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Abstract

Recent deep learning methods for object detection rely

on a large amount of bounding box annotations. Collect-

ing these annotations is laborious and costly, yet supervised

models do not generalize well when testing on images from

a different distribution. Domain adaptation provides a so-

lution by adapting existing labels to the target testing data.

However, a large gap between domains could make adap-

tation a challenging task, which leads to unstable training

processes and sub-optimal results. In this paper, we pro-

pose to bridge the domain gap with an intermediate domain

and progressively solve easier adaptation subtasks. This in-

termediate domain is constructed by translating the source

images to mimic the ones in the target domain. To tackle

the domain-shift problem, we adopt adversarial learning

to align distributions at the feature level. In addition, a

weighted task loss is applied to deal with unbalanced im-

age quality in the intermediate domain. Experimental re-

sults show that our method performs favorably against the

state-of-the-art method in terms of the performance on the

target domain.

1. Introduction

Object detection is an important computer vision task

aiming to localize and classify objects in images. Re-

cent advancement in neural networks has brought signif-

icant improvement to the performance of object detec-

tion [9, 24, 21, 22, 23, 17]. However, such deep models

usually require a large-scale annotated dataset for super-

vised learning and do not generalize well when the training

and testing domains are different. For instance, domains

can differ in scenes, weather, lighting conditions and cam-

era settings. Such domain discrepancy or domain-shift can

cause unfavorable model generalization issues. Although

using additional training data from the target domain can

improve the performance, collecting annotations is usually

time-consuming and labor-intensive.

Unsupervised domain adaptation methods address the

Figure 1. An illustration of our progressive adaptation method.

Conventional domain adaptation aims to solve domain-shift prob-

lem from source to target domain, which is denoted as lS→T. We

propose to bridge this gap with an intermediate synthetic domain

that allows us to gradually solve separate subtasks with smaller

gaps (shown as lS→F and lF→T). In addition, we treat each image

in the synthetic domain unequally based on its quality with respect

to the target domain, where the size of the yellow triangles stand

for their weights (i.e., the closer to target, the higher of the weight).

domain-shift problem without using ground truth labels in

the target domain. Given the source domain annotations,

the objective is to align source and target distributions in

an unsupervised manner, so that the model can general-

ize to the target data without annotation effort. Numerous

methods are developed in the context of image classification

[32, 18, 19, 28, 10, 31, 7, 2], while fewer efforts have been

made on more complicated tasks such as semantic segmen-

tation [13, 29] and object detection [11, 3, 15]. Such domain

adaptation tasks are quite challenging as there usually exists

a significant gap between source and target domains.

In this paper, we aim to ease the effort of aligning differ-

ent domains. Inspired by [10] which addresses the domain-

shift problem via aligning intermediate feature representa-

tions, we utilize an intermediate domain that lies between

source and target, and hence avoid direct mapping across

two distributions with a significant gap. Specifically, the

source images are first transformed by an image-to-image
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translation network [36] to have similar appearance as the

target ones. We refer to the domain containing synthetic

target images as the intermediate domain. We then con-

struct an intermediate feature space by aligning the source

and intermediate distributions, which is an easier task than

aligning to the final targets. Once this intermediate domain

is aligned, we use it as a bridge to further connect to the tar-

get domain. As a result, via the proposed progressive adap-

tation through the intermediate domain, the original align-

ment between source and target domains is decomposed

into two subtasks that both solve an easier problem with

a smaller domain gap.

During the alignment process, since the intermediate

space is constructed in an unsupervised manner, one poten-

tial issue is that each synthetic target image may contribute

unequally based on the quality of the translation. To reduce

the outlier impact of the low-quality translated images, we

propose a weighted version in our adaptation method, where

the weight is determined based on the distance to the target

distribution. That is, an image closer to the target domain

should be considered a more important sample. In prac-

tice, we obtain the distance from the discriminator in the

image translation model and incorporate it into the detec-

tion framework as a weight in the task loss.

