
Long-Short Graph Memory Network for Skeleton-based Action Recognition

Junqin Huang1, Zhenhuan Huang1, Xiang Xiang3∗, Xuan Gong4†,Baochang Zhang1,2,5†

1Beihang University 2Hangzhou Innovation Institue, Beihang University, Hangzhou, 310051, China
3TuSimple, Inc. 4University at Buffalo

5Shenzhen Academy of Aerospace Technology, Shenzhen, China

hjq18810013653@buaa.edu.cn, 16231192@buaa.edu.cn, xxiang@cs.jhu.edu, xuangong@buffalo.edu,

bczhang@buaa.edu.cn

Abstract

Current studies have shown the effectiveness of long

short-term memory network (LSTM) for skeleton-based hu-

man action recognition in capturing temporal and spatial

features of the skeleton sequence. Nevertheless, it still re-

mains challenging for LSTM to extract the latent structural

dependency among nodes. In this paper, we introduce a new

long-short graph memory network (LSGM) to improve the

capability of LSTM to model the skeleton sequence - a type

of graph data. Our proposed LSGM can learn high-level

temporal-spatial features end-to-end, enabling LSTM to ex-

tract the spatial information that is neglected but intrinsic

to the skeleton graph data. To improve the discriminative

ability of the temporal and spatial module, we use a calibra-

tion module termed as graph temporal-spatial calibration

(GTSC) to calibrate the learned temporal-spatial features.

By integrating the two modules into the same framework,

we obtain a stronger generalization capability in processing

dynamic graph data and achieve a significant performance

improvement on the NTU and SYSU dataset. Experimen-

tal results have validated the effectiveness of our proposed

LSGM+GTSC model in extracting temporal and spatial in-

formation from dynamic graph data. 1

1. Introduction

Human action recognition has become an active re-

search area in recent years due to its wide range of ap-

plications, such as video surveillance, patient monitoring,

human-computer interaction, and virtual reality [1] [18]

∗This work was done prior to Xiang joining TuSimple.
†Xuan Gong and Baochang Zhang are the corresponding authors.
1The code is made publicly available at

https://github.com/bczhangbczhang/Long-Short-Graph-Memory-Network

[21]. The conventional human action recognition methods

are mainly based on processing of RGB images and videos,

which focus on extracting spatial and temporal information

from RGB frames and temporal optical flow [27] [7] [29].

However, there are still many limitations in RGB-based ac-

tion recognition, mainly reflected in the influence of the

background, such as background confusion, ambient light

changes, low image resolution, camera viewpoint, and so

on.

To address such limitations, skeleton-based action recog-

nition was proposed. Skeleton sequence is a time series

of skeleton joint nodes’ coordinates, which can be easily

captured by the depth sensor [34] and advanced human

pose estimation algorithms [2]. As the skeleton sequence

does not contain color information, it avoids the limita-

tions of RGB videos or images. Previous works have suc-

cessfully applied Recurrent Neural Network (RNN), Long

Short-Term Memory Network (LSTM) [26] and Gated Re-

current Unit (GRU)[3] to skeleton-based action recogni-

tion. Moreover, Convolutional Neural Networks (CNNs)

have also been successfully exploited to extract temporal-

spatial information from skeleton sequence [8] [32] [10].

To handle the surrounding distractions problem and other

variations, the attention mechanism [26][15][16] has been

introduced to provide a robust recognition system. In re-

cent years, graph-based models (e.g., GNN) have become

an active research area due to their effectiveness in extract-

ing high-level representations of the graph structure data.

Early studies learn a target nodes representation by mul-

tiple iterations of message passing between the node and

their neighbors[6][22][4], which enables models to capture

semantic relation and structural information of the entire

graph. Since GNN is able to capture latent dependencies

among nodes and edges, it has been successfully applied

to the Traveling Salesman Problem(TSP) [19], chemical

645

skeleton sequence

Bi-LSGM
temporal

attention

temporal

attention

temporal

attention

spatial calibration

softmax

x coordinate y coordinate z coordinate

multiply multiply multiply

concatenate

Bi-LSGM Bi-LSGM

Figure 1. The pipeline of our proposed LSGM+GTSC model.

