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Abstract

We present MoVNect, a lightweight deep neural network

to capture 3D human pose using a single RGB camera.

To improve the overall performance of the model, we ap-

ply the teacher-student learning method based knowledge

distillation to 3D human pose estimation. Real-time post-

processing makes the CNN output yield temporally stable

3D skeletal information, which can be used in applications

directly. We implement a 3D avatar application running

on mobile in real-time to demonstrate that our network

achieves both high accuracy and fast inference time. Ex-

tensive evaluations show the advantages of our lightweight

model with the proposed training method over previous 3D

pose estimation methods on the Human3.6M dataset and

mobile devices.

1. Introduction

We aim to estimate 3D human pose in real-time. Re-

cently human pose estimation has achieved great progress

and is being used for sports analytics, body and gesture mo-

tion capture in the AR (Augmented Reality) or VR (Vir-

tual Reality) environment. As VR headset display technol-

ogy becomes mature, various applications including enter-

tainment, education, and telecommunication are getting re-

leased to the market. AR receives even more attention since

AR does not require any additional equipment. Neverthe-

less, creating AR/VR content often requires special settings

and devices. We believe that mobile-based marker-less mo-

tion capture system will accelerate the advance of AR/VR

∗This work was done when the first author was on an internship at Clova

AI Video, NAVER Corp.

Figure 1. An overview of our proposed method. To train

lightweight 3D human pose estimation model efficiently, we adopt

the basis of knowledge distillation: (1) First, we train a teacher

model, which consists of a large number of neural network layers.

(2) Then, we train the lightweight model with extra supervision of

the teacher model via mimicry loss functions for 3D pose knowl-

edge transfer. The trained lightweight network does not depend

on the teacher model and can perform efficient 3D human pose

estimation.

application market.

Conventional motion capture systems are marker-based

relying on wearable suits with sensors and multiple cam-

eras or need depth cameras (e.g. Microsoft Kinect1, Intel

RealSense2) to obtain human joint locations. These meth-

ods usually require expensive and specialized devices or are

restricted to be used in the indoor environment due to cali-

bration procedures and specific light sources required.

Recently, by leveraging the power of deep neural net-

works, human pose estimation technology with RGB im-

ages has been remarkably progressed. However, perfor-

1https://developer.microsoft.com/en-us/windows/kinect
2https://software.intel.com/en-us/realsense
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mance gains of deep learning-based models accompanies

high deployment costs due to very deep and wide lay-

ers [40]. This leads to increased FLOPS (FLoating point

OPerations per Second), which is not suitable for devices

with limited computing resources such as smartphones or

embedded systems. To reduce the number of FLOPS,

a lightweight model is usually designed with a smaller

number of parameters and with efficient operations such

as depthwise convolutions. However, the significantly re-

duced amount of parameters affect the accuracy of the

model. Methods using binarized convolutional neural net-

work (CNN) or quantization [5, 7] often suffer from a lack

of generalization capacity.

In this paper, we propose an efficient learning method

for 3D human pose estimation model with minimal per-

formance loss while reducing the number of parameters.

We extend the 2D human pose estimation model learn-

ing method based on teacher-student learning [47] to 3D,

and through designing and implementing MoVNect, a

lightweight 3D pose estimation model. We observed that

the lightweight model trained with the proposed approach

achieves higher accuracy than the model trained with the

vanilla method. In addition, we compare the inference

time of our model with previous methods running on smart-

phones and develop an AR application with our model to

show the effectiveness of the proposed method.

In summary, our contributions include:

• We design MoVNect, a lightweight 3D human pose

estimation model that can run in real-time on hardware

with limited resources such as smartphones.

• We propose a method to efficiently train lightweight

3D human pose estimation with teacher-student learn-

ing (Figure 1). The proposed method shows an ac-

curacy improvement of 14% than the vanilla training

method on the Human3.6M test set.

• The inference time of various methods on smartphones

is evaluated, and the feasibility of the proposed model

to be used on various hardware is verified.

