring anchor boxes.

Figure 4. Examples of the transformed images by scaling, horizon-

tal shift, and aspect ratio (from left to right). The top and bottom

rows show the transformed images at n = ±15. If an object is

miss-detected in the original image because the object size is on

the boundary of anchors, then these transformed images will break

the balance, making detection of the object back to normal.

yielding 59 images in total.

Aspect ratio: The image is enlarged and shrunk in either of

x or y axis by a factor of 1.01n and 0.99n, respectively, for

n = 1, . . . , 29, yielding 59 images in total for each axis.

4.1.2 Case Studies

How does a detector behave around an anchor boundary?

A typical behavior is shown in Fig. 5. The plot shows how

the score for an object varies with respect to its size change,

which is simulated by scaling the image. The blue crosses

indicate the scores predicted for an anchor created on the

19 × 19 feature map, whereas the magenta stars indicate

those for an anchor on the 10 × 10 feature map. It is seen

from Fig. 5 that the former gives higher scores in the nega-

tive (n < 0) region (i.e., smaller object size), whereas the

latter gives higher scores in the positive (n > 0) region

(i.e., larger object size), indicating that the optimal anchor

is switched at around the original object size (n = 0). It

is also seen that the detection score becomes lower than it

should be at around the original size (n = 0). Ideally, the

score should be kept high throughout a range centered at

n = 0, resulting in stable detection of the object. The lower
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Figure 5. An example of how a detector (SSD) behaves around a

boundary of two anchors with different sizes (scales). The crosses

and stars indicate the score of two neighboring anchors, one from

19 × 19 and the other from 10 × 10 feature maps, respectively,

for a sequence of images that are obtained by scaling the original

image; the horizontal axis indicates the scaling factor, e.g., 1.02n.

scores at around n = 0 provide a direct explanation as to

why MMD occurs at the original image.

As shown in Fig. 6, a similar behavior is observed for

boundaries of anchors defined on different grid points. The

blue crosses and the magenta crosses show detection scores

for two neighboring anchors, (x, y) = (11, 9) and (12, 9),
respectively, which are created on the same 19× 19 feature

map. The former gives higher scores in the negative region

(i.e., shifting the image to the left) and the latter gives higher

scores in the opposite region (shifting to the right). The

optimal anchor is switched at around the center, where the

scores for the two anchors are both lower than they should

be. This explains why MMD occurs at the original image.

We will show the results of experiments conducted on a

large number of images to validate Hypothesis 1 in Sec. 5.

4.2. Improving Detector Behavior around Anchor
Boundaries

Assuming Hypothesis 1 to be true, how can we improve

the behavior of detectors around anchor boundaries? We

conjecture that the drop of detection score on anchor bound-

aries, as seen in Figs. 5 and 6, is attributable to sub-optimal

methods for selecting positive samples. We then present an

improved method.
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Figure 6. An example of how a detector (SSD) behaves around a

boundary of two anchors on different grid points. The blue and

magenta crosses indicate the score for two neighboring anchors,

one from the grid point (x = 11, y = 9) and the other from

(x = 12, y = 9) in the 19× 19 feature map, respectively.

Table 1. Various strategies to select positive (and negative) samples

in popular detectors, which are either from the original papers or

from authors’ implementations. Cij in YOLOv2 is an indicator

showing if the center of an object is on the grid i and its associated

anchor j achieves the highest IOU with the ground-truth boundary

box.

models positive negative anchors HNM

Faster R-CNN [17] IOU > 0.7 IOU < 0.3 9 -

SSD [11] IOU > 0.5 - 4 or 6 1:3

RetinaNet [9] IOU ≥ 0.5 IOU < 0.4 9 -

RefineDet [25] IOU > 0.5 - 4 1:3

M2Det [26] IOU ≥ 0.5 - 6 1:3

YOLOv2 [16] Cij = 1 Cij = 0 and IOU ≤ 0.6 5 -

4.2.1 Conventional Method for Positive Sample Selec-

tion

To achieve high recall, many recent detectors has a common

design that a CNN first generates a number of candidate

boxes for a single object, and they are all discarded but a

single box in a post filtering process, such as non-maximum

suppression and center-ness scores [19]. Thus, when train-

ing the CNN, multiple anchor boxes are selected as positive

samples; that is, we train the CNN to declare the presence

of the object class for any of the selected anchor boxes. In

many popular detectors [17, 11, 9, 25, 26], the selection of

these anchors is performed by simple thresholding of IOU

between the default anchor box and the ground truth box, as

shown in Table 1.