We evaluate our method on various adaptation scenarios

using numerous datasets, including KITTI [8], Cityscapes

[4], Foggy Cityscapes [26] and BDD100k [35]. We con-

duct experiments on multiple real-world domain discrep-

ancy cases, such as weather changes, camera differences

and the adaptation to a large-scale dataset. With the pro-

posed progressive adaptation, we show that our method

performs favorably against the state-of-the-art algorithm in

terms of accuracy in the target domain. The main contri-

butions of the work are summarized as follows: 1) we in-

troduce an intermediate domain in the proposed adaptation

framework to achieve progressive feature alignment for ob-

ject detection, 2) we develop a weighted task loss during

domain alignment based on the importance of the samples

in the intermediate domain, and 3) we conduct extensive

adaptation experiments under various object detection sce-

narios and achieve state-of-the-art performance.

2. Related Work

Object Detection. Recently, state-of-the-art object detec-

tion methods are predominately based on the deep convolu-

tional neural networks (CNNs). These methods can be cat-

egorized into region proposal-based and single-shot detec-

tors, depending on the network forwarding pipelines. Re-

gion proposal-based methods [9, 24] perform prediction on

a variable set of candidate regions. Fast R-CNN [9] ap-

plies selective search [33] to obtain region proposals, while

Faster R-CNN [24] proposes to learn a Region Proposal

Network (RPN) to accelerate the proposal generation pro-

cess. To further reduce the computational need of pro-

posal generation, single-shot approaches [21, 22, 23, 17]

employ a fixed set of predefined anchor boxes as proposals

and directly predict the category and offsets for each anchor

box. Although these methods achieve state-of-the-art per-

formance, such success hinges on the substantial amount

of labeled training data which requires a high labor cost.

Also, these methods can overfit on the training domain,

which makes them difficult to generalize to many real-world

scenarios. As a result, the vision community has recently

started showing a great interest in employing domain adap-

tation techniques to object detection.

Domain Adaptation. Domain adaptation techniques aim

to tackle domain-shift between the source and target do-

mains with unlabeled or weakly labeled images in the

target domain. In recent years, adversarial learning has

played a critical role in domain adaptation methods. Since

the emergence of the Domain Adversarial Neural Net-

work (DANN) [7], numerous works [2, 31, 3] have been

proposed to utilize adversarial learning for the feature dis-

tribution alignment between two domains. Furthermore,

several methods attempt to perform alignment in the pixel

space, based on the unpaired image-to-image translation

approaches [36]. For image classification, PixelDA [1]

synthesizes additional images in the target domain by

learning one-to-many mapping. For semantic segmenta-

tion, CyCADA [12] and AugGAN [14] both design a Cy-

cleGAN [36]-like network to transform images from the

source domain to the target one. The transformed images

are then treated as simulated training images for the target

domain with the same label mapped from the source do-

main. Instead of performing alignment in the feature/pixel

space, Tsai et al. [29, 30] adopt adversarial learning in the

structured output space for solving domain adaptation on

semantic segmentation.

To address domain adaptation for object detection in a

weakly-supervised manner, LSDA [11] finetunes a fully-

supervised classification model for object detection with

limited bounding box resources. Alternatively, Naoto et

al. [15] train the network with synthetic data and finetune

it with pseudo-labels in the target domain. In an unsuper-

vised domain adaptation setting, Chen et al. [3] propose to

close the domain gap on both image level and instance level

via adversarial learning. To emphasize on matching local

features, Zhu et al. [37] mines discriminative regions for

alignment, while Saito et al. [25] focus on aligning local

receptive fields at low-level features along with weak align-

ment on global regions. On the other hand, Kim et al. [16]

utilize image translation network to generate multiple do-

mains and use a multi-domain discriminator to adapt all do-

mains simultaneously, but this method does not consider the

distance between the generated ones and the final target.

In this work, we observe that simply applying image
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Figure 2. The proposed progressive adaptation framework. The algorithm includes two stages of adaptation as shown in a) and b). In a),

we first transform source images to generate synthetic ones by using the generator G learned via CycleGAN [36]. Afterward, we use the

labeled source domain and perform first stage adaptation to the synthetic domain. Then in b), our model applies a second stage adaptation

which takes the synthetic domain with labels inherited from the source and aligns the synthetic domain features with the target distribution.