• We develop a real-time mobile application of 3D avatar

with our proposed model to show the practicality of

our approach.

2. Related Works

In this section, we briefly discuss previous approaches

for 2D and 3D single human pose estimation using a single

RGB camera.

2.1. 2D Human Pose Estimation

Thanks to advances of deep neural networks, we observe

huge improvements on 2D human pose estimation in recent

years. Early approaches extracted features with CNN and

directly estimated the joint coordinates as numerical values

with fully-connected layers [22, 43].

Later, the heatmap regression-based method [6], which

fully utilizes the spatial context information of the im-

age, was proposed. In this method, a network estimates a

heatmap of each joint and indicates the location of joints

with the point of the maximum value of each heatmap.

Since this method is more accurate than the direct re-

gression method, it has been used in most subsequent ap-

proaches [9, 11, 12, 32, 39].

2.2. 3D Human Pose Estimation

3D human pose estimation is more challenging than 2D

estimation because it is an inherently under-constrained

problem that requires estimating z-axis information not in-

cluded in two-dimensional images. Some early approaches

used physics priors [1, 44] or semiautomatic analysis-by-

synthesis fitting of parametric body models [16, 21]. 3D

pose estimation has also been progressed drastically since

the utilization of CNN. Most studies have attempted to solve

the problem in two steps: (1) first estimate 2D joints, and

then (2) lift the estimated value into 3D. There have been

attempts to convert 2D joint coordinates into 3D coordi-

nates [26, 28, 36, 41]. This method is easy to implement,

however, the accuracy of 3D output highly depends on the

result of the 2D joint prediction. Furthermore, because this

method does not utilize the spatial information of CNN lay-

ers’ outputs, the network has low generalization ability.

Recently, some researches try to combine the two steps.

3D pose estimation methods using volumetric heatmap re-

gression were proposed [27, 34, 35]. However, volumetric

heatmaps consumes a lot of memory. To address this is-

sue, a method with stepwise depth resolution increase [35]

and a soft-argmax based method to find 3D coordinates in

low-resolution heatmaps [27] have been proposed.

The current state-of-the-art methods utilize multi-view

geometry to train or inference the network [20, 25]. These

methods achieve accurate pose estimation, however, it re-

quires a lot of computation and memory to process multi-

view images.

Another method regresses location maps where each

pixel contains an estimate of a particular coordinates value

[31]. Because this method uses a two-dimensional location

map, it has efficient memory usage and relatively low com-

putational cost, allowing it to run in real-time on a high-end

personal computer. Since these features are suitable for our

goal, our approach is designed to be based on this method.

2.3. Knowledge Distillation

Knowledge distillation is to transfer the information be-

tween different networks with distinct capacities [3, 4, 17].

The main idea of knowledge distillation is to apply extra su-
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Figure 2. Network structure of MoVNect: a single RGB image is fed into the base network (MobileNetV2 till block12), and pointwise

and depthwise CNN based structures are used for efficient feature extraction. The intermediate features, ∆X , ∆Y , and ∆Z, are used for

bone length-features, auxiliary cue to estimate root-relative 3D human pose. The network predicts heatmaps H and root-relative 3D joint

location maps X,Y, Z.

pervision using the teacher model in class probabilities [17],

feature representations [3, 37], or inter-layer flows [46]. It

is used for efficient training of small networks difficult to

train using large networks, relatively easy to train [37]. Hin-

ton et al. successfully transferred the knowledge of a large

network to a small network [17]. In addition, methods for

online-based distillation [15, 48] are proposed and achieve

more effective optimization than previous offline methods.