An apparent issue with such binary thresholding is that

only a slight difference in IOU leads to opposite results;

for instance, an anchor with IOU= 0.501 is chosen as a

positive sample, whereas that with IOU= 0.499 is not. Our

conjecture is that this coarse selection of samples leads to

the aforementioned improper behaviors of detectors.

4.2.2 Proposed Sampling Method

We propose to make a softer decision for the selection of

positive samples. The basic idea is to incorporate a con-
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Figure 7. Incorporated weight X ′
k applied on the loss of anchor

k having IOU r with the ground truth box (α = 0.1 and β =
0.001). Many previous methods employ binary thresholding with

IOU = 0.5 to choose positive samples. Our weight performs soft

thresholding.

tinuous weight tied with the IOU between the anchor box

and the ground truth box into the evaluation of the loss.

In a standard implementation of the conventional sampling

scheme, an indicator variable Xk ∈ {0, 1} is used to ex-

press whether the k-th anchor box will be chosen as a pos-

itive sample or not, which is computed by thresholding the

IOU, and then it is used as a weight of the loss for this an-

chor box. We extend Xk to the continuous domain, i.e.,

X ′
k ∈ [0, 1]; X ′

k is multiplied with the loss for the k-th an-

chor as in the conventional method.

We compute the new indicator X ′
k using the IOU r be-

tween the anchor k and the ground truth bounding box as

X ′
k = f(r), (2)

where f is a logistic sigmoid function with a parameter a:

f(r) =
1

1 + exp{−a(r − 0.5)}
. (3)

For the sake of computational efficiency, we consider this

soft thresholding only in the range [0.5−α, 0.5+α] of IOU

r. That is, we simply set X ′
k = 0 for r < 0.5 − α and

X ′
k = 1 for r > 0.5 + α. To smoothly connect X ′

k at the

borders r = 0.5 ± α, we set a so that f(0.5 − α) = β
(or equivalently, f(0.5 + α) = 1 − β) for a small β. We

set α = 0.1 and β = 0.001 throughout our experiments.

To avoid the case where no anchor is assigned to a ground

truth box, we follow previous studies, setting X ′
k = 1 for

the anchor k with the largest IOU, when no anchor with

Xk > 0 exists.

5. Experimental Results

5.1. Detectors

For detectors, we choose SSD [11] and M2Det [26],

which are popular two detectors that are based on an-

chor boxes. For the sake of experimental reproducibility,
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we used their implementation that are publicly available,

i.e., SSD-VGG161, SSD-ResNet502, and M2Det-VGG163

(VGG16/ResNet50 indicates a backbone network [18, 4]).

We trained them on the most popular dataset for object de-

tection, PASCAL VOC.

Details of training The PASCAL VOC dataset [2] 2007+
2012 trainval split is used for training. SGD with momen-

tum was used for the optimizer, where momentum was set to

0.9 with weight decay 5.0×10−4 in all models. In the train-

ing of SSD [11], setting the initial learning rate to 1×10−3,

we decrease it to 1×10−4 at 120 epochs and 1×10−5 at 160

epochs; training is stopped at 200 epochs. In the training of

M2Det [26], initial learning rate is set to 4× 10−3, it is de-

creased to 2×10−3, 4×10−4, 4×10−5, and 4×10−6 at 40,

60, 80, and 100 epochs; training is stopped at 120 epochs.

For M2Det, weights are initialized by a model pretrained on

COCO dataset [7] and finetune them.

5.2. Dataset

We choose DAVIS (Densely Annotated VIdeo Segmen-

tation) 2017 dataset [15] for our experiments. Existing

datasets for object detection such as PASCAL VOC [2] and

COCO [7] contain only still-images and cannot be used.

Datasets for object tracking such as [21, 13] do contain

videos but tend to lack a variety of objects and changes in

object size, aspect ratio, etc. The DAVIS dataset is ideal

for our purpose, since it consists of 90 videos of various

scenes and pixel-wise segmentation masks are provided for

various objects in each frame of all the video. We automati-

cally generate ground truth bounding boxes by obtaining the

circumscribing box to each segmentation mask of an object.

