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Abstract

Recent deep learning methods for object detection rely
on a large amount of bounding box annotations. Collect-
ing these annotations is laborious and costly, yet supervised
models do not generalize well when testing on images from
a different distribution. Domain adaptation provides a so-
lution by adapting existing labels to the target testing data.
However, a large gap between domains could make adap-
tation a challenging task, which leads to unstable training
processes and sub-optimal results. In this paper, we pro-
pose to bridge the domain gap with an intermediate domain
and progressively solve easier adaptation subtasks. This in-
termediate domain is constructed by translating the source
images to mimic the ones in the target domain. To tackle
the domain-shift problem, we adopt adversarial learning
to align distributions at the feature level. In addition, a
weighted task loss is applied to deal with unbalanced im-
age quality in the intermediate domain. Experimental re-
sults show that our method performs favorably against the
state-of-the-art method in terms of the performance on the
target domain.

1. Introduction

Object detection is an important computer vision task
aiming to localize and classify objects in images. Re-
cent advancement in neural networks has brought signif-
icant improvement to the performance of object detec-
tion [9, 24, 21, 22, 23, 17]. However, such deep models
usually require a large-scale annotated dataset for super-
vised learning and do not generalize well when the training
and testing domains are different. For instance, domains
can differ in scenes, weather, lighting conditions and cam-
era settings. Such domain discrepancy or domain-shift can
cause unfavorable model generalization issues. Although
using additional training data from the target domain can
improve the performance, collecting annotations is usually
time-consuming and labor-intensive.

Unsupervised domain adaptation methods address the
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Figure 1. An illustration of our progressive adaptation method.
Conventional domain adaptation aims to solve domain-shift prob-
lem from source to target domain, which is denoted as Is—,7. We
propose to bridge this gap with an intermediate synthetic domain
that allows us to gradually solve separate subtasks with smaller
gaps (shown as ls_,r and lr—T). In addition, we treat each image
in the synthetic domain unequally based on its quality with respect
to the target domain, where the size of the yellow triangles stand
for their weights (i.e., the closer to target, the higher of the weight).

domain-shift problem without using ground truth labels in
the target domain. Given the source domain annotations,
the objective is to align source and target distributions in
an unsupervised manner, so that the model can general-
ize to the target data without annotation effort. Numerous
methods are developed in the context of image classification
[32, 18, 19, 28, 10, 31, 7, 2], while fewer efforts have been
made on more complicated tasks such as semantic segmen-
tation [13, 29] and object detection [11, 3, 15]. Such domain
adaptation tasks are quite challenging as there usually exists
a significant gap between source and target domains.

In this paper, we aim to ease the effort of aligning differ-
ent domains. Inspired by [10] which addresses the domain-
shift problem via aligning intermediate feature representa-
tions, we utilize an intermediate domain that lies between
source and target, and hence avoid direct mapping across
two distributions with a significant gap. Specifically, the
source images are first transformed by an image-to-image

749



translation network [36] to have similar appearance as the
target ones. We refer to the domain containing synthetic
target images as the intermediate domain. We then con-
struct an intermediate feature space by aligning the source
and intermediate distributions, which is an easier task than
aligning to the final targets. Once this intermediate domain
is aligned, we use it as a bridge to further connect to the tar-
get domain. As a result, via the proposed progressive adap-
tation through the intermediate domain, the original align-
ment between source and target domains is decomposed
into two subtasks that both solve an easier problem with
a smaller domain gap.

During the alignment process, since the intermediate
space is constructed in an unsupervised manner, one poten-
tial issue is that each synthetic target image may contribute
unequally based on the quality of the translation. To reduce
the outlier impact of the low-quality translated images, we
propose a weighted version in our adaptation method, where
the weight is determined based on the distance to the target
distribution. That is, an image closer to the target domain
should be considered a more important sample. In prac-
tice, we obtain the distance from the discriminator in the
image translation model and incorporate it into the detec-
tion framework as a weight in the task loss.