In addition, a weight w is obtained from the discriminator Dcycle in CycleGAN to balance the synthetic image qualities in the detection

loss. The overall structure of our adaptation network is shown in c). Labeled and unlabeled images are both passed through the encoder

network E to extract CNN features featL and featU . We then use them to: 1) learn supervised object detection with the detector network

from featL, and 2) forward both features to GRL and a domain discriminator, learning domain-invariant features in an adversarial manner.

translation without knowing the distance between each gen-

erated sample and the target domain may result in less ef-

fective adaptation. To handle this issue, we first introduce

an intermediate domain to reduce the effort of mapping two

significantly different distributions and then adopt a two-

stage alignment strategy with sample weights to account for

the sample quality.

3. Progressive Domain Adaptation

We propose to decompose the domain adaptation prob-

lem into two smaller subtasks, bridged by a synthetic do-

main sitting in between the source and target distribution.

Taking advantage of this synthetic domain, we adopt a pro-

gressive adaptation strategy which closes the gap gradually

through the intermediate domain. We denote the source,

synthetic, and target domains as S, F and T, respectively.

The conventional adaptation from a labeled domain S to

the unlabeled domain T is denoted as S → T, while the

proposed adaptation subtasks are expressed as S → F and

F → T. An overview of our progressive adaptation frame-

work is shown in Figure 2. We discuss the details of the pro-

posed adaptation network and progressive learning in the

following sections.

3.1. Adaptation in the Feature Space

In order to align distributions in the feature space, we

propose a deep model which consists of two components;

a detection network and a discriminator network for feature

alignment via adversarial learning.

Detection Network. We adopt the Faster R-CNN [24]

framework for the object detection task, where the detec-

tor has a base encoder network E to extract image fea-

tures. Given an image I, the feature map E(I) is extracted

and then fed into two branches: Region Proposal Network

(RPN) and Region of Interest (ROI) classifier. We refer to

these branches as the detector, which is shown in Figure 2.

To train the detection network, the loss function Ldet is de-

fined as:

Ldet(E(I)) = Lrpn + Lcls + Lreg, (1)

where Lrpn, Lcls, and Lreg are the loss functions for the

RPN, classifier and bounding box regression, respectively.

We omit the details of the RPN and ROI classifier here as

we focus on solving the domain-shift We omit the details of

the RPN and ROI classifier here as we focus on solving the

domain-shift problem. The readers are encouraged to refer

to the original paper [24] for further details.

Domain Discriminator. To align the distributions across

two domains, we append a domain discriminator D after

the encoder E. The main objective of this branch is to dis-

criminate whether the feature E(I) is from the source or the

target domain. Through this discriminator, the probability

of each pixel belonging to the target domain is obtained as

P = D(E(I)) ∈ R
H×W . We then apply a binary cross-

entropy loss to P based on the domain label d of the input

image, where images from the source distributions are given

the label d = 0 and the target images receive label d = 1.
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The discriminator loss function Ldisc can be formulated as:

Ldisc(E(I)) = −

∑

h,w

d logP(h,w)

+ (1− d) log(1−P
(h,w)). (2)

Adversarial Learning. Adversarial learning is achieved

using the Gradient Reverse Layer (GRL) proposed in [6] to

learn the domain-invariant feature E(I). GRL is placed in

between the discriminator and the detection network, only

affecting the gradient computation in the backward pass.

During backpropagation, GRL negates the gradients that

flow through. As a result, the encoder E receives gradi-

ents that force it to update in an opposite direction which

maximizes the discriminator loss. This allows E to pro-

duce features that fools the discriminator D while D tries

to distinguish the domain of the features. For the adaptation

task S → T, given source images IS and target images IT,

the overall min-max loss function of the adaptive detection

model is defined as the following:

min
E

max
D

L(IS, IT) = Ldet(IS)+λdisc

[

Ldisc(E(IS))

+ Ldisc(E(IT))
]

, (3)

where λdisc is a weight applied to the discriminator loss that

balances the loss.

3.2. Progressive Adaptation

Aligning feature distributions between two distant do-

mains is challenging, and hence we introduce an intermedi-

ate feature space to make the adaptation task easier. That is,

instead of directly solving the gap between the source and

the target domains, we progressively perform adaptation to

the target domain bridged by the intermediate domain.

Intermediate Domain. The intermediate domain is con-

structed from the source domain images to synthesize the

target distributions on the pixel-level. We apply an image-

to-image translation network, CycleGAN [36] to learn a

function that maps the source domain images to the target

ones, and vice versa. Since ground truth labels are only

available in the source domain, we only consider the trans-

lation from source images to the target domain (i.e., syn-

thetic target images) after training CycleGAN.