As they are trained on PASCAL VOC, our detectors are

trained to detect the 20 classes of objects contained in the

dataset. We identify 144 of them in the videos of the DAVIS

dataset, and thus use these objects for our experiments. We

can use only 73 videos out of 90 and discard others that do

not contain the 20 object classes. As there are often multiple

objects (that are annotated) in an image and our analysis is

done for each object, the number of video frames we used

in our experiments amounts to 8, 140.

Extraction of MMD Frames We run each of the above

detectors on the above data and then applied the crite-

ria (1) to the detection results to extract target frames for

which MMD occurs. This yields several hundreds of frames

for each detector; exact numbers are shown in the row of

1https://github.com/qfgaohao/pytorch-ssd
2https://github.com/ShuangXieIrene/ssds.pytorch
3https://github.com/qijiezhao/M2Det
4aeroplane, bicycle, bird, boat, bus, car, cat, cow, dog, horse, motor-

bike, person, sheep, and train

Table 2. Number of MMD frames found on selected video frames

(8,140 images in total from 73 videos) of the DAVIS dataset for

different detectors, and their classification into three categories.
†mAP for each detector is evaluated on PASCAL VOC 2007 test

set.

Models SSD-VGG16 SSD-ResNet50 M2Det-VGG16

mAP
†
0.5 76.5 74.8 79.3

MMD frames 367 333 264

External factors 262 239 160

Anchor boundary 73 61 75

Others 32 33 29

‘MMD frames’ of Table 2. It is seen that the these frames

are less than 5% of the total number of frames (i.e., 8, 140).

5.3. Classifying MMD Frames by Causes

We then visually inspect each of these MMD frames. We

first check if the MMD at the frame is caused by an ex-

ternal factor, such as motion blur, occlusion, and cluttered

background, as discussed in Sec. 3.2.1. There are frames

at which the object is correctly detected but its predicted

class is wrong, e.g., a dog is detected but is recognized as a

cat; there are about 5 to 10 frames in total for each detector.

We classified these frames also into the category of exter-

nal factors. The row ‘External factors’ of Table 2 shows the

number of these frames for each detector.

We next inspect each of the remaining MMD frames to

judge whether it emerges due to the anchor boundary as is

predicted in Hypothesis 1 or due to other causes. To do

this, we apply the method in Sec. 4 to these MMD frames;

this yields sequences of warped images, for each of which

we run the same detector. We then plot detection scores

outputted for the associated neighboring anchors, by us-

ing which we make the above decision. The rows ‘an-

chor boundary’ and ‘others’ of Table 2 show the number

of MMD frames classified into the two categories, respec-

tively.

These results are summarized in the bar plots of Fig. 8.

It is seen that while the external factors are dominant, the

hypothesized cause of anchor boundaries occupies non-

negligible portion. It will be the most effective if we can

cope with the external factors; for instance, it may be ef-

fective to remove motion blur from the input image in a

pre-processing step before the application of an object de-

tector. This is, however, not a simple task. On the other

hand, as will be shown in the next subsection, we can re-

duce the number of MMDs caused by anchor boundaries

for free, i.e., by simply switching the method for positive

sample selection from the conventional one to the proposed

method.

Note that there remain a portion of MMD frames that are

not explained by the external factors or the anchor bound-
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解析結果 なし

(c)

(b)

(a)

external factor anchor boundary others

Number of frames

0 50 100 150 200 250 300 350 400

Figure 8. Bar plots of the same data shown in Table 2. (a) SSD-

VGG16, (b) SSD-ResNet50, and (c) M2Det-VGG16.

aries. It should also be noted that we could not find a MMD

frame caused by anchor boundaries in terms of aspect ra-

tio. This may be because objects tend to change their aspect

ratio less frequently than they change their sizes or exhibit

translational motion.

