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Abstract

Satellite image dehazing aims at precisely retrieving the
real situations of the obscured parts from the hazy remote
sensing (RS) images, which is a challenging task since the
hazy regions contain both ground features and haze com-
ponents. Many approaches of removing haze focus on pro-
cessing multi-spectral or RGB images, whereas few of them
utilize multi-sensor data. The multi-sensor data fusion is
significant to provide auxiliary information since RGB im-
ages are sensitive to atmospheric conditions. In this paper,
a dataset called SateHazelk is established and composed
of 1200 pairs clear Synthetic Aperture Radar (SAR), hazy
RGB, and corresponding ground truth images, which are
divided into three degrees of the haze, i.e. thin, moderate,
and thick fog. Moreover, we propose a novel fusion dehaz-
ing method to directly restore the haze-free RS images by
using an end-to-end conditional generative adversarial net-
work(cGAN). The proposed network combines the informa-
tion of both RGB and SAR images to eliminate the image
blurring. Besides, the dilated residual blocks of the gen-
erator can also sufficiently improve the dehazing effects.
Our experiments demonstrate that the proposed method,
which fuses the information of different sensors applied to
the cloudy conditions, can achieve more precise results than
other baseline models.

1. Introduction

With the development of the remote sensing technology
in recent years, the quantity and quality of the satellite im-
ages have dramatically improved, which can be applied to
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Figure 1. Satellite image haze removal example. From left to right:
satellite hazy images, haze removal results of our method.

many fields, e.g. building extraction [28], earthquake dam-
age assessment [2], and image decomposition [6]. In many
cases, however, optical remote sensing images are sensitive
and vulnerable to the weather and light conditions. Cloud,
fog or snow often affects the visibility and accuracy of the
optical images, as a result of which, the applications of the
optical images maybe invalid in some scenarios e.g. Due to
the obscuration by the cloud, the real situation cannot be
obtained in time for the applications of the disaster evalu-
ation and visual interpretation. Dehazing can not only im-
prove the quality of the visible images, but also enhance the
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usability of the practical frameworks. Therefore, it is sig-
nificant to investigate the methods of removing the haze in
the remote sensing images.

Single image haze removal is challenging because there
is no time series image information to refer to. Traditional
researchers often solve this problem by utilizing various
kinds of prior knowledge, such as He et al. presented the
dark channel prior [16], Tan et al. proposed Maximum Con-
trast (MC) method [34], and Zhu et al. raised Color Attenu-
ation Prior (CAP) method [29]. However, the human visual
system does not rely on these explicit feature transforma-
tions to estimate the concentration of the fog and the depth
of the scene.

Since the deep neural network has made great progress
in tasks such as object detection [12] and semantic segmen-
tation [32], researchers begin to use deep learning based
methods. These methods can be mainly divided into two
types. On the one hand, based on the physical corruption
model, the parameters of the dehazing model can be esti-
mated by the neural network in a few methods. On the other
hand, the input hazy images are directly utilized to obtain
the dehazed image. The latest dehazing methods are similar
to the latter framework. These works usually employ ma-
chine learning methods to learn transmission maps, such as
random forest regression in [35], Convolutional Neural Net-
works (CNNs) in [30] and Generative Adversarial Network
(GAN) in [25, 38, 7]. They usually rely on the quality of
the training data, thus declining the efficiency and achieve-
ments of learning-based approaches.

However, fog or haze produces information loss. As a re-
sult, it is difficult for dehazing to enhance the missing cov-
ered information in essence. Moreover, not all of the above-
mentioned models and strategies are specifically designed
for the satellite images with complex backgrounds, abun-
dant objects, large area of space. Particularly, the satellite
images are frequently blinded by mist and haze. In addition,
many methods generate so simple haze mask that the syn-
thetic images lack sufficient expressiveness for the compli-
cate scenes. Therefore, these solutions are actually not ap-
propriate for the remote sensing images dehazing. Further-
more, besides optical RGB three-channel images, satellite
images also include near-infrared, multispectral, synthetic
aperture radar (SAR) etc. which reflect different wavebands
information of the landscapes and objects features. As for
the SAR, mathematical techniques are used to combine re-
flected signal phase and amplitude information. In addition,
a high-resolution image can be built up according to several
adjacent-in-time RADAR pulses, which are seen as a func-
tion of time. SAR is often used because of its all-weather
and day-or-night capability. Even though facing the weather
with extremely low visibility, SAR images are weather re-
sistant and can maintain a good quality of satellite image.
Therefore, when the interpretation and availability of the