Each input skeleton sequence is treated as a T × N × 3 matrix,

and we use three identical LSGM to model it in each axis sep-

arately, cooperated with temporal attention module. Finally we

concatenate three feature maps with the shape of T ×N together

and feed them to spatial calibration.

prediction problems [5], and detection and recognition of

human-object interactions [20]. Moreover, as a branch of

GNN, the graph convolutional network (GCN) has been

widely applied to skeleton-based action recognition tasks

in recent years due to its robustness in dealing with non-

Euclidean data [31] [17] [24] [12]. Previous LSTM-based

models have achieved great progress in skeleton-based ac-

tion recognition due to its robustness in capturing tempo-

ral features. Nevertheless, LSTM works poorly on extract-

ing valid spatial information. Motivated by this, exploit-

ing the effectiveness of GCN in capturing the latent depen-

dency among nodes, we deploy GCN on recurrent unit (e.g.,

LSTM) to enhance its ability to extract spatial features, thus

forming our LSGM. Furthermore, to calibrate the learned

features, we propose a graph temporal-spatial calibration

module (GTSC) to cooperate with LSGM.

In this paper, our goal is to combine these two pow-

erful tools (LSTM and GCN) and exploit the advantages

of LSTM in processing time series and the advantages of

GCN in extracting spatial information. Based on this idea,

we combine LSTM and GCN to propose a novel Long-

Short Graph Memory network(LSGM), which can simul-

taneously learn temporal and spatial features. As illustrated

in Fig. 3, each LSGM cell takes the current graph V t with

the shape of N x d as input, where N denotes the number

of joints and d denotes the feature vector dimension of each

joint of each frame. It is worth noticing that the hidden

states and memory cells in the LSTM store data in the form

of graph matrices instead of vectors. Thanks to the graph

convolution, LSGM has a strong generalization capability

on modeling dynamic graph data. Furthermore, we intro-

duce a graph temporal-spatial calibration module (GTSC),

which consist of a temporal attention module and a spa-

tial calibration module. GTSC is believed to calibrate the

features learned by LSGM, which can promote the ability

of our model to extract high-level joint nodes representa-

tions. When initializing the joint nodes’ features, most of

the previous works connected three coordinates and initial-

ized them directly as features. However, if there is no signif-

icant motion in one coordinate, the initialization of a single

point cannot be effectively extracted. Instead, we choose

to split it into three coordinates to obtain deeper and richer

feature representations. As illustrated in Fig. 1, we use

three Bidirectional LSGM to model the skeleton sequence

on the X, Y and Z coordinates, respectively. Each bidirec-

tional LSGM is accompanied by a temporal attention mod-

ule. Finally, we stack the three output graph matrices that

are treated as three feature maps and feed them to the spatial

calibration module. In summary, the major contribution of

this paper lies in two aspects:

1) Based on the graph convolution layer and LSTM, we pro-

pose a novel recurrent graph memory network LSGM to

extract high-level temporal and spatial features simultane-

ously from the skeleton sequence.

2) We introduce a novel graph temporal-spatial calibration

module which consists of a temporal attention module and a

spatial calibration network to calibrate the features learned

by LSGM, which enhances the ability of our network to

capture discriminative features.

2. Related Works

2.1. Graph-based Neural Networks

Recently, there is an increasing interest on extending

deep neural networks for graph-structure as graph-based

models are robust in dealing with non-Euclidean data. Ex-

isting graph-based models mainly fall into two categories:

recurrent graph neural network (GNN), graph convolutional

neural network (GCN). Recurrent graph neural networks

update nodes using the neighbouring information iteratively

until a stable point is learned. Qi et al. [20] apply GNN

to solve the task of detecting and recognizing human-to-

object interactions in images and videos. Li et al. [14] ex-

ploit GNN to capture latent dependency between roles and

predict a consistent structured output for situation. Differ-

ent from GNN, GCN combines convolutional neural net-

works with graph. There are two mainstreams of GCN:

spectral GCN and spatial GCN. Spectral GCN transforms

646

Input

expand dimention

squeeze dimention

output

Bi-Direction LSGM

Forward LSGM Reverse LSGM

add

Figure 2. The flow chart of our Bi-Direction LSGM module, which

is the part of the orange square in Fig. 1. Notice that here after ex-

panding dimension we use one FC layer to act as a Fint(·) function

to initialize the joint node features.

