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Abstract

Satellite image dehazing aims at precisely retrieving the

real situations of the obscured parts from the hazy remote

sensing (RS) images, which is a challenging task since the

hazy regions contain both ground features and haze com-

ponents. Many approaches of removing haze focus on pro-

cessing multi-spectral or RGB images, whereas few of them

utilize multi-sensor data. The multi-sensor data fusion is

significant to provide auxiliary information since RGB im-

ages are sensitive to atmospheric conditions. In this paper,

a dataset called SateHaze1k is established and composed

of 1200 pairs clear Synthetic Aperture Radar (SAR), hazy

RGB, and corresponding ground truth images, which are

divided into three degrees of the haze, i.e. thin, moderate,

and thick fog. Moreover, we propose a novel fusion dehaz-

ing method to directly restore the haze-free RS images by

using an end-to-end conditional generative adversarial net-

work(cGAN). The proposed network combines the informa-

tion of both RGB and SAR images to eliminate the image

blurring. Besides, the dilated residual blocks of the gen-

erator can also sufficiently improve the dehazing effects.

Our experiments demonstrate that the proposed method,

which fuses the information of different sensors applied to

the cloudy conditions, can achieve more precise results than

other baseline models.

1. Introduction

With the development of the remote sensing technology

in recent years, the quantity and quality of the satellite im-

ages have dramatically improved, which can be applied to

∗Denotes equal contributions. Corresponding author: Fuchun Sun.

Figure 1. Satellite image haze removal example. From left to right:

satellite hazy images, haze removal results of our method.

many fields, e.g. building extraction [28], earthquake dam-

age assessment [2], and image decomposition [6]. In many

cases, however, optical remote sensing images are sensitive

and vulnerable to the weather and light conditions. Cloud,

fog or snow often affects the visibility and accuracy of the

optical images, as a result of which, the applications of the

optical images maybe invalid in some scenarios e.g. Due to

the obscuration by the cloud, the real situation cannot be

obtained in time for the applications of the disaster evalu-

ation and visual interpretation. Dehazing can not only im-

prove the quality of the visible images, but also enhance the
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usability of the practical frameworks. Therefore, it is sig-

nificant to investigate the methods of removing the haze in

the remote sensing images.

Single image haze removal is challenging because there

is no time series image information to refer to. Traditional

researchers often solve this problem by utilizing various

kinds of prior knowledge, such as He et al. presented the

dark channel prior [16], Tan et al. proposed Maximum Con-

trast (MC) method [34], and Zhu et al. raised Color Attenu-

ation Prior (CAP) method [29]. However, the human visual

system does not rely on these explicit feature transforma-

tions to estimate the concentration of the fog and the depth

of the scene.

Since the deep neural network has made great progress

in tasks such as object detection [12] and semantic segmen-

tation [32], researchers begin to use deep learning based

methods. These methods can be mainly divided into two

types. On the one hand, based on the physical corruption

model, the parameters of the dehazing model can be esti-

mated by the neural network in a few methods. On the other

hand, the input hazy images are directly utilized to obtain

the dehazed image. The latest dehazing methods are similar

to the latter framework. These works usually employ ma-

chine learning methods to learn transmission maps, such as

random forest regression in [35], Convolutional Neural Net-

works (CNNs) in [30] and Generative Adversarial Network

(GAN) in [25, 38, 7]. They usually rely on the quality of

the training data, thus declining the efficiency and achieve-

ments of learning-based approaches.