5.4. Evaluation of Proposed Sampling Method

We also conducted experiments to examine the effec-

tiveness of the proposed method for selecting positive sam-

ples and weighting them. In the experiments we trained the

same three detector models, SSD-VGG16, SSD-ResNet50,

and M2Det-VGG16 using the proposed sampling/weighting

method explained in Sec. 4.2. Their training in other parts

is performed in the same way as before. We applied the

trained models on the same dataset (i.e., 8,140 images from

73 DAVIS videos) and then analyzed the detection results

using the same method as the previous experiments. The

results are shown in Table 3. The bar plot of the same data

including Table 2 are shown in Fig. 9.

It is seen from the table and the figure that the employ-

ment of the proposed sampling/weighting method decreases

the number of MMD frames caused by anchor boundaries

significantly; namely, from 73 to 11 with SSD-VGG16,

from 61 to 14 with SSD-ResNet50, and from 75 to 19 with

M2Det-VGG16.

Figure 10 shows a number of examples of how MMD is

resolved by the incorporation of the proposed method. The

left panel shows detection results of SSD-VGG16 with the

conventional sampling method (i.e., binary thresholding),

which suffer from MMD. Each row shows a pair of a MMD

frame and the score profile for neighboring anchors over as-

sociated image warping. As is explained in Sec. 4.1.2, it is

seen for each case that there emerges a valley in the score

profile at around the anchor boundary, which well explains

why MMD occurs at the frame. The right panel shows re-

sults on the same frames of the same detector trained with

the proposed method. Each row shows a pair of the de-

tection result and the corresponding score profiles for the

neighboring anchors. In each case, the object that is miss-

detected on the left panel is correctly detected. It is seen for

Table 3. Comparisons between binary and soft thresholding for

positive sample selection. We set hyperparameters for soft thresh-

old as [α, β]=[0.1, 0.001]. †mAP values are evaluated on the PAS-

CAL VOC 2007 test set.

Models SSD-VGG16 SSD-ResNet50 M2Det-VGG16

Threshold Binary Soft Binary Soft Binary Soft

mAP
†
0.5 76.5 77.2 74.8 74.7 79.3 80.4

MMD frames 367 206 333 247 264 182

External factors 262 180 239 194 160 140

Anchor boundary 73 11 61 14 75 19

Others 32 15 33 39 29 23

external factor anchor boundary others

(c)

(b)

(a)

Number of frames
0 50 100 150 200 250 300 350 400

Figure 9. Bar plots of Table 3 (and Table 2 for the sake of com-

parison). (a) SSD-VGG16, (b) SSD-ResNet50, and (c) M2Det-

VGG16. It is seen that the number of MMD frames, particularly

those due to anchor boundaries, decreases.

each case that the peak of the score curve for each anchor

tends to be more flat, resulting in shallower valley at the an-

chor boundary. This well explains the vanishing of MMDs

in these examples.

We may conclude from these results the effectiveness of

our approach. Moreover, this will also be an additional

support for the validity of Hypothesis 1. Another remark

with the results is that MMD frames caused by external fac-

tors also decreases to a certain degree; the largest decrease

(more than 30%) is observed for SSD-VGG16. Although

the mechanism behind this improvement is not clear, we

can confirm the proposed method does not worsen the per-

formance or even contribute to improvements overall. This

is also confirmed by that mAP maintains the same level or

even shows some improvements. As is mentioned earlier,

we set α = 0.1 and β = 0.001 in the experiments. It is

noteworthy that we chose these values intuitively and there

may be better values leading to even better performance.

6. Summary and Conclusion

Recent CNN-based detectors are designed to work on a

single image and are usually trained using a large number

of labeled still-images that are independent of each other.
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Figure 10. Examples of frames at which SSD-VGG16 trained with the conventional method for positive sample selection (i.e., binary

thresholding) causes MMD, whereas the same model trained with the proposed method (i.e., soft thresholding) ceases to cause MMD. The

plots on the second columns show the scores for two neighboring anchors, from which it is confirmed that the proposed sampling method

contributes to fill in the gap at around anchor boundaries.

In this paper, we have analyzed momentarily missed detec-

tion (MMD) that is often observed when we apply these de-

tectors to a sequence of video frames. We have revealed

through several experiments that i) external factors (e.g.,

motion blur etc.) explains the majority of MMD cases; ii)

the remaining MMD cases can be mostly explained by an

improper behavior of the detectors at boundaries of anchor

boxes; and iii) it can be rectified by using the improved

method that chooses positive samples from candidate an-

chor boxes when training the detectors.
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