Recently, there are initial attempts to expand knowledge

distillation from classification problems to human pose es-

timation. The initial attempt estimates human pose using

radio signals [49]. In addition, a method to train an ef-

ficient lightweight 2D pose estimation model by knowl-

edge transfer of joint heatmaps [47] is proposed and shows

significant performance improvement. Although previous

methods show that knowledge distillation can be applied

not only to category-level discriminate knowledge but also

human pose estimation [47, 49], these methods are limited

to 2D human pose estimation. In this work, we propose

a knowledge transfer method for 3D human pose networks

using teacher-student learning. We also design MoVNect,

a lightweight 3D human pose estimation network with the

proposed method. Our lightweight model trained with effi-

cient training method enables accurate pose estimation with

very low computation, which can operate on devices with

low processing power.

3. MoVNect: Lightweight 3D Human Pose Es-

timation Network

In 3D human pose estimation, we estimate the 3D pose

P 3D from a given RGB image I . P 3D ∈ R3×J repre-

sents the root-relative 3D positions of the J body joints.

We assume our network runs on low power devices (e.g.

smartphone, embedded system). Therefore, the network es-

timates 15 joints (J = 15), a minimum requirement for the

motion of 3D full-body characters.

3.1. CNN based 3D Pose Regression Network Ar­
chitecture

Among previous 3D estimation approaches, the model

proposed by Mehta et al. [31] has a good balance between

accuracy and inference time. It is easy to apply knowledge

distillation because the location map used in the model is

2D spatial information similar to the 2D heatmap. There-

fore, we design a lightweight network architecture based

on Mehta et al’s approach [31] with the model search pro-

cedure (session 4.3) as shown in Figure 2. Our network

produces the heatmaps and location maps for all joints

j ∈ 1..J . We use the till of block 12 of MobileNetV2 [38]

as the base network and adopt additional depthwise CNN

layers for efficient computation. We add the bone length-

features to the network for an explicit clue to guide the pre-

diction of root-relative location maps as:

BLj = |∆Xj |+ |∆Yj |+ |∆Zj |

∆Xj , ∆Yj , and ∆Zj are intermediate features from our

network. For efficient calculation, bone length-features are

calculated using L1 distance instead of L2 distance-based

equation proposed by Mehta et al. [31]. The calculated

features are concatenated with other intermediate features

and utilized to calculate the final output.

Inference: we use cropped images based on the person’s

bounding box when training our network. This makes our

network performance affected by the size of the image at

runtime. To address this issue while maintaining a real time

processing on mobile devices, we acquire a bounding box

based on the human keypoint K, found in the initial few

frames of 2D heatmaps with a buffer area 0.2× the height

vertically and 0.4× the width horizontally. We then track
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it continuously using previous frames with a momentum of

0.75. To normalize scale, a cropped image based on the

bounding box is resized to 256×256 and used as an input to

the network.

3.2. Extra Supervision based on Teacher­Student
Learning

A brief outline of the proposed training method is shown

in Figure 1. Most previous approaches with knowledge dis-

tillation are designed for object classification with softmax

cross-entropy loss [3, 17] and not suitable to transfer pose

knowledge. We design mimicry loss functions for 3D pose

knowledge transfer based on the method of Zhang et al.

[47]. The network is trained with heatmap loss function

LHM and location map loss function LLM as

LHM =
1

J

J
∑

j=1

{α||Hj −HGT
j ||2 + (1− α)||Hj −HT

j ||2}

LLM =

J
∑

j=1

{α||HGT
j ⊙ (Lj − LGT

j )||2

+ (1− α)||HGT
j ⊙ (Lj − LT

j )||2}

where Hj and HGT
j specify the heatmaps for the jth

joint predicted by the model and ground truth, respectively.

⊙ is the Hadamard product and Lj specify the location

maps for the jth joint predicted by the model . GT and

T indicate ground truth and predicted results by the teacher

model, respectively. α is the blending factor between the

ground truth and teacher models loss terms and set to 0.5.

The teacher-student learning is conducted in each mini-

batch and throughout the entire training process. After the

training, we only use the student model, already learned

with the teachers knowledge.