However, fog or haze produces information loss. As a re-

sult, it is difficult for dehazing to enhance the missing cov-

ered information in essence. Moreover, not all of the above-

mentioned models and strategies are specifically designed

for the satellite images with complex backgrounds, abun-

dant objects, large area of space. Particularly, the satellite

images are frequently blinded by mist and haze. In addition,

many methods generate so simple haze mask that the syn-

thetic images lack sufficient expressiveness for the compli-

cate scenes. Therefore, these solutions are actually not ap-

propriate for the remote sensing images dehazing. Further-

more, besides optical RGB three-channel images, satellite

images also include near-infrared, multispectral, synthetic

aperture radar (SAR) etc. which reflect different wavebands

information of the landscapes and objects features. As for

the SAR, mathematical techniques are used to combine re-

flected signal phase and amplitude information. In addition,

a high-resolution image can be built up according to several

adjacent-in-time RADAR pulses, which are seen as a func-

tion of time. SAR is often used because of its all-weather

and day-or-night capability. Even though facing the weather

with extremely low visibility, SAR images are weather re-

sistant and can maintain a good quality of satellite image.

Therefore, when the interpretation and availability of the

optical remote sensing images are confined, the SAR radar

images can be an alternative approach to retrieve the real

situation of the target area under bad weather e.g. cloudy

or snowy, and its practical application is promising. Over-

all, as a supplement to the optical images, SAR images are

beneficial for the remote sensing image applications. Be-

sides, remote sensing applications such as building change

detection, segmentation or earthquake damage assessment

put forward higher requirements for the recovering quality

and image details. Therefore, the SAR information is intro-

duced due to the unique texture details. These are vital to

detecting buildings after the satellite haze removal process

for recovering cloudless high-resolution images. However,

SAR and RGB usually have different modalities, resolu-

tions, reflection angles, and different time zones. Therefore,

it is very difficult to fuse the SAR information in the defog-

ging tasks. At present, the only authoritative SAR-Optical-

paired public dataset [31] was released in July, 2018, and

[13] introduced Gaussian noise into the raw RGB images

to generate fogging masks, afterwards explored defogging

algorithms using 11-band concatenation of SAR and multi-

spectual images as input to train a GAN.

To handle the obstacles of the missing information

caused by fog occlusion, and normal photos dehazing ap-

proaches inapplicable to satellite images, we train a con-

ditional generative adversarial networks (cGAN) by adding

a SAR constraint, which can fit the real ground truth im-

age distribution for the purpose of obtaining more natural

effects. In our experiments, we show that RGB and SAR

information fusion not only enhances the visual effects, but

also promotes the performance of subsequent application

tasks, such as building footprints detection and segmenta-

tion. Our method achieves better results contrasting with

other methods which only utilize RGB remote sensing im-

ages for dehazing and SAR-Opt-cGAN designed for SAR

and RGB information fusion proposed by [13], exposing

that multi-sensor fusion is capable of promoting both vision

and segmentation performance after remote sensing images

haze removal.

Our contributions can be summarized as follows:

• For the sake of lacking optical and SAR paired data,

we construct a new dataset SateHaze1k which includes

1200 the same region pairs of cloudy RGB images,

SAR images and corresponding RGB haze-free ground

truth, on which researchers can fuse SAR with RGB to

conduct haze removal tasks.

• We propose a generative approach, specifically, use

deep neural network (DNN) to construct an end-to-end

network, applying SAR images as condition, RGB im-

ages as input and dehazed images as output to enhance

dehazing performance. We also put forward a dilated

residual block eliminating image indistinctness.
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• Considerable empirical results on challenging bench-

marks indicate that our method attains consistent im-

provements over other SAR-used GAN method and

many baseline models.

The rest of the paper is organized as follows. Firstly the

summary of related work is in Section 2, the SateHaze1k

dataset is described in Section 3. Our proposed image de-

hazing method is demonstrated in Section 4. Finally, the

comprehensive experiments results and ablation studies are

discussed in Section 5 and conclusion in Section 6.

2. Related Works

In this section, we will introduce the concerning low-

level vision algorithms, the applications of attention mech-

anism and the development of GANs.

2.1. Low Level Vision

In recent years, research on low-level vision [16, 4, 20,

21, 39, 11, 26] tasks, including haze removal, rain removal

and snow removal, is mainly divided into two classes. The

first class is from the perspective of the model [16, 20, 21],

which focus on using the traditional model to describe the

transmission map and background separately. He et al. [16]

proposed an effective haze removal method using the dark

channel prior to fit physical corruption model. A bilateral

filter [20] is used to decompose the rainy images into the

high-frequency and low-frequency components. Kim et al.