optical remote sensing images are confined, the SAR radar
images can be an alternative approach to retrieve the real
situation of the target area under bad weather e.g. cloudy
or snowy, and its practical application is promising. Over-
all, as a supplement to the optical images, SAR images are
beneficial for the remote sensing image applications. Be-
sides, remote sensing applications such as building change
detection, segmentation or earthquake damage assessment
put forward higher requirements for the recovering quality
and image details. Therefore, the SAR information is intro-
duced due to the unique texture details. These are vital to
detecting buildings after the satellite haze removal process
for recovering cloudless high-resolution images. However,
SAR and RGB usually have different modalities, resolu-
tions, reflection angles, and different time zones. Therefore,
it is very difficult to fuse the SAR information in the defog-
ging tasks. At present, the only authoritative SAR-Optical-
paired public dataset [31] was released in July, 2018, and
[13] introduced Gaussian noise into the raw RGB images
to generate fogging masks, afterwards explored defogging
algorithms using 11-band concatenation of SAR and multi-
spectual images as input to train a GAN.

To handle the obstacles of the missing information
caused by fog occlusion, and normal photos dehazing ap-
proaches inapplicable to satellite images, we train a con-
ditional generative adversarial networks (cGAN) by adding
a SAR constraint, which can fit the real ground truth im-
age distribution for the purpose of obtaining more natural
effects. In our experiments, we show that RGB and SAR
information fusion not only enhances the visual effects, but
also promotes the performance of subsequent application
tasks, such as building footprints detection and segmenta-
tion. Our method achieves better results contrasting with
other methods which only utilize RGB remote sensing im-
ages for dehazing and SAR-Opt-cGAN designed for SAR
and RGB information fusion proposed by [13], exposing
that multi-sensor fusion is capable of promoting both vision
and segmentation performance after remote sensing images
haze removal.

Our contributions can be summarized as follows:

e For the sake of lacking optical and SAR paired data,
we construct a new dataset SateHazelk which includes
1200 the same region pairs of cloudy RGB images,
SAR images and corresponding RGB haze-free ground
truth, on which researchers can fuse SAR with RGB to
conduct haze removal tasks.

e We propose a generative approach, specifically, use
deep neural network (DNN) to construct an end-to-end
network, applying SAR images as condition, RGB im-
ages as input and dehazed images as output to enhance
dehazing performance. We also put forward a dilated
residual block eliminating image indistinctness.
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e Considerable empirical results on challenging bench-
marks indicate that our method attains consistent im-
provements over other SAR-used GAN method and
many baseline models.

The rest of the paper is organized as follows. Firstly the
summary of related work is in Section 2, the SateHazelk
dataset is described in Section 3. Our proposed image de-
hazing method is demonstrated in Section 4. Finally, the
comprehensive experiments results and ablation studies are
discussed in Section 5 and conclusion in Section 6.

2. Related Works

In this section, we will introduce the concerning low-
level vision algorithms, the applications of attention mech-
anism and the development of GANS.