Synthetic target images have been utilized to assist with

domain adaptation tasks [1, 14, 15] as additionally aug-

mented target training data. Different from these ap-

proaches, we define this set of synthetic images as an in-

dividual domain F to connect the labeled domain S with the

unlabled domain T via adversarial learning. One motivation

behind this is that the similarity between source domain S

and F is the image content, only diverging in the visual ap-

pearances, while F and the target domain T are different

Figure 3. Visualization of the feature distributions via t-SNE [34],

showing that our synthetic images serve as an intermediate feature

space between the source and target distributions. Each dot rep-

resents one image feature extracted from E. We take 500 images

from the Cityscapes validation set and 500 from the KITTI train-

ing set for comparison.

in image details but have similar distributions on the pixel-

level. Consequently, this synthetic domain “sits” in between

the source and target domains and thus can help reduce the

adaptation difficulty of a large domain gap between S and T.

Figure 3 is one example of feature space visualization using

the KITTI and Cityscapes datasets. This figure shows a dis-

tribution plot by mapping the features from E(I) to a low

dimensional 2-D space via t-SNE [34]. The plot demon-

strates that in the feature space, the synthetic domain F

(blue) is located in between the KITTI (red) and Cityscapes

(green) distributions.

Adaptation Process. Our domain adaptation network in-

volves obtaining knowledge from a labeled source domain

S then map that knowledge to an unlabeled target domain

T by aligning the two distributions, solving the adaptation

task S → T, i.e., via (3) in this paper. To take advantage of

the intermediate feature space during alignment, our algo-

rithm decomposes the problem into two stages: S → F and

F → T, as shown in Figure 2 a) and b). At the first stage, we

use S as the labeled domain, adapting to F without labels.

Due to the underlying similarity between S and F in image

contents, the network focuses on aligning the feature dis-

tributions with respect to the appearance difference on the

pixel-level. After aligning pixel discrepancies between S

and F, we take F as the source domain for supervision and

adapts to T as stage two in the proposed method. During

this step, the model can take advantage of the appearance-

invariant features from the first step and focus on adapt-

ing the object and context distributions. In summary, the

proposed progressive learning separates the adaptation task

into two subtasks and pays more attention to individual dis-

crepancies during each adaptation stage.
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Figure 4. Image quality examples from the KITTI dataset synthe-

sized to be in the Cityscapes domain. a) shows the ones that are

translated with better quality. Images in b) contain artifacts and fail

to preserve details of the car, almost blend into the background.

Weighted Supervision. We observe that the quality of

synthetic images differs in a wide range. For instance, some

images fail to preserve details of objects or contain artifacts

when translated, and these failure cases may have a larger

distance to the target distribution (see Figure 4 for an exam-

ple). This phenomenon can be also visualized in the feature

space in Figure 3, where some blue dots are far away from

both the source and target domains.

As a result, when performing supervised detection learn-

ing on F during F → T, these defects may cause confusions

to our detection model, leading to false feature alignment

across domains. To alleviate this problem, we propose an

importance weighting strategy for synthetic samples based

on their distances to the target distribution. Specifically,

synthetic outliers that are further away from the target dis-

tribution will receive less attention than the ones that are

closer to the target domain. We obtain the weights by taking

the predicted output scores from the target domain discrim-

inator Dcycle. This discriminator is trained to differentiate

between the source and target images with respect to the

target distribution, in which the optimal discriminator is ob-

tained with:

D∗

cycle(I) =
pT(I)

pS(I) + pT(I)
, (4)

where I is the synthetic target image generated via Cycle-

GAN, and pT(I) and pS(I) are the probability of I belong-

ing to the source and the target domain, respectively. Here,

the higher score of Dcycle(I) represents a closer distribu-

tion to the target domain, thus providing a higher weight.