We evaluate our method on various adaptation scenarios
using numerous datasets, including KITTT [8], Cityscapes
[4], Foggy Cityscapes [26] and BDD100k [35]. We con-
duct experiments on multiple real-world domain discrep-
ancy cases, such as weather changes, camera differences
and the adaptation to a large-scale dataset. With the pro-
posed progressive adaptation, we show that our method
performs favorably against the state-of-the-art algorithm in
terms of accuracy in the target domain. The main contri-
butions of the work are summarized as follows: 1) we in-
troduce an intermediate domain in the proposed adaptation
framework to achieve progressive feature alignment for ob-
ject detection, 2) we develop a weighted task loss during
domain alignment based on the importance of the samples
in the intermediate domain, and 3) we conduct extensive
adaptation experiments under various object detection sce-
narios and achieve state-of-the-art performance.

2. Related Work

Object Detection. Recently, state-of-the-art object detec-
tion methods are predominately based on the deep convolu-
tional neural networks (CNNs). These methods can be cat-
egorized into region proposal-based and single-shot detec-
tors, depending on the network forwarding pipelines. Re-
gion proposal-based methods [9, 24] perform prediction on
a variable set of candidate regions. Fast R-CNN [9] ap-
plies selective search [33] to obtain region proposals, while
Faster R-CNN [24] proposes to learn a Region Proposal
Network (RPN) to accelerate the proposal generation pro-

cess. To further reduce the computational need of pro-
posal generation, single-shot approaches [21, 22, 23, 17]
employ a fixed set of predefined anchor boxes as proposals
and directly predict the category and offsets for each anchor
box. Although these methods achieve state-of-the-art per-
formance, such success hinges on the substantial amount
of labeled training data which requires a high labor cost.
Also, these methods can overfit on the training domain,
which makes them difficult to generalize to many real-world
scenarios. As a result, the vision community has recently
started showing a great interest in employing domain adap-
tation techniques to object detection.

Domain Adaptation. Domain adaptation techniques aim
to tackle domain-shift between the source and target do-
mains with unlabeled or weakly labeled images in the
target domain. In recent years, adversarial learning has
played a critical role in domain adaptation methods. Since
the emergence of the Domain Adversarial Neural Net-
work (DANN) [7], numerous works [2, 31, 3] have been
proposed to utilize adversarial learning for the feature dis-
tribution alignment between two domains. Furthermore,
several methods attempt to perform alignment in the pixel
space, based on the unpaired image-to-image translation
approaches [36]. For image classification, PixelDA [1]
synthesizes additional images in the target domain by
learning one-to-many mapping. For semantic segmenta-
tion, CyCADA [12] and AugGAN [14] both design a Cy-
cleGAN [36]-like network to transform images from the
source domain to the target one. The transformed images
are then treated as simulated training images for the target
domain with the same label mapped from the source do-
main. Instead of performing alignment in the feature/pixel
space, Tsai et al. [29, 30] adopt adversarial learning in the
structured output space for solving domain adaptation on
semantic segmentation.

To address domain adaptation for object detection in a
weakly-supervised manner, LSDA [11] finetunes a fully-
supervised classification model for object detection with
limited bounding box resources. Alternatively, Naoto et
al. [15] train the network with synthetic data and finetune
it with pseudo-labels in the target domain. In an unsuper-
vised domain adaptation setting, Chen et al. [3] propose to
close the domain gap on both image level and instance level
via adversarial learning. To emphasize on matching local
features, Zhu et al. [37] mines discriminative regions for
alignment, while Saito et al. [25] focus on aligning local
receptive fields at low-level features along with weak align-
ment on global regions. On the other hand, Kim et al. [16]
utilize image translation network to generate multiple do-
mains and use a multi-domain discriminator to adapt all do-
mains simultaneously, but this method does not consider the
distance between the generated ones and the final target.

In this work, we observe that simply applying image
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Figure 2. The proposed progressive adaptation framework. The algorithm includes two stages of adaptation as shown in a) and b). In a),
we first transform source images to generate synthetic ones by using the generator G learned via CycleGAN [36]. Afterward, we use the
labeled source domain and perform first stage adaptation to the synthetic domain. Then in b), our model applies a second stage adaptation
which takes the synthetic domain with labels inherited from the source and aligns the synthetic domain features with the target distribution.
In addition, a weight w is obtained from the discriminator Dy in CycleGAN to balance the synthetic image qualities in the detection
loss. The overall structure of our adaptation network is shown in c). Labeled and unlabeled images are both passed through the encoder
network F to extract CNN features featr, and featr. We then use them to: 1) learn supervised object detection with the detector network
from featy, and 2) forward both features to GRL and a domain discriminator, learning domain-invariant features in an adversarial manner.

translation without knowing the distance between each gen-
erated sample and the target domain may result in less ef-
fective adaptation. To handle this issue, we first introduce
an intermediate domain to reduce the effort of mapping two
significantly different distributions and then adopt a two-
stage alignment strategy with sample weights to account for
the sample quality.