LSTM cell

LSGM cell

Mutiply

LSTM cell LSTM cell

MutiplyMutiply

LSGM cell LSGM cell

Graph convGraph convGraph conv

Graph conv Graph conv Graph conv

Figure 3. The internal structure of our proposed forward LSGM

model. Each LSGM cell contains one LSTM cell and two graph

convolution layer. We use the LSTM cell to update current hidden

states, which are then fed into the GCN layer to capture the rich

spatial information. Then the output of GCN layer is combined

with the next graph input to feed into LSTM cell again.

graph signals on graph spectral domains and then apply

spectral filters on spectral domains. Kipf et al. [9] intro-

duce Spectral GCNs for semi-supervised classification on

graph-structured data. For spatial GCNs, new features of

each node were extracted using its neighboring informa-

tion. Yan et al. [31] construct the CNN filters on the spatial

domain, by limiting the application of each filter to the 1-

neighbor of each node. Simonovsky et al. [25] formulate

a convolution-like operation on graph signals performed in

the spatial domain and apply it to point cloud classification..

2.2. Skeleton-based Action Recognition

By encoding joint positions in each frame to a feature

vector and implementing graph convolution, many effec-

tive GCN-based frameworks are proposed to better model

dynamic graph data (e.g., skeleton sequence). Spatial-

temporal GCN (ST-GCN) [31] is then developed to si-

multaneously learn spatial and temporal features of the

skeleton sequence. Introducing the attention mechanism

and combing it with the novel graph convolution LSTM,

the Attention-enhanced Graph Convolution LSTM (AGC-

LSTM) [24] also tries to learn discriminative temporal-

spatial information. Furthermore, the Actional-Structural

Graph Convolution Network (AS-GCN) [24] explores the

latent dependency among joint nodes through Action-link

and explores the high-order relationships of skeleton graph

through Structural-link. With the guidance of semantics,

Semantics-Guided Network (SGN) [17] is proposed to learn

temporal-spatial features from the entire graph and exploit

the global and local correlations among joints. Based on

LSTM and GCN, most of the previous works aim to en-

hance the ability of the model to extract high-level spatial

and temporal features by designing additional complex neu-

ral networks.

3. Methodology

Different from previous works, we aim to improve the

ability of LSTM to extract spatial information by embed-

ding the GCN layer in the LSTM cell. Furthermore, we in-

troduce an attention module to extract keyframes and pro-

pose a spatial calibration module to calibrate the learned

temporal-spatial features, which enhances the expressive

ability of our network in capturing richer temporal-spatial

features.

3.1. Graph Convolution Neural Network

Inspired by CNN, a new convolution mechanism has

been proposed in recent years to better model the non-

Euclidean data, which is termed as Graph Convolution Net-

work (GCN). It is well known that the essence of con-

volution is weighted summed neighbor aggregation. By

defining different approaches of weighted summation, GCN

achieves great success in modeling skeleton sequence [31].

For skeleton-based action recognition, we carry out a simi-

lar implementation of graph convolution as in [9]. The nat-

ural connection between human skeleton joints is used to

647

construct the adjacency matrix A. In particular, the matrix A

is a symmetric matrix as we treat the skeleton graph as an

undirected graph:

Aij =

(

1 if joint i connects to joint j .