3.3. Post­processing

Our model performs CNN based per-frame pose estima-

tion, which leads to a small jitter, an unacceptable artifact in

graphics applications. To reduce this temporal jittering, we

apply the 1 Euro filter [8] to the predicted 2D keypoint and

use the filtered keypoint K to refer to the value of the lo-

cation map. The acquired 3D pose is also filtered to reduce

the temporal noise of the prediction results of the continu-

ous images.

The root-relative 3D pose acquired from the cropped im-

age with the bounding box loses the global position infor-

mation. To restore the global position P 3D
G , we use the fol-

lowing simple but effective global pose estimation equation

[29]

Figure 3. 3D character control. The processed output can be easily

utilized for handling a virtual avatar.

P 3D
G =

√

∑J

1 ||P j

[xy] − P [xy]||2
√

∑J

1 ||Kj −K||2





K [x]

K [y]

f



−





P [x]

P [y]

0





where P and K are the 3D, 2D mean over all joints.

P[xy] is the x, y part of P 3D and single subscripts indicate

the particular elements. f is the focal length of the camera.

Since predicted 3D pose is the root-relative 3D position

of each joint, it cannot be applied directly for character an-

imations. Hence, inverse kinematics are applied to convert

the 3D position of each joint into the orientation and these

orientation values are also filtered with the 1 Euro filter [8].

In addition, since our model does not have explicit

knowledge of the joint angle limits of the human body, our

network does not explicitly decline physically invalid poses.

To address this problem, we apply the anatomical joint ro-

tation limits to the calculated angles of each joint to ensure

bio-mechanical plausibility. Through the post processing,

our approach exports data directly in a format suitable to

3D character control in real-time as shown in Figure 3.

4. Experiments

4.1. Experiment Setup

We evaluate our model using two measurements:

Accuracy: To measure the accuracy of the model, we

use the Human3.6M [19] dataset, currently the largest 3D

pose dataset. This dataset contains 15 actions performed

by 11 subjects. We employ the commonly used evaluation

protocol #1: subject 1, 5, 6, 7, and 8 for training and subject
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9 and 11 for testing. Mean Per Joint Position Error (MPJPE)

is calculated with the root-relative 3D joint positions from

our network.

Inference Time: To confirm the applicability of the pro-

posed lightweight model in the actual mobile environment,

we measure inference time on smartphone devices (Apple

iPhone series) with a variety of computing hardware spec-

ifications (CPU, GPU, NPU). We use the Apple Core ML3

framework to convert neural network models to mobile ones

and to run these models on the smartphone.

4.2. Training Details

Since most 3D human pose datasets consist of indoor

images only, the network, trained with only the existing

3D pose dataset, has a lack of generalizability for in-the-

wild scenes. Therefore, following Mehta et al.’s method

[29], we first pre-train the 2D pose estimation using LSP

[23] and MPII datasets [2], and train the 3D pose es-

timation through Human3.6M [19] and MPI-INF-3DHP

[29] datasets. Frames of 3D datasets are sampled with at

least one joint movement by >200mm between them and

cropped using the bounding box of the person. For the MPI-

INF-3DHP dataset, the background augmentation is per-

formed using the Places365 dataset [50], and finally 95k of

MPI-INF-3DHP training samples and 100k of Human3.6M

training samples are prepared.

We use the Keras [10] framework with the TensorFlow

backend for training the network. Some random scaling

(0.7-1.0) and gamma correction are performed on training.

RMSProp optimization algorithm [42] with learning rate to

2.5 × 10−4 is used for 2D pose training and Adam opti-

mization algorithm [24] with the same learning rate is used

for 3D pose training. Mini-batch size is set to 4. We use

the pre-trained base network with ImageNet [13] and batch

normalization [18] before each non-linear activation.

4.3. Model Search

Network Network Structure Upsampling Method

Block13 a Block13 b

Type A 368, 368, 256 192, 192, 128 Bilinear + Conv2D

Type B 368, 368, 256 192, 192, 128 TransposedConv2D

Type C 512, 512, 512 256, 256, 128 Bilinear + Conv2D

Table 1. Specification for our prototype MoVNect models. Se-

quential numbers on Network Structure column denote the number

of CNN layers, which make up each block.