2.1. Low Level Vision

In recent years, research on low-level vision [16, 4, 20,
21, 39, 11, 26] tasks, including haze removal, rain removal
and snow removal, is mainly divided into two classes. The
first class is from the perspective of the model [16, 20, 21],
which focus on using the traditional model to describe the
transmission map and background separately. He et al. [16]
proposed an effective haze removal method using the dark
channel prior to fit physical corruption model. A bilateral
filter [20] is used to decompose the rainy images into the
high-frequency and low-frequency components. Kim et al.
[21] first used kernel regression to detect rain streaks and
then used a non-local means filter to remove the detected
rain streaks. The second class is based on deep learning
to construct a network framework to accomplish the im-
age enhancement tasks [4, 39, 11, 26]. Zhang et al. [39]
advanced a convolutional neural network (CNN)-based al-
gorithm which first estimates the rain density and then re-
moves the corresponding rain-streaks. Fu et al. [39] intro-
duced a method for removing rain streaks from an image
based on CNN; it directly learns the transmission map be-
tween the rainy and clean images. Cai et al. [4] proposed
an end-to-end system called DehazeNet, it firstly estimates
the transmission map and finally used a classical algorithm
to recover the clear image. Liu er al. [26] proposed a multi-
stage network, DesnowNet, to manage the snow removal
problem. In these image enhancement tasks, haze removal
is more complicated because the density of the haze is an
additional factor that makes the hazy images more difficult
to process.

2.2. Generative Adversarial Networks (GANSs)

Over the last few years, with the development of deep
learning, the GANs gradually become a research hotspot.
GANSs has achieved amazing results in fitting data distri-
bution and generating images. Usually, GANs consists of

Sliding and crop

Figure 2. Illustration of the dataset generation pipeline. (a) Raw
data of hazy RGB, haze-free RGB and SAR images that are cap-
tured by the earth remote sensing satellites (SSR). (b) Alignment
of multi-channel remote sensing images according to geographic
location. (c) Sliding on the overlap of the remote sensing images
and cropping into 512 x 512 images. Each row (from top to bot-
tom) represents the hazy images, hazy-free (ground truth) images,
and SAR images respectively. Note that the raw remote sensing
images have a very large resolution.

generative network and discriminative network. The GANs
model attracted much attention because they do not re-
quire prior knowledge, however, the free training methods
also makes GANs tremendously sensitive to initial param-
eters, resulting in the training process is extremely unsta-
bility and serious mode collapse problems. Arjovsky et
al. [1] discussed the difficulties in GANs training caused
by J-S divergence approximation and put forward the use
of earth-mover distance w(q, p). In addition, Mao et al.
[27] proposed a Least Squares Generative Adversarial Net-
works (LSGANSs), which applies the least square loss func-
tion to the discriminative network to overcome the problem
of mode collapse and disappearing gradient in the training
stage.

At present, GANs has has been applied to various low-
level vision tasks, such as style transfer [5, 9], photo en-
hancement [8], super-resolution [24], imitation learning
[37] and others [3, 14, 10].

3. Haze Satellite Dataset

The new haze satellite dataset on which we evaluate our
approach contains 1200 individual pairs of hazy images,
corresponding hazy-free images and SAR images. The
dataset generation process is shown in Figure 2. The raw
multi-channel remote sensing images may be misaligned
due to the satellite synchronization where hazy and haze-
free images were captured using the GF-2 satellite and the
SAR image was collected by GF-3 satellite. So before slid-
ing and cropping the images, we have to align all the remote
sensing images to ensure that the same image area repre-
sents the same geographic area.
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Figure 3. The overall network structure of the proposed method is a basic auto-encoder structure. It consists of one common convolution
layer, and two convolution blocks, followed by six dilated resblocks as the feature extraction part, two deconvolution blocks and one
deconvolution layer. The SAR prior is added to the feature maps after all of the dilated resblocks, that highway extracts the texture details
information. The dilated resblocks are inserted in the middle network to aggregate context information. To fuse the features from different
levels, the skip-layers connection is leveraged. During the output image and the hazy input image in an end-to-end way. Note that we adopt

the patchGAN[19] as our discriminator network, so we omitted it here.

In order to guarantee the facticity, abundance, and diver-

sity of haze masks in our dataset, we use Photoshop Soft-
ware to extract real haze masks of the easily accessible orig-
inal hazy remote sensing images to generate transmission
maps for synthetic images. The dataset consists of 3 lev-
els of fog, called Thin fog, Moderate fog, Thick fog. In the
synthetic images covered by thin fog, the haze mask will
be only mist which picks up from the original real cloudy
image. For the moderate fog image, samples overlap with
mist and medium fog. But for the thick fog, the transmis-
sion maps are selected from the dense haze.
Training, validation and test folds. Our training, valida-
tion and test folds were approximately 80%, 10%, 10% of
the total data respectively. More details of the dataset can
be found in the persistent link!. We split every 400 images
to train, valid, and test set, and artificially label 45 of thick
fog images for segmentation purposes.