3. Progressive Domain Adaptation

We propose to decompose the domain adaptation prob-
lem into two smaller subtasks, bridged by a synthetic do-
main sitting in between the source and target distribution.
Taking advantage of this synthetic domain, we adopt a pro-
gressive adaptation strategy which closes the gap gradually
through the intermediate domain. We denote the source,
synthetic, and target domains as S, F and T, respectively.
The conventional adaptation from a labeled domain S to
the unlabeled domain T is denoted as S — T, while the
proposed adaptation subtasks are expressed as S — I and
F — T. An overview of our progressive adaptation frame-
work is shown in Figure 2. We discuss the details of the pro-
posed adaptation network and progressive learning in the
following sections.

3.1. Adaptation in the Feature Space

In order to align distributions in the feature space, we
propose a deep model which consists of two components;
a detection network and a discriminator network for feature
alignment via adversarial learning.

Detection Network. We adopt the Faster R-CNN [24]
framework for the object detection task, where the detec-
tor has a base encoder network E to extract image fea-
tures. Given an image I, the feature map F(I) is extracted
and then fed into two branches: Region Proposal Network
(RPN) and Region of Interest (ROI) classifier. We refer to
these branches as the detector, which is shown in Figure 2.
To train the detection network, the loss function L4, is de-
fined as:

»Cdet (E(I)) = Crpn + »Ccls + £r897 (1)

where L,pn, Les, and L4 are the loss functions for the
RPN, classifier and bounding box regression, respectively.
We omit the details of the RPN and ROI classifier here as
we focus on solving the domain-shift We omit the details of
the RPN and ROI classifier here as we focus on solving the
domain-shift problem. The readers are encouraged to refer
to the original paper [24] for further details.

Domain Discriminator. To align the distributions across
two domains, we append a domain discriminator D after
the encoder E. The main objective of this branch is to dis-
criminate whether the feature E(I) is from the source or the
target domain. Through this discriminator, the probability
of each pixel belonging to the target domain is obtained as
P = D(E(I)) € R¥*W_ We then apply a binary cross-
entropy loss to P based on the domain label d of the input
image, where images from the source distributions are given
the label d = 0 and the target images receive label d = 1.
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The discriminator loss function £4;,. can be formulated as:

Laise(E()) == dlog P"»)

hyaw

+ (1 —d)log(1 —P"w)). (2

Adversarial Learning. Adversarial learning is achieved
using the Gradient Reverse Layer (GRL) proposed in [6] to
learn the domain-invariant feature E(I). GRL is placed in
between the discriminator and the detection network, only
affecting the gradient computation in the backward pass.
During backpropagation, GRL negates the gradients that
flow through. As a result, the encoder F receives gradi-
ents that force it to update in an opposite direction which
maximizes the discriminator loss. This allows E to pro-
duce features that fools the discriminator D while D tries
to distinguish the domain of the features. For the adaptation
task S — T, given source images Ig and target images I,
the overall min-max loss function of the adaptive detection
model is defined as the following:

min max L(Is,I1) = Laer(Xs)+Aaise [ Laisc(E(Is))
+ Edmc(E(IT)ﬂ )

where Ag;s. is a weight applied to the discriminator loss that
balances the loss.

3.2. Progressive Adaptation

Aligning feature distributions between two distant do-
mains is challenging, and hence we introduce an intermedi-
ate feature space to make the adaptation task easier. That is,
instead of directly solving the gap between the source and
the target domains, we progressively perform adaptation to
the target domain bridged by the intermediate domain.

Intermediate Domain. The intermediate domain is con-
structed from the source domain images to synthesize the
target distributions on the pixel-level. We apply an image-
to-image translation network, CycleGAN [36] to learn a
function that maps the source domain images to the target
ones, and vice versa. Since ground truth labels are only
available in the source domain, we only consider the trans-
lation from source images to the target domain (i.e., syn-
thetic target images) after training CycleGAN.

