
Fourier Based Pre-Processing For Seeing Through Water

Jerin Geo James

IIT Bombay

jeringeo@cse.iitb.ac.in

Ajit Rajwade

IIT Bombay

ajitvr@cse.iitb.ac.in

Abstract

Consider a scene submerged underneath a fluctuating

water surface. Images of such a scene, when acquired from

a camera in the air, exhibit significant spatial distortions.

In this paper, we present a novel, computationally efficient

pre-processing algorithm to correct a significant amount

(≈ 50%) of apparent distortion present in video sequences

of such a scene. We demonstrate that when the partially

restored video output from this stage is given as input to

other methods, it significantly improves their performance.

This algorithm involves (i) tracking a small number N of

salient feature points across the T frames to yield point-

trajectories {qi , {(xit, yit)}Tt=1}Ni=1, and (ii) using the

point-trajectories to infer the deformations at other non-

tracked points in every frame. A Fourier decomposition

of the N trajectories, followed by a novel Fourier phase-

interpolation step, is used to infer deformations at all other

points. Our method exploits the inherent spatio-temporal

characteristics of the fluctuating water surface to correct

non-rigid deformations to a very large extent.

The source code, datasets and supplemental material can

be accessed at [1], [2].

1. Introduction

In most computer vision applications, the scene being

imaged and the imaging sensor (camera) are both located

in the same medium (usually air). However there are some

applications, where the scene could be located in water but

imaged by a camera in the air [16], or vice-versa [3]. In such

cases, the images acquired by the camera contain prominent

spatial distortions due to the refraction that occurs at the

boundary between the two media. Moreover, the water-air

boundary can dynamically change its geometry due to ex-

ternal forces such as wind, yielding a dynamic nature to the

refraction phenomenon resulting in time-varying non-rigid

distortion. Such distortion can adversely affect the perfor-

mance of typical computer vision algorithms for tracking

of objects, object or motion segmentation, object detection,

or object recognition. Such tasks arise in applications like

surveillance of marine life [12, 18], of shallow water-beds

[22], or in ornithological applications such as [14]. Hence,

there is motivation to develop algorithms to process the ac-

quired video sequences to remove the spatial distortions.

Previous work in underwater image restoration: This

particular problem is relatively unexplored, with only a

small-sized body of literature. A large subset of this litera-

ture uses some form of optical flow estimation. For exam-

ple, the classical work in [16] estimates dense optical flow

from one frame to another, to trace dense point trajectories.

The restoration is performed by undoing the displacements

estimated w.r.t. the centroid of the point trajectory at each

point. On the other hand, the work in [17] estimates the

non-rigid deformation between each frame of the video se-

quence with an evolving latent image, initialized to be sim-

ply the average of all distorted frames. In similar spirit, the

work in [11] aligns all video frames to a reference, which

is selected to be the least blurred frame. The work in [21]

uses PCA to infer a low-rank dictionary to represent non-

rigid motion fields. The dictionary is trained on simulated

underwater scenes generated by executing the wave equa-

tion. The deformation estimation proceeds by first inferring

dictionary coefficients.

There also exist approaches which are not pivoted on op-

tical flow. For example, the ‘lucky region approach’ from

[9], [24], [10] and [23] identifies distortion-free patches and

mosaics them using graph algorithms. The basic principle

is that such distortion-free patches correspond directly to a

locally flat portion of the water surface. The technique in

[20] frames the restoration problem as a blind deblurring

problem, with the average of all video frames used as input.

The core theory is that if the water surface is a unidirectional

cyclic wave, then the motion blurred average frame can be

represented as the convolution of a single blur kernel with

a latent clean image. The work in [15] trains a deep neural

network to restore single distorted underwater images (not

entire video sequences) by inferring the motion field w.r.t.

an unknown clean image automatically. In [13], a set of

salient feature points are tracked, and the deformation field

is obtained using a compressive sensing framework, by ex-

ploiting the Fourier-sparsity of the latent deformation fields.
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Overview: In this paper, we present a novel method us-

ing simple principles of physics and geometry that exploits

the inherent spatio-temporal redundancy of water waves.