On the other hand, lower quality images which are further

away from the target domain will be treated as outliers and

receive a lower weight. For each image I, the importance

weight is defined as:

w(I) =

{

Dcycle(I), if I ∈ F

1, otherwise.
(5)

We then apply this weight to the detection loss function in

(1) when learning from synthetic images with labels during

the second stage. Thus, the final weighted objective func-

tion given images IF and IT is re-formulated based on (3)

as:

min
E

max
D

L(IF, IT) = w(IF)Ldet(IF)

+ λdisc

[

Ldisc(E(IF)) + Ldisc(E(IT))
]

. (6)

4. Experimental Results

In this section, we validate our method by evaluating the

performance in three real-world scenarios that result in dif-

ferent domain discrepancies: 1) cross-camera adaptation,

2) weather adaptation, and 3) adaptation to large-scale

dataset. Figure 5 shows examples of the detection results

from the three tasks before and after applying our domain

adaptation method.

For each adaptation scenario, we show a baseline Faster

R-CNN result trained on the source data without applying

domain adaptation, and a supervised model trained fully on

the target domain data (oracle) to illustrate the existing gap

between domains. Then we train the proposed model on the

selected source and target domain to demonstrate the effec-

tiveness of the proposed method. We also conduct ablation

study to analyze the effectiveness of individual proposed

components. More results will be available in the supple-

mentary material. All the source code and trained models

will be made available to the public1.

4.1. Implementation Details

Adaptation Network. In our experiments, we adopt

VGG16 [27] as the backbone for the Faster R-CNN [24] de-

tection network, following the setting in [3]. We design the

discriminator network D using 4 convolution layers with

filters of size 3 × 3. The first 3 convolution layers have 64

channels, each followed by a leaky ReLU [20] with α set to

0.2. The final domain classification layer has 1 channel that

outputs the binary label prediction. Our synthetic domain

is generated by training CycleGAN [36] on the source and

target domain images.

Training Details. Before applying the proposed adap-

tation method, we pre-train the detection network us-

ing source domain images with ImageNet [5] pre-trained

weights. When training the adaptation model, we use all

available annotations in the source domain including the

training and validation set. We optimize the network us-

ing Stochastic Gradient Descent (SGD) with a learning rate

of 0.001, weight decay of 0.0005 and momentum of 0.9.

We use λdisc = 0.1 based on a validation set to balance the

discriminator loss with the detection loss. Batch size is 1

during training. The proposed method is implemented with

Pytorch and the networks are trained using one GTX 1080

Ti GPU with 12 GB memory.

1https://github.com/kevinhkhsu/DA_detection
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4.2. Datasets

KITTI. The KITTI dataset [8] contains images taken

while driving in cities, highways, and rural areas. There

are a total of 7,481 images in the training set. The dataset

is only used as the source domain in the proposed experi-

ments, and we utilize the full training set.

Cityscapes. The Cityscapes dataset [4] is a collection of

images with city street scenarios. It includes instance seg-

mentation annotation which we transform into bounding

boxes for our experiments. It contains 2,975 training im-

ages and 500 validation images. We use Cityscapes with the

KITTI dataset in Section 4.3 to evaluate the cross camera

adaptation and compare our results with the state-of-the-art

method.

Foggy Cityscapes. As self-explanatory by the name, the

Foggy Cityscapes dataset [26] is built upon the images in

the Cityscapes dataset [4]. This dataset simulates the foggy

weather using depth maps provided in Cityscapes with three

levels of foggy weather. The simulation process can be

found in the original paper [26]. Section 4.4 shows the

experiments conducted on this simulated dataset for cross

weather adaptation.

BDD100k. The BDD100k dataset [35] consists of 100k

images which are split into training, validation, and testing

sets. There are 70k training images and 10k validation im-

ages with available annotations. This dataset includes dif-

ferent interesting attributes; there are 6 types of weather,

6 different scenes, 3 categories for the time of day and 10

object categories with bounding box annotation. In our ex-

periment, we extract a subset of the BDD100k with images

labeled as daytime. It includes 36,728 training and 5,258

validation images. We use this subset to demonstrate the

adaptation from a smaller dataset, Cityscapes, to a large-

scale dataset using the proposed method in Section 4.5.