4. Methodology

In this section, firstly we present the structure of our
GANSs including the generative and discriminative network.
As shown in Figure 3, for the generator we utilize the
encode-decoder network including convolutional blocks,
dilated resblocks and deconvolutional blocks. For the dis-
criminator, we adopt 70 x 70 PatchGAN in [19] and change
the network input to the concatenation of the haze-free im-
age and original hazy image. Then, we introduce our loss

Uhttps://www.dropbox.com/s/k2i3p7puuwl2g59/Haze 1k.zip?dl=0

function in detail for generator and discriminator separately.
4.1. Generative Networks

The generative network structure is shown in Figure 3.
It is composed of two modules, i.e., the encoder-decoder
network and the SAR information highway. The encoder
blocks aim to obtain both global and local features of the in-
put haze image, the decoder deconvolutional blocks restore
the feature maps to original size and produce an output im-
age. The SAR information highway extracts the features of
the SAR prior.

In the training step, we first use a convolution layer to ob-
tain the features of SAR image. Then we feed the input haze
image into the encoder-decoder network to get the detailed
features. Finally, we perform an element-wise sum opera-
tion on the above results of two modules to obtain the fusing
feature to generate a clean image. We also utilize skip con-
nections to fuse multi-scale information. Furthermore, we
adopt the handmade designed dilated residual blocks which
expands the receptive fields significantly and avoid gradient
vanishing effectively.

Different from previous GANs which rely on adversarial
loss, we propose to use LSGANS loss to both generator and
discriminator, which can be expressed as:

Ly, :E:c,yNPdata(Ly) [(D(Z’,y) - 0)2} +
ErPipao) [(D(@,G(2)) = 1)°] 4D

where G represents the generative network, and D repre-
sents the discriminator network, x is an input hazy image,
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y is a ground truth clean image. In order to stable training
stage, we introduce the least square loss function to regular-
ize the two modules, the loss functions are defined as:

Ly = [|G(x) =yl 4.2)

where y represents the corresponding clean image of the
input hazy image.
The overall loss function of the generator network can be
expressed as:
Lg = alis + 8Ly 4.3)

The setting of «, 5 will be described in Section 5.1.
Encoder-decoder network: The proposed encoder-
decoder network comprises a stack of strided convolutional
blocks, nine residual blocks [17], and four transposed con-
volutional blocks. Each residual block consists of a con-
volutional layer, an instance normalization layer [36], and
a ReLU activation layer [23]. After the first convolutional
layer in each ResBlock [17], the Dropout [33] with proba-
bility 0.5 is added to the generative network.

4.2. Discriminator Network

The structure of the discriminator network is like 70 x 70
PatchGAN [19]. The discriminator network, comprising a
stack of convolution layers, each of which is followed by a
batch normalization layer [18] and Leaky ReLLU activation
function. The final layer of the discriminator network is the
sigmoid activation function whose probability of the output
and input image pairs is true or false.

The whole loss function of the discriminator network can
be expressed as:

Lp = Eppy(x) [(D(z,G(z)) — 0)?] (4.4)

The samples of various loss functions are illustrated in
Figure 5.

5. Experiments

In this section, we will demonstrate the effectiveness of
the training details and evaluation metrics in our tasks. Fur-
thermore, we analyze and discuss the effects of the pro-
posed algorithm, including loss functions, SAR image prior
and the dilated blocks.