0 else

Then the graph convolution can be implemented with the

following formula:

fout = Λ
−

1

2 (A+ I)Λ−
1

2 finW, (1)

where Λ
ii =

P

j(Aij + Iij) is used to implement the nor-

malization of the feature vectors. I is the identity matrix

that is introduced to add a self-loop for each node. W is a

weight matrix and bias is omitted. fout is the output of one

GCN layer. After each graph convolution layer we add a

Relu function to introduce nonlinear components. Then the

Eq. 1 is transformed into

fout = Relu
�

Λ
−

1

2 (A+ I)Λ−
1

2 finW
�

, (2)

which is also described as

fout = G(fin). (3)

Practically, in our proposed LSGM we deploy two graph

convolution layers, which we will describe the reason in

Section 4.1. Our graph convolution implementation can be

computed as

fout = G(2)(fin), (4)

By using Superscript 2 here we mean that we use 2 nested

function G(·). Eq. 4 is also equivalent fout = G
�

G(fin)
�

.

3.2. Long-Short Graph Memory network

As a variant of RNN, LSTM has been demonstrated to

have a powerful ability to model long-term temporal depen-

dencies. Various models based on LSTM are exploited to

extract temporal features from the skeleton sequence. How-

ever, there is a limitation of LSTM on ignoring spatial de-

pendencies for skeleton-based action recognition due to the

fully connected operator. Therefore, we embed the graph

convolution layer into the LSTM cell to capacitate it to ex-

tract spatial features, which is our LSGM cell. We use three

LSGM to model the skeleton sequence at the X, Y and Z

coordinate, separately. Here we take X-axis as an example

to describe LSGM.

As illustrated in Fig. 2, for every input skeleton sequence

with the shape of T ⇥ N , we first use a function Finit :
R

1
! R

d to initialize the joint vector V 2 R
T×N×d, which

is then fed into Bidirectional LSGM (Bi-LSGM). As illus-

trated in Fig. 3, for a single direction LSGM, we divide V

into T shares and feed them to LSGM in chronological or-

der. At every time step t, we feed the current hidden state

St
2 R

N×h into the graph convolution layer to capture the

structural dependency among joints, where h denotes the

hidden size of LSTM cell:

St
g = G(2)(St), (5)

where G(2)(·) refers to the twice graph convolution func-

tion, which is equivalent to Eq. (4). Then we combine

St
g with current graph to form a new graph matrix V t+1

g 2

R
N×d by multiplying St

g by V t+1:

V t+1
g = St

g � V t, (6)

where � denotes the element-wise multiplication.

After performing graph convolution twice, V t+1
g con-

tains rich structure information. Finally, we update graph

hidden states by using lstm function:

(St+1, Ct+1) = lstm(V t
g , S

t, Ct), (7)

where Ct denotes the memory cell of LSTM at time step

t. We then stack the hidden states of T frames to form
→

S2 R
T×N×h. We build our model based on Bi-LSGM,

then combine the forward hidden states
→

S and the backward

hidden states
←

S together as

S =
→

S +
←

S . (8)

To calculate the feature map of LSGM, we compress the

feature dimension and resize S via 2 FC layers as

O = FC
⇣

FC
�

S
�

⌘

2 R
T×K . (9)

3.3. Graph Temporal-Spatial Calibration

To calibrate the temporal-spatial features learned by

LSGM, we introduce the GTSC module, which consists of a

temporal attention module and a spatial calibration module.

The attention module is very beneficial to extract temporal

information and ignore the irrelative frames. For carrying

out temporal attention, we use the same input as Bi-LSGM

to calculate the attention weights Fa. As illustrated in Fig.

4, we add an FC layer and obtain Va 2 R
T×K . We first

aggregate each row vector of Va by the average pooling op-

eration to produce Vp 2 R
T×1. Then, we duplicate it with

K copies and get Vd = (Vp, Vp,, Vp) 2 R
T×K :

Vd = duplicate

✓

pooling
⇣

FC(Vin)
⌘

◆

, (10)

where Vin denotes the input of the temporal attention mod-

ule.

After pooling and duplication, we use a function

Fencode : R
T×K

! R
T×

K

a to encode Vd. Then,

648

temporal attention module

average pooling Relu

1-D position coordinatesduplicate

Relu

sequence with attention

sequence without attention

Figure 4. The temporal attention module. Darker frame indicates a higher level of attention after performing the attention mechanism. Here

we use one FC layer and a Relu function to act as the Fencode, and use one FC layer and a sigmoid function to act as the Fdecode.