[21] first used kernel regression to detect rain streaks and

then used a non-local means filter to remove the detected

rain streaks. The second class is based on deep learning

to construct a network framework to accomplish the im-

age enhancement tasks [4, 39, 11, 26]. Zhang et al. [39]

advanced a convolutional neural network (CNN)-based al-

gorithm which first estimates the rain density and then re-

moves the corresponding rain-streaks. Fu et al. [39] intro-

duced a method for removing rain streaks from an image

based on CNN; it directly learns the transmission map be-

tween the rainy and clean images. Cai et al. [4] proposed

an end-to-end system called DehazeNet, it firstly estimates

the transmission map and finally used a classical algorithm

to recover the clear image. Liu et al. [26] proposed a multi-

stage network, DesnowNet, to manage the snow removal

problem. In these image enhancement tasks, haze removal

is more complicated because the density of the haze is an

additional factor that makes the hazy images more difficult

to process.

2.2. Generative Adversarial Networks (GANs)

Over the last few years, with the development of deep

learning, the GANs gradually become a research hotspot.

GANs has achieved amazing results in fitting data distri-

bution and generating images. Usually, GANs consists of

Figure 2. Illustration of the dataset generation pipeline. (a) Raw

data of hazy RGB, haze-free RGB and SAR images that are cap-

tured by the earth remote sensing satellites (SSR). (b) Alignment

of multi-channel remote sensing images according to geographic

location. (c) Sliding on the overlap of the remote sensing images

and cropping into 512 × 512 images. Each row (from top to bot-

tom) represents the hazy images, hazy-free (ground truth) images,

and SAR images respectively. Note that the raw remote sensing

images have a very large resolution.

generative network and discriminative network. The GANs

model attracted much attention because they do not re-

quire prior knowledge, however, the free training methods

also makes GANs tremendously sensitive to initial param-

eters, resulting in the training process is extremely unsta-

bility and serious mode collapse problems. Arjovsky et

al. [1] discussed the difficulties in GANs training caused

by J-S divergence approximation and put forward the use

of earth-mover distance w(q, p). In addition, Mao et al.

[27] proposed a Least Squares Generative Adversarial Net-

works (LSGANs), which applies the least square loss func-

tion to the discriminative network to overcome the problem

of mode collapse and disappearing gradient in the training

stage.

At present, GANs has has been applied to various low-

level vision tasks, such as style transfer [5, 9], photo en-

hancement [8], super-resolution [24], imitation learning

[37] and others [3, 14, 10].

3. Haze Satellite Dataset

The new haze satellite dataset on which we evaluate our

approach contains 1200 individual pairs of hazy images,

corresponding hazy-free images and SAR images. The

dataset generation process is shown in Figure 2. The raw

multi-channel remote sensing images may be misaligned

due to the satellite synchronization where hazy and haze-

free images were captured using the GF-2 satellite and the

SAR image was collected by GF-3 satellite. So before slid-

ing and cropping the images, we have to align all the remote

sensing images to ensure that the same image area repre-

sents the same geographic area.
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Figure 3. The overall network structure of the proposed method is a basic auto-encoder structure. It consists of one common convolution

layer, and two convolution blocks, followed by six dilated resblocks as the feature extraction part, two deconvolution blocks and one

deconvolution layer. The SAR prior is added to the feature maps after all of the dilated resblocks, that highway extracts the texture details

information. The dilated resblocks are inserted in the middle network to aggregate context information. To fuse the features from different

levels, the skip-layers connection is leveraged. During the output image and the hazy input image in an end-to-end way. Note that we adopt

the patchGAN[19] as our discriminator network, so we omitted it here.