4.3. Cross Camera Adaptation

Different datasets exhibit distinct characteristics such as

scenes, objects, and viewpoint. In addition, the underly-

ing camera settings and mechanisms can also lead to crit-

ical differences in visual appearance as well as the image

quality. These discrepancies are where the domain-shift

takes place. In this experiment, we show the adaptation

between images taken from different cameras and with dis-

tinctive content differences. The KITTI [8] and Cityscapes

[4] datasets are used as source and target respectively to

conduct the cross camera adaptation experiment. During

training, all data in the KITTI training set and raw training

images from Cityscapes dataset is used and further evalu-

ated on the Cityscapes validation set. In Table 1, we show

experimental results evaluated on the car class in terms of

the average precision (AP). Compared to the state-of-the-

art method [3] that learns to adapt in the feature space, our

Table 1. Cross camera adaptation using KITTI and Cityscapes

datasets. The results show the average precision (AP) of the car

class shared between the two domains.

KITTI → Cityscapes

Method AP

Faster R-CNN 28.8

FRCNN in the wild [3] 38.5

Ours (w/o synthetic) 38.2

Ours (synthetic augment) 40.6

Ours (progressive) 43.9

Oracle 55.8

Table 2. Analysis of our weighted task loss compared to sev-

eral arbitrary weight settings. We show that by setting each image

weight with respect to the distance from the target distribution im-

proves the model performance.

KITTI → Cityscapes

weight 0.8 0.9 1 1.1 1.2 Ours

AP 39.8 42.8 42.2 41.1 42.6 43.9

baseline denoted as “Ours (w/o synthetic)” matches their

performance using our own implementation.

In order to validate our method, we also conduct abla-

tion studies using several settings. First, we demonstrate

the benefit of utilizing information from the synthetic do-

main. When we directly augment synthetic data in the train-

ing set and include them in the source domain to perform

feature-level adaptation, denoted as “Ours (synthetic aug-

ment)”, there is a 2.1% performance gain compared to [3].

In the proposed method, by adopting our progressive train-

ing scheme with the importance weights,we show that our

model further improves the AP by 5.4%. In addition, we

present the advantage of our weighted task loss in balancing

the uneven quality of synthetic images. In Table 2, we show

the analysis for using different fixed weights and our im-

portance weighting method. Our method dynamically de-

termines the weight of each image2 based on the distance

from the target distribution. Compared to the one without

using any weight (i.e., weight is equal to 1), our importance

weight improves the AP by 1.7% and performs better than

others that use fixed weights. Overall, we show that our

model can reduce the domain-shift problem caused by the

camera along with other content differences across two dis-

tinct datasets and achieves state-of-the-art performance.

4.4. Weather Adaptation

Under real-world scenarios, supervised object detection

models can be applied in different weather conditions where

2In this case, the averaged weight obtained from the discriminator is

around 0.9.
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Table 3. Weather adaptation focusing on clear weather to foggy weather using the Cityscapes and Foggy Cityscapes datasets respectively.

Performance is evaluated using the mean average precision (mAP) across 8 classes.

Cityscapes → Foggy Cityscapes

Method person rider car truck bus train motorcycle bicycle mAP

Faster R-CNN 23.3 29.4 36.9 7.1 17.9 2.4 13.9 25.7 19.6

FRCNN in the wild [3] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Diversify & Match [16] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

Strong-Weak Align [25] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3

Selective Align [37] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

Ours (w/o synthetic) 30.2 37.9 46.1 14.7 26.9 7.0 20.8 31.5 26.9

Ours (synthetic augment) 36.6 45.3 55.0 24.2 43.9 18.5 28.4 37.1 36.1

Ours (progressive) 36.0 45.5 54.4 24.3 44.1 25.8 29.1 35.9 36.9

Oracle 37.8 48.4 58.8 25.2 53.3 15.8 35.4 39.0 39.2

they may not have sufficient knowledge of. However, it

is difficult to obtain a large number of annotations in ev-

ery weather condition for the models to learn. This sec-

tion studies the weather adaptation from clear weather to

a foggy environment. The Cityscapes dataset [4] and the

Foggy Cityscapes dataset [26] are used as the source do-

main and the target domain, respectively.