Fdecode : R
T×

K

a ! R
T×K is used to decode the fea-

tures. Among them, Fencode is a dimension-reduction func-

tion and Fdecode is a dimension-increasing function with a

as a hyperparameter. This processing can be considered as

denoising and excitation, respectively. Finally, the attention

weight Fa can be computed as

Fa = Fdecode

⇣

Fencode(Vd)
⌘

(11)

where Fencode(·) can be replaced by any multilayer percep-

tron with Relu activation, and Fdecode(·) can be replaced

by any multilayer perceptron with Sigmoid activation in the

last layer.

Using Eq. 9 and Eq. 11, we lead the features of temporal

attention on the x-axis:

Oa = Fa �O. (12)

As a result, Oa can effectively describe the temporal fea-

ture of the skeleton sequence on the x-axis. Similarly, we

can use the same operation to calculate on the y-axis and the

z-axis and stack them up to form the final
∼

Oa2 R
T×K×3.

As illustrated in Fig. 3,
∼

Oa is the input of spatial cal-

ibration module of multiple residual blocks. CNNs have

been demonstrated to be capable in capturing temporal and

spatial information [8][32][10]. To further enhance the spa-

tial and temporal features, we introduce spatial calibration

to improve the feature representation. Actually, spatial cal-

ibration module can be replaced by any convolution net-

works (e.g., DenseNet and ResNet) and in practice, only

ResNet in use. The output of spatial calibration network

is the input of a Softmax classifier for classification. The

cross-entropy loss is adopted to measure the difference be-

tween the true class label and the prediction result.

4. Experiments

4.1. Experimental Settings

NTU RGB+D Dataset. NTU RGB+D data set is one of

the largest data sets for skeleton-based action recognition,

which includes 4 different modalities of data for each sam-

ple: RGB videos, depth map sequences, 3D skeleton data

and infrared videos. It contains 56,880 action samples in

total that are performed by 40 distinct subjects and catego-

rized into 60 different classes. For evaluation, two protocols

are recommended: Cross-Subject and Cross-View. we fol-

low the preprocessing and the same cross-subject and cross-

view protocol in [23]. In Cross-Subject, 40, 320 samples

performed by 20 subjects are separated into the training set,

and the rest belong to the test set. Cross-View assigns data

according to camera views, where training and test sets have

37, 920 and 18, 960 samples,respectively.

SYSU-3D Dataset. The SYSU 3D Human-Object Inter-

action Set is captured by Kinect. It contains 12 actions per-

formed by 40 subjects and each subject has 20 joints. In

total, it has 480 sequences. This dataset is very challeng-

ing as there are lots of viewpoint variations. For evaluation,

there are two standard protocols [33]. For setting-1, half

of the samples are used for training and the rest for test-

ing. For setting-2, half of the subjects are used for train-

ing and the rest for testing. We evaluate performance on

setting-2, following the standard 30-fold cross-validation.

Here we downsample the sequence in temporal as the max-

imum length of the sequence is high.

Implementation details. For all the datasets, we use the

frames of the skeleton sequence of coordinate to generate

the input matrices. For hyperparameter d, which denotes

the length of nodes representation, we set it to 4. For LSGM

649

Figure 5. Test loss curve of our model when the number of GCN

layers is 1, 2 and 3.

Figure 6. Test loss curve of our model when the number of GCN

layers is 2, 4 and 5.

cell, we set the number of GCN layer to 2 and the number

of hidden unites to 2 ⇥ 32 where 2 indicates Bidirectional

LSGM. As illustrated in Fig. 4, for the introduced atten-

tion module, we set the hyperparameter a to 16 and use one

FC layer and a nonlinear activation function to act as the

Fencode and the Fdecode. We replace the proposed spatial

calibration nerwork with ResNet in practice. We trained our

model using a stochastic gradient descent algorithm and set

the learning rate, attenuation, and momentum to 0.1, 0, and

0.9, respectively. For the NTU and SYSU data sets, we set

the batch size to 32 and 8, respectively. Training stop af-

ter 50 epochs for former data set and 100 epochs for latter.