Synthetic target images have been utilized to assist with
domain adaptation tasks [1, 14, 15] as additionally aug-
mented target training data. Different from these ap-
proaches, we define this set of synthetic images as an in-
dividual domain F to connect the labeled domain S with the
unlabled domain T via adversarial learning. One motivation
behind this is that the similarity between source domain S
and I is the image content, only diverging in the visual ap-
pearances, while I and the target domain T are different

KITTI
Cityscapes
Synthetic

Figure 3. Visualization of the feature distributions via t-SNE [34],
showing that our synthetic images serve as an intermediate feature
space between the source and target distributions. Each dot rep-
resents one image feature extracted from E. We take 500 images
from the Cityscapes validation set and 500 from the KITTI train-
ing set for comparison.

in image details but have similar distributions on the pixel-
level. Consequently, this synthetic domain “sits” in between
the source and target domains and thus can help reduce the
adaptation difficulty of a large domain gap between S and T.
Figure 3 is one example of feature space visualization using
the KITTT and Cityscapes datasets. This figure shows a dis-
tribution plot by mapping the features from E(I) to a low
dimensional 2-D space via t-SNE [34]. The plot demon-
strates that in the feature space, the synthetic domain F
(blue) is located in between the KITTI (red) and Cityscapes
(green) distributions.

Adaptation Process. Our domain adaptation network in-
volves obtaining knowledge from a labeled source domain
S then map that knowledge to an unlabeled target domain
T by aligning the two distributions, solving the adaptation
task S — T, i.e., via (3) in this paper. To take advantage of
the intermediate feature space during alignment, our algo-
rithm decomposes the problem into two stages: S — [F and
F — T, as shown in Figure 2 a) and b). At the first stage, we
use S as the labeled domain, adapting to F without labels.
Due to the underlying similarity between S and F in image
contents, the network focuses on aligning the feature dis-
tributions with respect to the appearance difference on the
pixel-level. After aligning pixel discrepancies between S
and [F, we take [F as the source domain for supervision and
adapts to T as stage two in the proposed method. During
this step, the model can take advantage of the appearance-
invariant features from the first step and focus on adapt-
ing the object and context distributions. In summary, the
proposed progressive learning separates the adaptation task
into two subtasks and pays more attention to individual dis-
crepancies during each adaptation stage.
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a) High quality

b) Low quality

Figure 4. Image quality examples from the KITTI dataset synthe-
sized to be in the Cityscapes domain. a) shows the ones that are
translated with better quality. Images in b) contain artifacts and fail
to preserve details of the car, almost blend into the background.

Weighted Supervision. We observe that the quality of
synthetic images differs in a wide range. For instance, some
images fail to preserve details of objects or contain artifacts
when translated, and these failure cases may have a larger
distance to the target distribution (see Figure 4 for an exam-
ple). This phenomenon can be also visualized in the feature
space in Figure 3, where some blue dots are far away from
both the source and target domains.

As aresult, when performing supervised detection learn-
ing on F during F — T, these defects may cause confusions
to our detection model, leading to false feature alignment
across domains. To alleviate this problem, we propose an
importance weighting strategy for synthetic samples based
on their distances to the target distribution. Specifically,
synthetic outliers that are further away from the target dis-
tribution will receive less attention than the ones that are
closer to the target domain. We obtain the weights by taking
the predicted output scores from the target domain discrim-
inator Dgyee. This discriminator is trained to differentiate
between the source and target images with respect to the
target distribution, in which the optimal discriminator is ob-
tained with:

C )= pr(D)
cycle ps(I) + pr(I)’

where I is the synthetic target image generated via Cycle-
GAN, and pr(I) and ps(I) are the probability of I belong-
ing to the source and the target domain, respectively. Here,
the higher score of Dy (I) represents a closer distribu-
tion to the target domain, thus providing a higher weight.
On the other hand, lower quality images which are further
away from the target domain will be treated as outliers and
receive a lower weight. For each image I, the importance
weight is defined as:

_ Dcycle (1)7 ifIelF
wlh = { 1, otherwise.