We model the water surface to be dominantly a superpo-

sition of constant-velocity waves, in addition to small lo-

cal disturbances that get quickly attenuated. This is a very

general and widely applicable model. A specific form of

this model has been used in [16], in the form of a super-

position of sinusoidal waves. The model in this paper is

more general than that in [16]. In our method, we track

some N salient feature points across the T video frames to

yield point-trajectories {qi , {(xit, yit)}Tt=1}Ni=1. The de-

formations at all other points in every frame are then inter-

polated in a novel manner. The deformation-interpolation

is performed using a Fourier decomposition of the so-called

‘displacement-trajectories’ derived from point-trajectories,

followed by a phase-interpolation step. We observe in real

video sequences, that this step is able to correct for a very

large amount (≈ 50%) of the undesired motion. Extensive

comparisons on real videos show that our method is effi-

cient and advances the performance of the state of the art

methods.

Organization: The main theory (assumptions and al-

gorithm) for our method is explained in Section 2. The

datasets and experiments are described in Section 3, fol-

lowed by a discussion and conclusion in Section 4.

2. Assumptions and Main Algorithm

In this section, we begin by describing the main com-

putational task with greater precision and state the various

assumptions made.

2.1. Assumptions for Image Formation

We consider a stationary single-plane scene being im-

aged. We assume that the scene is present below a fluctu-

ating water surface which is shallow and devoid of turbid-

ity. A video sequence of the scene is acquired by a cam-

era which is located in air. The optical axis of the camera

is aimed vertically downwards at right angles to the plane

containing the scene. Each image (or video-frame) can then

be considered to be acquired under orthographic projec-

tion. The video-frames are assumed to be relatively free

of motion-blur as well as reflection artifacts off the water

surface. All these assumptions are valid in a practical setup,

as we shall demonstrate from our results on real acquisi-

tions in Section 3. These assumptions are also common in

existing literature such as in [21, 20, 16, 17], though [20] ex-

pressly models the motion blur for a specific unidirectional

wave model. Let J̄ be the image acquired by the camera

if the water surface were perfectly still. Such an image is

devoid of spatial distortions. Now, the distorted image J of

the same scene acquired given a wavy water surface, can be

Figure 1. Refractive image formation at a wavy water surface

expressed in the form:

J(x̄, ȳ, t) = J̄(x̄+ dx(x̄, ȳ, t), ȳ + dy(x̄, ȳ, t)), (1)

where (dx(x̄, ȳ, t), dy(x̄, ȳ, t)) is the displacement at the

point (x̄, ȳ) located in the undistorted image J̄ , at time t.
Let z(x, y, t) be the dynamic height of the water surface at

time t, above the plane containing the scene. Let ( ∂z
∂x

, ∂z
∂y

)
be the height-field derivatives at time t, at point Q on the

water surface, seen in the ray diagram in Fig.1. Q is the

point on the water surface where the ray from point B in

the water gets refracted into the air and forms an image at

point (x, y) on the camera plane at time t, even though the

undistorted coordinates are (x̄, ȳ). Let µ be the refractive

index of water. Then prior work [16] has proved that:

(dx(x̄, ȳ, t), dy(x̄, ȳ, t)) = h(1− 1/µ)
( ∂z
∂x

, ∂z
∂y

)
√
1 + z2x + z2y

(2)

≈ h(1− 1/µ)(
∂z

∂x
,
∂z

∂y
), (3)

where the approximation is valid if ( ∂z
∂x

)2 + ( ∂z
∂y

)2 ≪ 1,

i.e. for water waves with small slopes. The main task is to

obtain J̄(x̄, ȳ) for all (x̄, ȳ) with {J(:, :, t)}Tt=1 as input.

2.2. Water Surface Models

In our work, we model the wavy water surface domi-

nantly as a mixture of K constant-velocity unidirectional

waves. This is common in situations where waves are gen-

erated by more than one disturbance to the still water sur-

face. In addition, the water surface may have small local

residual motion that cannot be easily modelled. Such resid-

ual motion is expected to be corrected after our Fourier-

based pre-processing stage from Alg. 1. Mathematically,

the dominant functional form we have is:

z(x, y, t) =

K∑

k=1

αkgk(ωtkt+ ωxkx+ ωyky + ζk), (4)

where αk is the amplitude of the kth wave, ωtk, ωxk, ωyk

stand for its frequency in the t, x, y axes respectively, and ζk
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stands for a constant phase-lag. The functions {gk}Kk=1
are

any periodic (not necessarily sinusoidal), real-valued and

differentiable functions, and they may or may not have the

same functional form as each other. Our method does not

require any estimate or prior knowledge of K.

2.3. Main Algorithm

Our algorithm consists of many different steps described

in the following sub-sections, presented together in Alg. 1.

The guiding principle behind it can be described as follows.