All experiments are performed based on the Keras2 with

Tensorflow platform and use one NVIDIA Titans X Pascal

card.

4.2. Experimental Results and Analysis

Model performance on different number of GCN layers.

To investigate the performance of LSGM cell with different

number of GCN layers, we conduct the experiments on the

NTU RGB+D dataset. We examine the ability of our model

in five cases based on Eq. 4.

fout = G(n)(fin). (13)

As shown in Table 1, LSGM with 2 GCN layers has

achieved the best results of 84.71% on NTU CS dataset.

We have plot the testing loss curves of the model in five

cases, shown in Fig.5 and Fig.6. The result is consistent

with recent research results which indicate that excessive

GCN layer will cause over-smoothing and gradient vanish-

ing problem[13]. As a result, most state-of-the-art GCN

algorithms are no deeper than 3 or 4 layers. To settle this

problem, [11] conducts an analysis and borrows concepts

from CNNs to adapt residual or dense connections and di-

lated convolutions to GCN architecture, which boosts the

performace of deep GCN. Considering that, we may em-

bed deeper GCN with residual or dense connections in our

LSGM cell to extract deeper structural features in the fu-

ture work. In the following experiments, we set the layer of

GCN to 2 to evaluate our model.

Table 1. Comparison of accuracy on the NTU datset when the

number of GCN layer is 1, 2, 3, 4, 5 .

number of GCN layer NTU.CS

1 83.9%

2 84.71%

3 84.4%

4 84.5%

5 83.83%

LSGM with different length of node representation. In

addition to the number of GCN layer, the size of node rep-

resentation is another significant factor in our model. As

depicted in section 3.2, we use Finit : R
1
! R

d to initial-

ize the joint vector V 2 R
T×N×d. Through experiments,

we find that the parameter d, which denotes the size of node

representation, matters in our method. As shown in Table 2,

our model perform increasingly better as d decreases. The

reason should be that, when transforming node representa-

tions into the input of spatial calibration module in Eq. 9,

we use only two full connected layers to compress learned

feature vector, which may result in information loss. With

smaller d, two simple fully connected layers can effectively

learn useful node representations and reduce information

loss when compressing. In the following experiments, we

evaluate our model by setting the hyperparameter d to 4.

Ablation study. To analyze the effectiveness of each indi-

vidual component of our model, we conduct extensive ex-

periments on Cross-Subject benchmark of the NTU data set.

LSGM vs. LSTM. To verify that LSGM has a greater ad-

vantage in dynamic graph data processing than LSTM, we

use a baseline network architecture LSTM+STGC to model

the skeleton sequence. In this case, we replace our LSGM

with traditional LSTM, which means all joint nodes will

not have a R
d representation vector and at every time step

t, we will feed V t
2 R

N×1 into LSTM cell where N is the

number of joint nodes. Seen from Table 3, model based on

LSGM outperform the LSTM-based model on NTU data

set. Actually, the major difference between the baseline

650

Table 2. Comparison of accuracy on the NTU dataset when differ-

ent hyperparameter d we choose.

d NTU.CS

4 84.71%

8 84.12%

16 83.78%

32 83.73%

Table 3. Comparison of different methods on NTU data set

Methods NTU.CS

LSTM + STGC 83.00%

LSGM + STGC 84.71%

LSGM + STGC(no attention) 83.2%

model and our LSGM+STGC is the joint nodes represen-

tation and the graph convolution layer between recurrent

units. We believe that by introducing graph convolution,

LSGM is better able to extract temporal and spatial infor-

mation simultaneously than LSTM.

Attention vs. No Attention. To validate the neces-

sity of using tempoaral attention operation, we build a

LSGM+GTSC network without temporal attention, which

means in Eq. 12 we directly let Oa = O and will not cal-

culate attention weight Fa. Seen from Table 3, the accuracy

of LSGM+GTSC without temporal attention has dropped

down a lot, which indicates that bringing temporal attention

will make our model robustness to skeleton sequence.