“)

®)

We then apply this weight to the detection loss function in
(1) when learning from synthetic images with labels during
the second stage. Thus, the final weighted objective func-
tion given images Ir and Iy is re-formulated based on (3)

as:
mbin max L(Ig,It) = w(Ir)Lge: (Ir)

+ )\disc [Edisc(E(I]F)) + £disc<E(IT))] . (6)

4. Experimental Results

In this section, we validate our method by evaluating the
performance in three real-world scenarios that result in dif-
ferent domain discrepancies: 1) cross-camera adaptation,
2) weather adaptation, and 3) adaptation to large-scale
dataset. Figure 5 shows examples of the detection results
from the three tasks before and after applying our domain
adaptation method.

For each adaptation scenario, we show a baseline Faster
R-CNN result trained on the source data without applying
domain adaptation, and a supervised model trained fully on
the target domain data (oracle) to illustrate the existing gap
between domains. Then we train the proposed model on the
selected source and target domain to demonstrate the effec-
tiveness of the proposed method. We also conduct ablation
study to analyze the effectiveness of individual proposed
components. More results will be available in the supple-
mentary material. All the source code and trained models
will be made available to the public!.

4.1. Implementation Details

Adaptation Network. In our experiments, we adopt
VGG16 [27] as the backbone for the Faster R-CNN [24] de-
tection network, following the setting in [3]. We design the
discriminator network D using 4 convolution layers with
filters of size 3 x 3. The first 3 convolution layers have 64
channels, each followed by a leaky ReLLU [20] with « set to
0.2. The final domain classification layer has 1 channel that
outputs the binary label prediction. Our synthetic domain
is generated by training CycleGAN [36] on the source and
target domain images.

Training Details. Before applying the proposed adap-
tation method, we pre-train the detection network us-
ing source domain images with ImageNet [5] pre-trained
weights. When training the adaptation model, we use all
available annotations in the source domain including the
training and validation set. We optimize the network us-
ing Stochastic Gradient Descent (SGD) with a learning rate
of 0.001, weight decay of 0.0005 and momentum of 0.9.
We use Ag;sc = 0.1 based on a validation set to balance the
discriminator loss with the detection loss. Batch size is 1
during training. The proposed method is implemented with
Pytorch and the networks are trained using one GTX 1080
Ti GPU with 12 GB memory.

lhttps ://github.com/kevinhkhsu/DA_detection
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4.2. Datasets

KITTI. The KITTI dataset [8] contains images taken
while driving in cities, highways, and rural areas. There
are a total of 7,481 images in the training set. The dataset
is only used as the source domain in the proposed experi-
ments, and we utilize the full training set.

Cityscapes. The Cityscapes dataset [4] is a collection of
images with city street scenarios. It includes instance seg-
mentation annotation which we transform into bounding
boxes for our experiments. It contains 2,975 training im-
ages and 500 validation images. We use Cityscapes with the
KITTTI dataset in Section 4.3 to evaluate the cross camera
adaptation and compare our results with the state-of-the-art
method.

Foggy Cityscapes. As self-explanatory by the name, the
Foggy Cityscapes dataset [26] is built upon the images in
the Cityscapes dataset [4]. This dataset simulates the foggy
weather using depth maps provided in Cityscapes with three
levels of foggy weather. The simulation process can be
found in the original paper [26]. Section 4.4 shows the
experiments conducted on this simulated dataset for cross
weather adaptation.

BDD100k. The BDD100k dataset [35] consists of 100k
images which are split into training, validation, and testing
sets. There are 70k training images and 10k validation im-
ages with available annotations. This dataset includes dif-
ferent interesting attributes; there are 6 types of weather,
6 different scenes, 3 categories for the time of day and 10
object categories with bounding box annotation. In our ex-
periment, we extract a subset of the BDD100k with images
labeled as daytime. It includes 36,728 training and 5,258
validation images. We use this subset to demonstrate the
adaptation from a smaller dataset, Cityscapes, to a large-
scale dataset using the proposed method in Section 4.5.