To find a suitable model, which has a good balance be-

tween accuracy and inference time, we design and train var-

ious types (Type A, B, C) of models that have a different

number of layers on Block13 a, Block13 b, and upsam-

pling method (Bilinear upsampling + Convolution, Trans-

3https://developer.apple.com/documentation/coreml

posed Convolution). See Table 1 for specification of our

prototype MoVNect networks.

Network Network Structure # Param MPJPE

Block13 a Block13 b

Type A 368, 368, 256 192, 192, 128 1.03M 113.3

Type C 512, 512, 512 256, 256, 128 2.69M 108.2

Table 2. Performance analysis with the number of layers. Metric:

average MPJPE(mm). M:106.

First, we measure the performance and inference time

correlation with the number of layers. we design MoVNect-

Small (Type A), MoVNect-Large (Type C) and measure the

average MPJPE on the test set of Human3.6M as shown in

Table 2. Because of the deep neural network’s suboptimal

trade-off between the representation capability and the com-

putational cost, Type C has no significant improvement in

accuracy (about 5mm improvement), even though the num-

ber of parameters in the network is twice that of Type A.

Network Upsampling Method # Param MPJPE

Type A Bilinear + Conv2D 1.03M 113.3

Type B TransposedConv2D 1.13M 126.7
Table 3. Performance analysis with upsampling methods. Metric:

average MPJPE(mm). M:106

Next, we measure the change in accuracy according to

the upsampling method which increases the resolution of

the network output. As shown in Table 3, we compare Type

A and Type B, which use bilinear upsampling with con-

volution and transposed convolution, respectively. Accord-

ing to the results, although transposed convolution method

(Type B) requires more parameters, accuracy was lower

than resize-convolution method (Type A). We presume that

while transposed convolution method has a unique entry for

each output window, resize-convolution method is implic-

itly weighted in a way that it reduces the high frequency

artifacts. Based on these results, we finally choose Type A

network for MoVNect.

5. Results

5.1. Accuracy Results on Human3.6M Dataset

Our results on Human3.6M are shown in Table 4. Our

model shows competitive accuracy compared with other

methods. In particular, the model trained with teacher-

student learning (marked with †) shows significantly im-

proved accuracy (14% average MPJPE reduction). Even

though our model consists of a very small number of pa-

rameters, it has cost-effective accuracy. These results show

that our proposed training approach has good generaliza-

tion capability in yielding cost-efficient 3D pose estimation

models.

We compare the computation amounts of networks in Ta-

ble 5 (see column 2). Compared with the teacher model
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Methods Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg. # Param

Zhou et al.[51] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0 -

Du et al.[14] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 1120.0 117.7 137.4 99.3 106.5 126.5 -

Park et al.[33]. 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3 -

Mehta et al.[29] 52.6 63.8 55.4 62.3 71.8 52.6 72.2 86.2 120.6 66.0 79.8 64.0 48.9 76.8 53.7 68.6 -

Martinez et al.[28] w/ SH 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9 19.3M

Mehta et al.[31] 62.6 78.1 63.4 72.5 88.3 63.1 74.8 106.6 138.7 78.8 93.8 73.9 55.8 82.0 59.6 80.5 14.6M

Pavlakos et al.[34] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2 -

Yang et al.[45] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6 -

Kocabas et al.[25] - - - - - - - - - - - - - - - 51.8 34M

Ours 80.6 96.3 92.2 90.4 116.1 82.1 110.9 188.4 224.6 106.9 123.2 98.9 90.4 117.3 80.5 113.3 1.03M

Ours† 72.4 83.4 76.9 82.1 101.9 70.4 91.8 156.5 193.0 92.8 108.4 85.1 76.8 97.2 70.5 97.3 (14%↓) 1.03M

Table 4. Results of our network’s raw CNN predictions. All frames of subject 9 and 11, cropped with the ground truth bounding box, were

used for evaluation. † means the model trained with the proposed teacher-student learning method. Metric: MPJPE(mm). M:106.