If the water surface consisted of a single periodic wave,

then all point-trajectories (defined precisely below) would

be cyclic shifts of one another. Due to this, the phase of

their Fourier transforms would form a single plane as de-

fined in Eqn.6. Given just a few salient point trajectories,

this property can be used to estimate the motion at all other

(non-tracked points), and hence remove the undesired ap-

parent motion in the video frames. On the other hand, if

the water surface is the superposition of K different waves,

then a similar approach can still be used provided the K
waves have disjoint supports in the Fourier domain. If their

supports are not disjoint (referred to as ‘conflating frequen-

cies’), then additional motion correction needs to be per-

formed using typical optical flow methods. In either case,

such a Fourier-based method acts as a very efficient pre-

processing step to quickly reduce a large percentage of the

apparent distortion.

2.3.1 Salient feature point tracking

Similar to the technique in [13], the first step of our

method consists of tracking N salient feature points from

the first frame, to yield so-called point-trajectories {qi ,

{(xit, yit)}Tt=1}Ni=1. The coordinates (xit, yit) represent the

position in frame t of the ith point whose (initially unknown)

coordinates in the distortion-free image J̄ are denoted as

(x̄i, ȳi). For salient feature point detection, we rely on a

method based on Difference of Gaussians (DoG) used by

SURF[5]. While more sophisticated methods exist [4], they

are not deemed essential, as we are interested in just a mod-

erate number N ∼ 100 of such points. Any salient point

(xi1, yi1) detected in the first frame was tracked in subse-

quent frames using the well-known KLT tracker. A few

examples of point tracking on real sequences are shown

in the supplemental material folder ‘Motion Reduction’.

While there clearly exist many more advanced tracking al-

gorithms, we noted that the KLT tracker was sufficient for

this application.

2.3.2 Computing displacement trajectories

Each point-trajectory qi corresponds to the unknown

point (x̄i, ȳi) in J̄ . We approximate (x̄i, ȳi) by x̃i ≈

Figure 2. Scatter plot of phases (vs. X,Y) estimated from dif-

ferent displacement trajectories from a real video (‘Dices’), and

RANSAC-based plane fit. This shows the shift-plane property

(phase factor versus x, y) and lack of it (top right sub-figure) for

four different frequencies.

∑T
t=1

xit/T, ỹi ≈
∑T

t=1
yit/T . Although this is an ap-

proximation, it is well justified by the assumption that

the average of the surface normals (zx(x, y, t), zy(x, y, t))
across time at any point (x, y) on the water surface, is close

to the vertical line (0, 0, 1) [16]. This is sometimes called

the Cox-Munk law [8]. Our experiments with synthetic and

real video sequences confirm its validity for even as less as

T ∼ 50 frames. This is partly conveyed by Fig.4, where

the image quality metric saturates after T ∼ 50 frames.

Also, an example illustrating the convergence of (x̄i, ȳi) is

included in the supplemental material. With this, our set of

displacements for the ith salient feature point are given as

di , (dix,diy) , {(xit− x̃i, yit− ỹi)}Tt=1. We term these

as ‘displacement-trajectories’, just as in [13].

2.3.3 Fourier decomposition

First, let us consider the case of a single wave, i.e. K = 1 in

Eqn.4, and z(x, y, t) = α1g1(ωt1t+ωx1x+ωy1y+ζ1). We

will soon generalize to the case when K > 1. The displace-

ments di across time at any point (x̄i, ȳi) turn out to form a

cyclic sequence. This can be understood from Eqn.3 (with

or without the small-wave approximation) given the cyclic

nature of z. Hence, the respective displacement-trajectories

di and dj at any two points (x̄i, ȳi) and (x̄j , ȳj), i 6= j,

are cyclic shifts (in time) of each other. This shift is equal

to the effective distance between the two points covered by

the wave, i.e. (x̄i − x̄j , ȳi − ȳj) · (ω̂x1, ω̂y1), divided by

the wave velocity 2π

T
√

ω2

x1
+ω2

y1

. Here (ω̂x1, ω̂y1) is the unit-

norm direction vector of the wave. Since the wave velocity
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is constant, by the Fourier shift theorem we have

F [dix](u) = exp
(
− ι2πu(a∆x,i,j + b∆y,i,j)