In order to guarantee the facticity, abundance, and diver-

sity of haze masks in our dataset, we use Photoshop Soft-

ware to extract real haze masks of the easily accessible orig-

inal hazy remote sensing images to generate transmission

maps for synthetic images. The dataset consists of 3 lev-

els of fog, called Thin fog, Moderate fog, Thick fog. In the

synthetic images covered by thin fog, the haze mask will

be only mist which picks up from the original real cloudy

image. For the moderate fog image, samples overlap with

mist and medium fog. But for the thick fog, the transmis-

sion maps are selected from the dense haze.

Training, validation and test folds. Our training, valida-

tion and test folds were approximately 80%, 10%, 10% of

the total data respectively. More details of the dataset can

be found in the persistent link1. We split every 400 images

to train, valid, and test set, and artificially label 45 of thick

fog images for segmentation purposes.

4. Methodology

In this section, firstly we present the structure of our

GANs including the generative and discriminative network.

As shown in Figure 3, for the generator we utilize the

encode-decoder network including convolutional blocks,

dilated resblocks and deconvolutional blocks. For the dis-

criminator, we adopt 70×70 PatchGAN in [19] and change

the network input to the concatenation of the haze-free im-

age and original hazy image. Then, we introduce our loss

1https://www.dropbox.com/s/k2i3p7puuwl2g59/Haze1k.zip?dl=0

function in detail for generator and discriminator separately.

4.1. Generative Networks

The generative network structure is shown in Figure 3.

It is composed of two modules, i.e., the encoder-decoder

network and the SAR information highway. The encoder

blocks aim to obtain both global and local features of the in-

put haze image, the decoder deconvolutional blocks restore

the feature maps to original size and produce an output im-

age. The SAR information highway extracts the features of

the SAR prior.

In the training step, we first use a convolution layer to ob-

tain the features of SAR image. Then we feed the input haze

image into the encoder-decoder network to get the detailed

features. Finally, we perform an element-wise sum opera-

tion on the above results of two modules to obtain the fusing

feature to generate a clean image. We also utilize skip con-

nections to fuse multi-scale information. Furthermore, we

adopt the handmade designed dilated residual blocks which

expands the receptive fields significantly and avoid gradient

vanishing effectively.

Different from previous GANs which rely on adversarial

loss, we propose to use LSGANs loss to both generator and

discriminator, which can be expressed as:

Lls =Ex,y∼Pdata(x,y)

[

(D(x, y)− 0)2
]

+

Ex∼Pdata(x)

[

(D(x,G(x))− 1)2
]

(4.1)

where G represents the generative network, and D repre-

sents the discriminator network, x is an input hazy image,
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y is a ground truth clean image. In order to stable training

stage, we introduce the least square loss function to regular-

ize the two modules, the loss functions are defined as:

L1 = ‖G(x)− y‖1 (4.2)

where y represents the corresponding clean image of the

input hazy image.

The overall loss function of the generator network can be

expressed as:

LG = αLls + βL1 (4.3)

The setting of α, β will be described in Section 5.1.

Encoder-decoder network: The proposed encoder-

decoder network comprises a stack of strided convolutional

blocks, nine residual blocks [17], and four transposed con-

volutional blocks. Each residual block consists of a con-

volutional layer, an instance normalization layer [36], and

a ReLU activation layer [23]. After the first convolutional

layer in each ResBlock [17], the Dropout [33] with proba-

bility 0.5 is added to the generative network.

4.2. Discriminator Network

The structure of the discriminator network is like 70×70
PatchGAN [19]. The discriminator network, comprising a

stack of convolution layers, each of which is followed by a

batch normalization layer [18] and Leaky ReLU activation

function. The final layer of the discriminator network is the

sigmoid activation function whose probability of the output

and input image pairs is true or false.

The whole loss function of the discriminator network can

be expressed as:

LD = Ex∼Pdata(x)

[

(D(x,G(x))− 0)2
]

(4.4)

The samples of various loss functions are illustrated in

Figure 5.

5. Experiments

In this section, we will demonstrate the effectiveness of

the training details and evaluation metrics in our tasks. Fur-

thermore, we analyze and discuss the effects of the pro-

posed algorithm, including loss functions, SAR image prior

and the dilated blocks.