4.3. Cross Camera Adaptation

Different datasets exhibit distinct characteristics such as
scenes, objects, and viewpoint. In addition, the underly-
ing camera settings and mechanisms can also lead to crit-
ical differences in visual appearance as well as the image
quality. These discrepancies are where the domain-shift
takes place. In this experiment, we show the adaptation
between images taken from different cameras and with dis-
tinctive content differences. The KITTI [8] and Cityscapes
[4] datasets are used as source and target respectively to
conduct the cross camera adaptation experiment. During
training, all data in the KITTI training set and raw training
images from Cityscapes dataset is used and further evalu-
ated on the Cityscapes validation set. In Table 1, we show
experimental results evaluated on the car class in terms of
the average precision (AP). Compared to the state-of-the-
art method [3] that learns to adapt in the feature space, our

Table 1. Cross camera adaptation using KITTI and Cityscapes
datasets. The results show the average precision (AP) of the car
class shared between the two domains.

KITTI — Cityscapes

Method AP
Faster R-CNN 28.8
FRCNN in the wild [3] 38.5
Ours (w/o synthetic) 38.2
Ours (synthetic augment) 40.6
Ours (progressive) 43.9
Oracle 55.8

Table 2. Analysis of our weighted task loss compared to sev-
eral arbitrary weight settings. We show that by setting each image
weight with respect to the distance from the target distribution im-
proves the model performance.

KITTI — Cityscapes
weight 0.8 0.9 1 1.1 1.2 Ours
AP 39.8 428 422 41.1 42,6 439

baseline denoted as “Ours (w/o synthetic)” matches their
performance using our own implementation.

In order to validate our method, we also conduct abla-
tion studies using several settings. First, we demonstrate
the benefit of utilizing information from the synthetic do-
main. When we directly augment synthetic data in the train-
ing set and include them in the source domain to perform
feature-level adaptation, denoted as “Ours (synthetic aug-
ment)”, there is a 2.1% performance gain compared to [3].
In the proposed method, by adopting our progressive train-
ing scheme with the importance weights,we show that our
model further improves the AP by 5.4%. In addition, we
present the advantage of our weighted task loss in balancing
the uneven quality of synthetic images. In Table 2, we show
the analysis for using different fixed weights and our im-
portance weighting method. Our method dynamically de-
termines the weight of each image® based on the distance
from the target distribution. Compared to the one without
using any weight (i.e., weight is equal to 1), our importance
weight improves the AP by 1.7% and performs better than
others that use fixed weights. Overall, we show that our
model can reduce the domain-shift problem caused by the
camera along with other content differences across two dis-
tinct datasets and achieves state-of-the-art performance.

4.4. Weather Adaptation

Under real-world scenarios, supervised object detection
models can be applied in different weather conditions where

’In this case, the averaged weight obtained from the discriminator is
around 0.9.
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Table 3. Weather adaptation focusing on clear weather to foggy weather using the Cityscapes and Foggy Cityscapes datasets respectively.

Performance is evaluated using the mean average precision (mAP) across 8 classes.

Cityscapes — Foggy Cityscapes

Method person rider car truck bus train motorcycle bicycle mAP
Faster R-CNN 233 294 369 71 179 24 13.9 25.7 19.6
FRCNN in the wild [3] 250 310 405 221 353 202 20.0 27.1 27.6
Diversify & Match [16] 30.8 405 443 272 384 345 28.4 322 34.6
Strong-Weak Align [25] 299 423 435 245 362 326 30.0 353 343
Selective Align [37] 33,5 38,0 485 265 390 233 28.0 33.6 33.8
Ours (w/o synthetic) 302 379 461 147 269 170 20.8 31.5 26.9
Ours (synthetic augment)  36.6 453 55.0 242 439 185 28.4 37.1 36.1
Ours (progressive) 36.0 455 544 243 441 258 29.1 35.9 36.9
Oracle 37.8 484 588 252 533 158 354 39.0 39.2
they may not have sufficient knowledge of. However, it tributes. We show that our method can harvest more from

is difficult to obtain a large number of annotations in ev-
ery weather condition for the models to learn. This sec-
tion studies the weather adaptation from clear weather to
a foggy environment. The Cityscapes dataset [4] and the
Foggy Cityscapes dataset [26] are used as the source do-
main and the target domain, respectively.