5.1. Training Details

Each convolution block of the proposed encoder-decoder
network in the generator network consists of a convolution,
instance normalization and LeakyReLU. The rates of six di-
lated resblock are set as 2, 2, 2, 4, 4, 4. Generator input and
the output image size are set as 512x512x 3. The size of the
input images in the discriminator is set as 512 x 512 x 3,
and the size of the output vector is 30 x 30 x 1. During
training process, we set « = 1, 5 = 1. The learning rate is

set at 0.0002. We use Adam [22] optimization to train our
network. Our method is implemented in Python 3.5 with a
Nvidia RTX 2080Ti.

5.2. Metrics

We evaluate the performance of our method from two as-

pects: visual performance and task-oriented performance.
For visual performance, we use peak signal to noise ra-
tio(PSNR) and structural similarity index(SSIM) to assess
the quality of recovered images. For the latter, The segmen-
tation algorithms are used in the generated images to con-
firm whether the segmentation accuracy is sufficiently pro-
moted. We refine the MASK-RCNN]J15] to detect the build-
ing footprints of the remote sensing RGB images. In this
respect, we use general metrics in segmentation task: Inter-
section over Union(IoU), F1-Score and pixel accuracy(PA).
The F1-Score metric is based on proposed buildings whose
IoU with the ground truth is larger than 0.5.
Training: Inspired by the training process on COCO
dataset in [15], we train the network through the following
three phases as follows: the first phase for training the head
with 40 epochs, the second phase for training 4th and more
rear stage of ResNet-101 with 20 epochs, and the last phase
for training all layers with 20 epochs. We train a 3 channel
input mask-rcnn network performing better than top-3 win-
ners (Nofto, Wleite, and XD_XD) of the SpaceNet Chal-
lenge, while XD_XD uses 11 channel input image to build
up building footprints.

5.3. Comparative Evaluations

In this section, the proposed method is quantitatively
evaluated and compared with the state-of-the-art ones on
synthetic images and real-world hazy images.
Quantitative Analysis: Several kinds of previous dehaz-
ing methods are realized as contrast experiments, contain-
ing traditional approach DCP [16], DNN-based model De-
hazenet [4], and the method which applies SAR information
SAR-Opt-cGAN.

Corresponding quantitative results of different methods
are presented in Table 2. Apparently, our proposed method
can achieve excellent performance in the three cases of fogs
in Figure 4. Moreover, distinct from other methods, our
models exhibit generalization ability to remove different
levels of fog.

Qualitative Analysis: Figure 4 illustrates three real-world
hazy images and corresponding output images generated by
our advanced methods. The method proposed by He et al.
DCP is a traditional approach to make use of dark chan-
nel prior cannot produce a clear image, as shown in Figure
4(c). The previous method [4] used a convolutional neu-
ral network to estimate the transmission map and a physi-
cal corruption model to recover clear images. However, the
haze removal results still contain some artifacts and residu-
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(a) Input images ) Ground truth - ‘(c}

(f) Ours

Figure 4. The visual effects of different methods implemented in our dataset. From left to right: (a)Input images, (b)Ground truth, (¢)DCP,
(d)DehazeNet, (e)SAR-Opt-cGAN, (f)Ours. The generative methods e.g. SAR-Opt-cGAN and ours generate more clear haze-free images
than the methods based on atmospheric scattering model e.g. DCP and DehazeNet. Our method conditions the GAN model on additional
SAR information and performs better than [13] whose name is called SAR-Opt-cGAN but actually use the normal GAN).

Method Thin fog Moderate fog Thick fog
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Original 12.7712 | 0.7241 | 12.5867 | 0.7399 | 8.5893 | 0.4215
DCP[16] 13.1517 | 0.7246 | 9.7830 | 0.5735 | 10.2513 | 0.5850
Dehazenet[20] 19.7529 | 0.8950 | 18.1250 | 0.8552 | 14.3321 | 0.7064
SAR-Opt-cGAN[13] | 20.1950 | 0.8419 | 21.6616 | 0.7941 | 19.6553 | 0.7573
Our without SAR | 21.4744 | 0.8168 | 22.0945 | 0.8274 | 22.1206 | 0.7842
Our with SAR 24.1638 | 0.9061 | 25.3111 | 0.9264 | 25.0731 | 0.8640