Methods Cost-Effectiveness Inference Time on Devices

MPJPE # Param FLOPS iPhone7 iPhone 8 iPhone X iPhone XS

CPU GPU CPU GPU CPU GPU NPU CPU GPU NPU

Mehta et al.[31] 80.5 14.6M 7.3M 275 175 215 140 270 120 120 200 110 17

Martinez et al.[28] w/ SH 62.9 19.3M 22M 750 200 300 160 350 160 160 270 120 20

Kocabas et al.[25] 51.8 34M 14M 500 220 210 210 230 160 160 200 125 50

Ours 97.3 1.03M 1.35M 48 56 40 33 37 28 28 32 22 6

Table 5. Comparison of networks’ cost-effectiveness and inference time on mobile devices with various hardware configurations. Metrics:

average MPJPE(mm), the number of parameters, FLOPS, and average inference time(ms). M:106.

[31], our model only requires 7.1% (1.03M / 14.6M) pa-

rameters and 18.5% (1.35M / 7.3M) computational amount

but achieves 82.7% (97.3 / 80.5) accuracy in average

MPJPE. When compared with the best performer [25],

our model with 3% (1.03M / 34M) parameters and 9.6%

(1.35M / 14M) computational amount achieves 53.2% (97.3

/ 51.8) accuracy. Our model with the proposed method has

cost-effectiveness advantages over other alternative mod-

els. Note that we apply the teacher-student learning method

without changing any network structure. Based on the re-

sults in Table 2, we presume that several times more param-

eters with additional layers are required to overcome the

performance gap without our teach-student learning. This

design choice is quite critical and inevitable in real-time ap-

plications.

In Figure 4, we show qualitative results on Human3.6M

and MPII datasets to demonstrate the generalization of our

network to general scenes.

5.2. Inference Time Benchmark Results on Mobile
Devices

Table 5 (see column 3) shows the inference time bench-

mark results on mobile devices. Throughout all the devices

we test, our models inference time outperforms other net-

works. Even with low-end devices (iPhone 7 with CPU),

our model runs out over 20fps and with high-end devices

(iPhone XS with NPU), the throughput reaches over 160fps.

Note that except our model, which has low FLOPS and

memory consumption, there is no other method that can per-

form over 10fps on CPU and GPU. Compared to Mehta et

al.s model [31], which is used as the teacher model, our

model performs at least 283% (iPhone XS with NPU) and

up to 730% (iPhone X with CPU) faster throughput. Com-

pared to the best performer [25], our model shows at least

393% (iPhone 7 with GPU) and up to 1042% (iPhone 7 with

CPU) faster inference time.

As the device processing power increases, the difference

in throughput between networks decreases. In particular, in

the case of utilizing a dedicated neural network accelerator

such as NPU, all models of the comparison group are able

to process more than 20 fps. However, different from other

networks, our network does not have a huge gap across dif-

ferent processing unit types. Hence, if the model inference

is done by CPU in low-end devices and by NPU in high-end

devices, the GPU could be fully utilized for graphic ren-

dering, and this is a great advantage for CG applications.

Furthermore, most users do not have smartphones equipped

with a dedicated processor for neural networks. Our pro-

posed approach is expected to contribute to the spread of

deep learning-based interactive applications until high-end

devices are deployed broadly.

5.3. Applications

Our proposed network can be applied for various inter-

active mobile applications because it can provide motion

data in a format suitable to 3D avatar control in real-time

on mobile devices. In addition, since our network has low

inference time, enough times remains for CG rendering for

the application.