4.3. Performance Comparison

NTU RGB+D dataset. On NTU dataset, we compare the

performance of our proposed model against several pre-

vious state-of-the-art approaches in Table 4. The com-

pared methods include ST-GCN[31], SR-TSL[17], VA-

LSTM[33], Spatial Temporal LSTM with Trust Gates (ST-

LSTM+TG)[15], Two-stream RNNs[28], GCA-LSTM[16],

Memory Attention Network[30]. All of the above models

Table 4. Skeleton based action recognition performance on NTU-

RGB+D datasets. We report the accuracies on both the cross-

subject (X-Sub) and cross-view (X-View) benchmarks.

Methods NTU.CS NTU.CV

ST-LSTM + TG[15] 69.20% 77.70%

GCA-LSTM[16] 76.10% 84.00%

VA-LSTM[33] 79.40% 87.60%

ST-GCN[31] 81.5% 88.3%

MAN[30] 83.01% 90.66%

SR-TSL[17] 84.8% 92.4%

LSGM+GTSC(ours) 84.71% 91.74%

Table 5. Skeleton based action recognition performance on SYSU

datasets. We report the accuracies on the recommended setting-2

protocal.

Methods Setting-2

ST-LSTM + TG[15] 76.80%

VA-LSTM[33] 77.5%

SR-TSL[17] 81.9%

LSGM+GTSC(ours) 85.8%

can be divided into three categories: CNN-based model,

LSTM-based model and GCN-based model. Our model

belongs to the model of integrated GCN and LSTM. Seen

from Table 4, our LSGM+GTSC is able to outperform pre-

vious state-of-the-art approaches on this dataset.

SYSU 3D dataset. On SYSU 3D dataset, following the

standard 30-fold cross-validation protocal on setting-2, we

compare our model with the state-of-the-art methods, in-

cluding ST-LSTM + TG, VA-LSTM and SR-TSL. Experi-

ments indicate that our model outperforms the state-of-the-

art methods.

5. Conclusion

In this paper, an end-to-end framework named

LSGM+GTSC is proposed to enhance the temporal-spatial

features for skeleton-based action recognition. We con-

struct a novel recurrent unit termed as LSGM, which has a

stronger ability to simultaneously extract the temporal and

spatial features, by embedding GCN layers to traditional

LSTM cell. In addition, we propose GTSC to calibrate the

output features of LSGM to capture high-level nodes repre-

sentations. The extensive experiments demonstrate the ef-

fectiveness of our model, which consistently performs the

best on two challenging datasets: NTU RGB+D dataset and

SYSU 3D dataset. In our future work, we will try different

variants of GCN layers embedded in LSGM, which may

help to extract the latent dependency among joint nodes.

6. Acknowledgements

This work is supported by Shenzhen Science and Tech-
nology Program KQTD2016112515134654 and National
Key R&D Plan (2017YFC0821102).

References

[1] J. K. Aggarwal and M. S. Ryoo. Human activity analysis: A

review. ACM Comput. Surv., 43:16:1–16:43, 2011.

[2] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. CoRR,

abs/1611.08050, 2016.

[3] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations

651

using RNN encoder-decoder for statistical machine transla-

tion. CoRR, abs/1406.1078, 2014.

[4] C. Gallicchio and A. Micheli. Graph echo state networks.

In The 2010 International Joint Conference on Neural Net-

works (IJCNN), pages 1–8, July 2010.

[5] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and

G. E. Dahl. Neural message passing for quantum chemistry.

CoRR, abs/1704.01212, 2017.

[6] M. Gori, G. Monfardini, and F. Scarselli. A new model for

learning in graph domains. In Proceedings. 2005 IEEE Inter-

national Joint Conference on Neural Networks, 2005., vol-

ume 2, pages 729–734 vol. 2, July 2005.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and F. F. Li. Large-scale video classification with convolu-

tional neural networks. pages 1725–1732, 2014.

[8] Q. Ke, M. Bennamoun, S. An, F. A. Sohel, and F. Boussaı̈d.

A new representation of skeleton sequences for 3d action

recognition. CoRR, abs/1703.03492, 2017.

[9] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. CoRR, abs/1609.02907,

2016.