Table 3 shows that our method reduces the domain gap

across weather conditions and performs favorably against

the state-of-the-art methods [3, 25, 37, 16]. When syn-

thetic images are introduced during our progressive adapta-

tion, there is a 10% improvement in mAP compared to the

baseline method. We note that the target Foggy Cityscapes

dataset fundamentally contain same images as the source

Cityscapes dataset, but with synthesized fogs. Thus, the

synthetic target domain F via image translation is already

closely distributed to the target domain and inherits infor-

mative labels for the network to learn. Given such infor-

mation learned from the synthetic domain, both our method

and the synthetic augmented one climbs closely to the ora-

cle result. Although the synthetic domain lies close to the

target distribution, we show in the results that our progres-

sive training can still assist the adaptation process, improv-

ing performance and at the same time generalizing well to

different categories. To sum up, this experiment not only

demonstrates the adaptation to a foggy weather condition

but also shows the capability of using synthetic images to

facilitate the distribution alignment process.

4.5. Adaptation to Large-scale Dataset

Digital cameras have developed quickly over the years

and collecting a large number of images is not a diffi-

cult task in the modern world. However, labeling the col-

lected images is a major issue when it comes to building

a dataset for supervised learning methods. In this experi-

ment, we examine the adaptation from a relatively smaller

dataset to a large unlabeled domain containing distinct at-

tributes. We show that our method can harvest more from

existing resources and adapt them to complicated environ-

ments. To this end, we use the Cityscapes [4] and BDD100k

[35] datasets as the source and target domains, respectively.

We choose a subset of the BDD100k dataset annotated as

daytime to be our target domain and consider the city scene

as the adaptation factor, since there only exists daytime data

in the Cityscapes dataset.

From the baseline and oracle results shown in Table 4,

we can observe the difficulty and the significant perfor-

mance gap between the source and target domains. With-

out using the synthetic data, the network has a harder time

in adapting to a much diverse dataset with only 0.4% im-

provement after directly aligning the source and target do-

mains using the method in [3]. When synthetic data is in-

troduced to the source training set, the model learns to gen-

eralize better to the target domain and increases the perfor-

mance by 2.5%. Finally, our method progressively adapts to

the target domain by utilizing the intermediate feature space

and receives an 3.1% gain in mAP compared to the baseline

method [3]. We show in this experiment that our progres-

sive adaptation can squeeze more juice out of the available

knowledge and generalize better to a diverse environment,

which is a critical issue in real-world applications. Qual-

itative results are shown in Figure 5 and more results are

provided in the supplementary material.

5. Conclusions

In this paper, we propose a progressive adaptation

method that bridges the domain gap using an intermediate

domain, decomposing a more difficult task into two easier

subtasks with a smaller gap. We obtain the intermediate do-

main by transforming the source images to target ones. Us-

ing this domain, our method progressively solves the adap-

tation subtasks by first adapting from source to the interme-

diate domain and then finally to the target domain. In addi-

tion, we introduce a weighted loss during stage two of our

755



Table 4. Adaptation from a smaller Cityscapes dataset to a larger and diverse BDD100k dataset. A subset of the BDD100k dataset labeled

as daytime is used as the target domain. We evaluate the mean average precision (mAP) of 10 classes which are available across the two

domains.

Cityscapes → BDD100k daytime

Method bike bus car motor person rider light sign train truck mAP

Faster R-CNN 19.4 20.4 49.0 17.2 31.1 26.5 11.5 14.6 0 18.9 20.8

Ours (w/o synthetic) 20.4 20.2 49.2 16.6 32.1 27.8 11.9 14.9 0 19.2 21.2

Ours (synthetic augment) 23.1 25.3 51.9 15.7 36.0 31.6 12.7 20.8 0 20.2 23.7

Ours (progressive) 25.3 23.7 51.8 16.1 37.6 32.9 14.0 22.2 0 19.3 24.3

Oracle 36.2 58.2 62.3 36.1 46.2 43.6 43.5 49.7 0 57.6 43.3

Before Adaptation After Adaptation Ground Truth

Figure 5. Examples of the detection results from our three adaptation tasks. The first two rows are the tasks KITTI → Cityscapes and

Cityscapes → Foggy Cityscapes respectively, while the last two rows are the task Cityscapes → BDD100k. We show the detection results

on the target domain before and after applying our adaptation method as well as the ground truth labels.

method to balance different image qualities in the interme-

diate domain. Experimental results show that our method

performs favorably against the state-of-the-art method and

can further reduce the domain discrepancy under various

scenarios, such as the cross-camera case, weather condition,

and adaption to a large-scale dataset.
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