Table 3 shows that our method reduces the domain gap
across weather conditions and performs favorably against
the state-of-the-art methods [3, 25, 37, 16]. When syn-
thetic images are introduced during our progressive adapta-
tion, there is a 10% improvement in mAP compared to the
baseline method. We note that the target Foggy Cityscapes
dataset fundamentally contain same images as the source
Cityscapes dataset, but with synthesized fogs. Thus, the
synthetic target domain F via image translation is already
closely distributed to the target domain and inherits infor-
mative labels for the network to learn. Given such infor-
mation learned from the synthetic domain, both our method
and the synthetic augmented one climbs closely to the ora-
cle result. Although the synthetic domain lies close to the
target distribution, we show in the results that our progres-
sive training can still assist the adaptation process, improv-
ing performance and at the same time generalizing well to
different categories. To sum up, this experiment not only
demonstrates the adaptation to a foggy weather condition
but also shows the capability of using synthetic images to
facilitate the distribution alignment process.

4.5. Adaptation to Large-scale Dataset

Digital cameras have developed quickly over the years
and collecting a large number of images is not a diffi-
cult task in the modern world. However, labeling the col-
lected images is a major issue when it comes to building
a dataset for supervised learning methods. In this experi-
ment, we examine the adaptation from a relatively smaller
dataset to a large unlabeled domain containing distinct at-

existing resources and adapt them to complicated environ-
ments. To this end, we use the Cityscapes [4] and BDD100k
[35] datasets as the source and target domains, respectively.
We choose a subset of the BDD100k dataset annotated as
daytime to be our target domain and consider the city scene
as the adaptation factor, since there only exists daytime data
in the Cityscapes dataset.

From the baseline and oracle results shown in Table 4,
we can observe the difficulty and the significant perfor-
mance gap between the source and target domains. With-
out using the synthetic data, the network has a harder time
in adapting to a much diverse dataset with only 0.4% im-
provement after directly aligning the source and target do-
mains using the method in [3]. When synthetic data is in-
troduced to the source training set, the model learns to gen-
eralize better to the target domain and increases the perfor-
mance by 2.5%. Finally, our method progressively adapts to
the target domain by utilizing the intermediate feature space
and receives an 3.1% gain in mAP compared to the baseline
method [3]. We show in this experiment that our progres-
sive adaptation can squeeze more juice out of the available
knowledge and generalize better to a diverse environment,
which is a critical issue in real-world applications. Qual-
itative results are shown in Figure 5 and more results are
provided in the supplementary material.

5. Conclusions

In this paper, we propose a progressive adaptation
method that bridges the domain gap using an intermediate
domain, decomposing a more difficult task into two easier
subtasks with a smaller gap. We obtain the intermediate do-
main by transforming the source images to target ones. Us-
ing this domain, our method progressively solves the adap-
tation subtasks by first adapting from source to the interme-
diate domain and then finally to the target domain. In addi-
tion, we introduce a weighted loss during stage two of our
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Table 4. Adaptation from a smaller Cityscapes dataset to a larger and diverse BDD100k dataset. A subset of the BDD100k dataset labeled
as daytime is used as the target domain. We evaluate the mean average precision (mAP) of 10 classes which are available across the two
domains.

Cityscapes — BDD100k daytime

Method bike bus car motor person rider light sign train truck mAP
Faster R-CNN 194 204 49.0 172 31.1 265 115 146 0 189 20.8
Ours (w/o synthetic) 204 202 492 16.6 32.1 27.8 119 149 0 192 212
Ours (synthetic augment) 23.1 253 519 157 36.0 31.6 127 20.8 0 20.2 237
Ours (progressive) 253 237 518 16.1 376 329 140 222 O 19.3 243
Oracle 362 582 623 36.1 46.2  43.6 435 497 0 57.6 433

Before Adaptation After Adaptation Ground Truth

Figure 5. Examples of the detection results from our three adaptation tasks. The first two rows are the tasks KITTI — Cityscapes and
Cityscapes — Foggy Cityscapes respectively, while the last two rows are the task Cityscapes — BDD100k. We show the detection results
on the target domain before and after applying our adaptation method as well as the ground truth labels.

method to balance different image qualities in the interme- and adaption to a large-scale dataset.
diate domain. Experimental results show that our method
performs favorably against the state-of-the-art method and
can further reduce the domain discrepancy under various
scenarios, such as the cross-camera case, weather condition,
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