[10] C. Li, Q. Zhong, D. Xie, and S. Pu. Co-occurrence feature

learning from skeleton data for action recognition and detec-

tion with hierarchical aggregation. CoRR, abs/1804.06055,

2018.

[11] G. Li, M. Müller, A. K. Thabet, and B. Ghanem. Can gcns

go as deep as cnns? CoRR, abs/1904.03751, 2019.

[12] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and

Q. Tian. Actional-structural graph convolutional net-

works for skeleton-based action recognition. CoRR,

abs/1904.12659, 2019.

[13] Q. Li, Z. Han, and X. Wu. Deeper insights into graph con-

volutional networks for semi-supervised learning. CoRR,

abs/1801.07606, 2018.

[14] R. Li, M. Tapaswi, R. Liao, J. Jia, R. Urtasun, and S. Fidler.

Situation recognition with graph neural networks. In IEEE

International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017, pages 4183–4192, 2017.

[15] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal

LSTM with trust gates for 3d human action recognition.

CoRR, abs/1607.07043, 2016.

[16] J. Liu, G. Wang, P. Hu, L. Duan, and A. C. Kot. Global

context-aware attention lstm networks for 3d action recog-

nition. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3671–3680, July 2017.

[17] Y. Liu, Y. Li, S. You, and F. Lu. Semantic guided single

image reflection removal. CoRR, abs/1907.11912, 2019.

[18] R. Poppe. A survey on vision-based human action recogni-

tion. Image Vision Comput., 28:976–990, 2010.

[19] M. O. R. Prates, P. H. C. Avelar, H. Lemos, L. C. Lamb,

and M. Y. Vardi. Learning to solve np-complete problems

- A graph neural network for the decision TSP. CoRR,

abs/1809.02721, 2018.

[20] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu. Learning

human-object interactions by graph parsing neural networks.

ArXiv, abs/1808.07962, 2018.

[21] S. M. R, S. K, S. A. S, S. G. Jacob, and M. S. Approaches

and applications of virtual reality and gesture recognition: A

review. 8(4):1–18, 2017.

[22] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. IEEE

Transactions on Neural Networks, 20(1):61–80, Jan 2009.

[23] A. Shahroudy, J. Liu, T. Ng, and G. Wang. NTU RGB+D:

A large scale dataset for 3d human activity analysis. CoRR,

abs/1604.02808, 2016.

[24] C. Si, W. Chen, W. Wang, L. Wang, and T. Tan. An attention

enhanced graph convolutional LSTM network for skeleton-

based action recognition. CoRR, abs/1902.09130, 2019.

[25] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July

21-26, 2017, pages 29–38, 2017.

[26] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An end-to-end

spatio-temporal attention model for human action recogni-

tion from skeleton data. 2016.

[27] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 4489–4497, Dec 2015.

[28] H. Wang and L. Wang. Modeling temporal dynamics and

spatial configurations of actions using two-stream recurrent

neural networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,

USA, July 21-26, 2017, pages 3633–3642, 2017.

[29] P. Wang, W. Li, P. Ogunbona, J. Wan, and S. Escalera. Rgb-

d-based human motion recognition with deep learning: A

survey. Computer Vision and Image Understanding, 171:118

– 139, 2018.

[30] C. Xie, C. Li, B. Zhang, C. Chen, J. Han, and J. Liu. Memory

attention networks for skeleton-based action recognition. In

Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, IJCAI 2018, July 13-19,

2018, Stockholm, Sweden., pages 1639–1645, 2018.

[31] S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph con-

volutional networks for skeleton-based action recognition.

CoRR, abs/1801.07455, 2018.

[32] Yong Du, W. Wang, and L. Wang. Hierarchical recur-

rent neural network for skeleton based action recognition.

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1110–1118, June 2015.

[33] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng.

View adaptive recurrent neural networks for high perfor-

mance human action recognition from skeleton data. In IEEE

International Conference on Computer Vision, ICCV 2017,

Venice, Italy, October 22-29, 2017, pages 2136–2145, 2017.

[34] Z. Zhang. Microsoft kinect sensor and its effect. IEEE Mul-

tiMedia, 19(2):4–10, Feb 2012.

652