Augmented and Virtual Reality: Smartphone, which

has built-in camera, inertial measurement unit sensor, and

display, is the best portable device for AR and VR appli-
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Figure 4. Qualitative results on the test set of Human3.6M(3D) and MPII(2D) datasets. Left: the input images; Right: the results of 3D

pose prediction from a different viewpoint, the black skeleton is the ground truth of the Human3.6M dataset.

cations. Our method enables applications that provide the

user with immersive content through a virtual avatar of the

user exactly mimicking the user’s real pose using a single

RGB camera as shown in Figure 5. It also enables a real

time interaction in body gesture capturing applications.

Motion Capture Simply Accessible: Our lightweight

network can be used in a variety of devices that have low-

computation power. Without communication with a high-

performance server for processing algorithms, the network

can be deployed and run directly on various mobile IoT de-

vices in our daily life and can be applied in various real-

life scenarios such as interactions with objects through body

gestures, healthcare, and so on. For example, our algorithm

can be used to recognize body language or to analyze walk-

ing postures of the elderly with common smart home de-

vices.

6. Discussion and Future Work

To the best of our knowledge, our training approach is

the first knowledge transferring method for 3D human pose

estimation networks. MoVNect achieves a well-balanced

performance between accuracy and inference time. Never-

theless, it still has certain limitations that can be addressed

in future work. In this paper, we transfer the knowledge to

the lightweight network based on the location map, thanks

to the similar output type to the 2D pose network. Further-

more, because the mimicry loss function is very simple, we

envision that we can easily apply our knowledge transfer

method to various 3D human pose networks.

We have focused on estimating the 3D pose of a single

person, which can run in real-time across various devices.

Currently, latest high-end smartphones tend to be equipped

with dedicated accelerators such as NPU. The proposed

fully-convolutional network could be scaled to multiple per-

sons if such devices have enough computational capacity.
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Figure 5. AR-based real time 3D avatar mobile application. Our

lightweight network can be utilized for interactive applications,

which provide immersive experiences to users.

To reduce the resource and power consumption, most

mobile deep learning frameworks do not fully support re-

current architectures. We also design our network based

on per-frame prediction and this may lead to some tem-

poral instability, similar to previous per-frame prediction

approaches. We believe that our post-processing method

should reduce temporal jitters enough to be usable and prac-

tical in various fields. Furthermore, in the near future, mo-

bile devices will have more processing power and we will

be able to expand per-frame to video processing levels using

a recurrent approach.

In addition, to reduce inference time, our network uses a

single scale of the cropped image. Processing each frame

inference with multiple scales of the image (scale-space

search) makes it difficult to guarantee real-time perfor-

mance on low power devices. For applications that require

a better accuracy for the pose, two different scales (like 0.7

and 1.0) of the cropped image can be used.

A few failure cases are illustrated in Figure 6. Our lo-

cation map-based approach relies on 2D heatmap detection

results and our lightweight model is not robust enough to

occlusion. As future work, we will apply a pose encoding-

decoding scheme [30], robust to occlusion, to our network.

Despite these limitations, we observe that our method pro-

poses an initial step in the direction of a training method for

efficient lightweight 3D motion capture.

Figure 6. Failure cases of our model. Left: knees are crossed be-

cause of body part occlusion. Right: the position of the right hand

is mislocated to the left hand because the right hand is occluded

with the extreme pose.

7. Conclusion

In this paper, we propose MoVNect, a lightweight 3D

human pose estimation model, and an efficient training

strategy based on teacher-student learning. We make the

step from existing 2D pose estimation with knowledge dis-

tillation to 3D pose estimation. Moreover, we present exten-

sive evaluations on human pose and inference time bench-

marks. Based on the results, we observe that our proposed

teacher-student learning method significantly improves the

accuracy of the model, and our network trained with the

proposed method achieves very fast inference time with rea-

sonable accuracy on various devices from low-end to high-

end. We demonstrate these advantages on real mobile de-

vices with an AR-based 3D avatar application. We hope

that this work would act as an ignition of efficient training

methods for lightweight neural networks in 3D human pose

estimation.
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