5.1. Training Details

Each convolution block of the proposed encoder-decoder

network in the generator network consists of a convolution,

instance normalization and LeakyReLU. The rates of six di-

lated resblock are set as 2, 2, 2, 4, 4, 4. Generator input and

the output image size are set as 512×512×3. The size of the

input images in the discriminator is set as 512 × 512 × 3,

and the size of the output vector is 30 × 30 × 1. During

training process, we set α = 1, β = 1. The learning rate is

set at 0.0002. We use Adam [22] optimization to train our

network. Our method is implemented in Python 3.5 with a

Nvidia RTX 2080Ti.

5.2. Metrics

We evaluate the performance of our method from two as-

pects: visual performance and task-oriented performance.

For visual performance, we use peak signal to noise ra-

tio(PSNR) and structural similarity index(SSIM) to assess

the quality of recovered images. For the latter, The segmen-

tation algorithms are used in the generated images to con-

firm whether the segmentation accuracy is sufficiently pro-

moted. We refine the MASK-RCNN[15] to detect the build-

ing footprints of the remote sensing RGB images. In this

respect, we use general metrics in segmentation task: Inter-

section over Union(IoU), F1-Score and pixel accuracy(PA).

The F1-Score metric is based on proposed buildings whose

IoU with the ground truth is larger than 0.5.

Training: Inspired by the training process on COCO

dataset in [15], we train the network through the following

three phases as follows: the first phase for training the head

with 40 epochs, the second phase for training 4th and more

rear stage of ResNet-101 with 20 epochs, and the last phase

for training all layers with 20 epochs. We train a 3 channel

input mask-rcnn network performing better than top-3 win-

ners (Nofto, Wleite, and XD XD) of the SpaceNet Chal-

lenge, while XD XD uses 11 channel input image to build

up building footprints.

5.3. Comparative Evaluations

In this section, the proposed method is quantitatively

evaluated and compared with the state-of-the-art ones on

synthetic images and real-world hazy images.

Quantitative Analysis: Several kinds of previous dehaz-

ing methods are realized as contrast experiments, contain-

ing traditional approach DCP [16], DNN-based model De-

hazenet [4], and the method which applies SAR information

SAR-Opt-cGAN.

Corresponding quantitative results of different methods

are presented in Table 2. Apparently, our proposed method

can achieve excellent performance in the three cases of fogs

in Figure 4. Moreover, distinct from other methods, our

models exhibit generalization ability to remove different

levels of fog.

Qualitative Analysis: Figure 4 illustrates three real-world

hazy images and corresponding output images generated by

our advanced methods. The method proposed by He et al.

DCP is a traditional approach to make use of dark chan-

nel prior cannot produce a clear image, as shown in Figure

4(c). The previous method [4] used a convolutional neu-

ral network to estimate the transmission map and a physi-

cal corruption model to recover clear images. However, the

haze removal results still contain some artifacts and residu-
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Figure 4. The visual effects of different methods implemented in our dataset. From left to right: (a)Input images, (b)Ground truth, (c)DCP,

(d)DehazeNet, (e)SAR-Opt-cGAN, (f)Ours. The generative methods e.g. SAR-Opt-cGAN and ours generate more clear haze-free images

than the methods based on atmospheric scattering model e.g. DCP and DehazeNet. Our method conditions the GAN model on additional

SAR information and performs better than [13] whose name is called SAR-Opt-cGAN but actually use the normal GAN).

Method
Thin fog Moderate fog Thick fog

PSNR SSIM PSNR SSIM PSNR SSIM

Original 12.7712 0.7241 12.5867 0.7399 8.5893 0.4215

DCP[16] 13.1517 0.7246 9.7830 0.5735 10.2513 0.5850

Dehazenet[20] 19.7529 0.8950 18.1250 0.8552 14.3321 0.7064

SAR-Opt-cGAN[13] 20.1950 0.8419 21.6616 0.7941 19.6553 0.7573

Our without SAR 21.4744 0.8168 22.0945 0.8274 22.1206 0.7842

Our with SAR 24.1638 0.9061 25.3111 0.9264 25.0731 0.8640

Table 1. Dehazing performance comparison by two evaluation metrics, PSNR and SSIM, in three levels of haze. Our method without SAR

prior exclusively uses RGB images as input. Our method with SAR prior generate clear images as the Figure 3.