Table 1. Dehazing performance comparison by two evaluation metrics, PSNR and SSIM, in three levels of haze. Our method without SAR
prior exclusively uses RGB images as input. Our method with SAR prior generate clear images as the Figure 3.

| Method | Tou | FlI-Score | PA |

Original 0.208 | 0.042 | 0.962 L i
SAR-Opt-cGAN 0297 0.107 0.957 Effect of Loss Function: In order to regularize the output

Ours without SAR 1 0.276 0.060 0.956 of the generator network and ge?t sufficiently similar images
Ours with SAR 0319 0.113 0961 to ground truth, we adapt L 1'n Eq. (4.2) and L;s in Eq.
(4.1) to compose the loss function. In order to demonstrate
the validity of the loss function, we train the same network
with different loss functions. As shown in Figure. 5 and Ta-
ble 3, the loss function we use achieves better performance
than others, e.g.L,q loss. L; loss can greatly restrict the

5.4. Ablation Study

Table 2. The results of our method using SAR image prior or not.
The SAR-based methods perform better in the segmentation tasks.

als of the haze especially the dense fog. Moreover, the cov-
ered objects are confusing and complex to be recognized.
In contrast, our algorithm has a more strong generalization
ability to handle different fog and achieves better results.

distribution of the inputs and targets of the generative net-
works. The least square loss is kernel-based square loss and
gains better results than traditional adversary loss due to its
second-order derivative regularization property for gradient
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(a) Input images

(b) Ground truth (¢) Lag

(f} LitLy

Figure 5. Visualization results of different loss function settings. From left to right: Input hazy image, ground truth, the generating results
of the four loss functions Lag, Laqd + L1, Lis, L1s + L1 . It can easily be seen that the L1 loss plays an important role in generating the
clear images, either L,q or L;s can get a increase after we add L; loss to the overall loss function.

backward optimization process.

| Loss | Lag | Loqg+ Ly | L | Lis+ L |
Avg. PSNR | 16.721 23.824 18.874 | 24.945
Avg. SSIM | 0.707 0.938 0.809 0.946

Table 3. The performance of our method when using different loss
functions.

Effect of Sar Image Prior and Dilated Residual Block:
We also intend to investigate the influence of the SAR image
prior, so we abandon the SAR image feature extraction path
in our model to test whether the SAR image prior plays an
important role in the haze removal task. The results are pre-
sented in the Table 2 and Table 4, the SAR prior feature at-
tains performance improvement both in the visual effect and
task-oriented Iou, F1 score and pixel accuracy both in SAR
related methods than others without SAR inputs, SAR-Opt-
cGAN [13] and our method with SAR inputs. Our method
performs better in the Iou and pixel accuracy, while is quite
close to SAR-Opt-cGAN in F1-Score. In conclusion, the
SAR images introduce additional detailed prior information
which can be of much significance in dehazing tasks.

w/SAR Prior X X vV v
w/Dilated Block X vV X v

AvgPSNR  22.099 22.851 23.039 24.945
Avg.SSIM  0.827 0.851 0.842 0.946

Table 4. Dilation and SAR image prior ablation study analysis for
each component with different training settings, which shows the
combination of our SAR prior and designed block achieving best
performance.

6. Conclusion

In this paper, due to the lack of wonderful SAR-Optical
pair cloud removal dataset so far, we built SateHazelk
dataset including 1200 pairs of images, where the optical
images in each 400 pairs are covered by thin, moderate and
thick fog. For the last moderate test 45 images, we also
label out the building footprints for the segmentation tasks
use. Moreover, we adopt the conditinal GANS in the satel-
lite haze removal tasks since the conventional methods fo-
cus on the estimation of the transmission map from the in-
put hazy image. In order to produce better dehazed results,
we proposed a novel architecture introducing SAR prior as
limits to reconstruct original details, which can be trained
end-to-end to generate natural haze removal images. We
propose a practical dehazing convolution dilated resblock
to smooth the output and generate distinct images. The pro-
posed method compares favorably with the most advanced
methods in synthetic datasets.
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