Method Iou F1-Score PA

Original 0.208 0.042 0.962

SAR-Opt-cGAN 0.297 0.107 0.957

Ours without SAR 0.276 0.069 0.956

Ours with SAR 0.319 0.113 0.961

Table 2. The results of our method using SAR image prior or not.

The SAR-based methods perform better in the segmentation tasks.

als of the haze especially the dense fog. Moreover, the cov-

ered objects are confusing and complex to be recognized.

In contrast, our algorithm has a more strong generalization

ability to handle different fog and achieves better results.

5.4. Ablation Study

Effect of Loss Function: In order to regularize the output

of the generator network and get sufficiently similar images

to ground truth, we adapt L1 in Eq. (4.2) and Lls in Eq.

(4.1) to compose the loss function. In order to demonstrate

the validity of the loss function, we train the same network

with different loss functions. As shown in Figure. 5 and Ta-

ble 3, the loss function we use achieves better performance

than others, e.g.Lad loss. L1 loss can greatly restrict the

distribution of the inputs and targets of the generative net-

works. The least square loss is kernel-based square loss and

gains better results than traditional adversary loss due to its

second-order derivative regularization property for gradient
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Figure 5. Visualization results of different loss function settings. From left to right: Input hazy image, ground truth, the generating results

of the four loss functions Lad, Lad + L1, Lls, Lls + L1 . It can easily be seen that the L1 loss plays an important role in generating the

clear images, either Lad or Lls can get a increase after we add L1 loss to the overall loss function.

backward optimization process.

Loss Lad Lad + L1 Lls Lls + L1

Avg. PSNR 16.721 23.824 18.874 24.945

Avg. SSIM 0.707 0.938 0.809 0.946

Table 3. The performance of our method when using different loss

functions.

Effect of Sar Image Prior and Dilated Residual Block:

We also intend to investigate the influence of the SAR image

prior, so we abandon the SAR image feature extraction path

in our model to test whether the SAR image prior plays an

important role in the haze removal task. The results are pre-

sented in the Table 2 and Table 4, the SAR prior feature at-

tains performance improvement both in the visual effect and

task-oriented Iou, F1 score and pixel accuracy both in SAR

related methods than others without SAR inputs, SAR-Opt-

cGAN [13] and our method with SAR inputs. Our method

performs better in the Iou and pixel accuracy, while is quite

close to SAR-Opt-cGAN in F1-Score. In conclusion, the

SAR images introduce additional detailed prior information

which can be of much significance in dehazing tasks.

w/SAR Prior × × √ √

w/Dilated Block × √ × √

Avg.PSNR 22.099 22.851 23.039 24.945

Avg.SSIM 0.827 0.851 0.842 0.946

Table 4. Dilation and SAR image prior ablation study analysis for

each component with different training settings, which shows the

combination of our SAR prior and designed block achieving best

performance.

6. Conclusion

In this paper, due to the lack of wonderful SAR-Optical

pair cloud removal dataset so far, we built SateHaze1k

dataset including 1200 pairs of images, where the optical

images in each 400 pairs are covered by thin, moderate and

thick fog. For the last moderate test 45 images, we also

label out the building footprints for the segmentation tasks

use. Moreover, we adopt the conditinal GANs in the satel-

lite haze removal tasks since the conventional methods fo-

cus on the estimation of the transmission map from the in-

put hazy image. In order to produce better dehazed results,

we proposed a novel architecture introducing SAR prior as

limits to reconstruct original details, which can be trained

end-to-end to generate natural haze removal images. We

propose a practical dehazing convolution dilated resblock

to smooth the output and generate distinct images. The pro-

posed method compares favorably with the most advanced

methods in synthetic datasets.
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