T

)
F [djx](u),

(5)

and likewise for diy,djy with the same phase factor. Here

u is the frequency, ∆x,i,j , x̄j − x̄i, ∆y,i,j , ȳj − ȳi,

ι ,
√
−1, F is the 1D Fourier operator (applied inde-

pendently for x and y components), and (a, b) are con-

stants independent of t, x, y but directly proportional to

(ωx1, ωy1). Hence the Fourier domain phase shifts between

di and dj at frequency u are given as: φu,j − φu,i =(
2πu(a∆x,i,j + b∆y,i,j)/T

)
%2π, where % represents the

remainder after division (mod). From this expression, we

see that the phase factors of the displacement-trajectories dj

for all j ∈ {1, ..., N} form a plane of the following form:

φu,j =
(
2πu(ax̄j + bȳj + c)/T

)
%2π. (6)

The unknown parameters are (a, b, c) where c is a constant

offset, φu,j is the dependent variable, and x̄j , ȳj are inde-

pendent variables. We hereafter refer to this as the shift-

plane property, illustrated in the Fig.2 for the K > 1 case

(see also Sec. 2.3.5). Although we refer to it as a plane,

it is strictly speaking a small number of parallel planes,

due to the % operator in Eqn.6. Given N ≥ 3 points, the

plane parameters can be estimated using a least squares fit

that minimizes
∑N

j=1,j 6=i

∑T−1

u=0

(
φu,j −

(
2πu(ax̄j + bȳj +

c)/T
)
%2π

)2
. Of course, one usually prefers a larger N as

well as a RANSAC-based robust plane fit to handle errors

in the displacement-trajectories (that may arise due to errors

in point-trajectories). Given the estimates of a, b, c, we can

obtain the displacement-trajectory at any point (x̄m, ȳm) in

the image domain, including points which were not tracked,

by (i) using Eqn.6 to find φu,m, and (ii) using Eqn.5 to de-

termine dm treating dj as reference, without loss of gen-

erality. Thus, our algorithm makes use of inherent spatio-

temporal properties of water waves to interpolate the de-

formation field for the whole image, starting with a small

number of point-trajectories. In contrast, standard optical

flow algorithms are not designed to exploit this information

and only use local spatial regularizers of different types, or

(much less commonly) local temporal regularization as well

[6]. However, our method uses global properties of the wa-

ter waves. A sample result of our technique on a synthetic

single wave dataset is shown in the supplemental material.

This geometric treatment however is no longer applicable

when K > 1, which is the more general model. In such a

case, even though the displacement-trajectories caused due

to constituent waves are shifted versions of each other, the

superimposed displacement-trajectories are no longer shifts

of each other. That is, the shift-plane property is violated.

To deal with this issue, we perform a Fourier decomposition

of each displacement-trajectory di, given as follows:

dix =

T−1∑

u=0

βu,i,xfu;diy =

T−1∑

u=0

βu,i,yfu, (7)

where fu is the T × 1 Fourier basis vector at frequency

u, and βu,i,x = |βu,i,x|∠φu,i, βu,i,y = |βu,i,y|∠φu,i are

the corresponding complex-valued (scalar) Fourier coeffi-

cients1. Note that all K constituent waves in Eqn.4 con-

tribute to βu,i,x, βu,i,y for any u, i. Now consider the ideal

case when the dominant Fourier components of the K con-

stituent waves in Eqn.4 have disjoint support in the fre-

quency domain. In such a setting, all the supports will obey

shift-plane property. Hence, given a frequency u, only one

of the K waves (say the lth wave) has a significant contribu-

tion to βu,i,x, βu,i,y and other waves have a relatively minor

contribution. For a different frequency ũ, some other wave

(say the l̃th wave) could be the sole major contributor. We

term this the ‘Fourier separation’ property (FSP). For any

given u, the signals {βu,i,xfu}Ni=1 denote the contribution

of frequency u, i.e. dominantly only one of the K waves, to

dix (likewise for y). As per FSP, for a fixed u, each of these

signals are shifted versions of each other, on the lines of the

K = 1 formulation. Hence the phase factors {φu,i}Ni=1 of

the Fourier coefficients {(βu,i,x, βu,i,y)}Ni=1 lie close to a

planar surface of the following form:

φu,i = (2πu(aux̄i + buȳi + cu)/T )%2π, (8)

with unknown plane parameters au, bu, cu. For differ-

ent frequencies, the phase factors will lie close to differ-

ent planar surfaces (hence the subscript u in the parame-

ters au, bu, cu). The parameters can be determined using

RANSAC as explained before. Also due to FSP, the val-

ues {|βu,i,x|}Ni=1 (i.e. the magnitudes of the Fourier coeffi-

cients) are all equal, and can be denoted as |βu,x| (likewise

for y). In practice, we computed a median value.

2.3.4 Motion correction

For motion correction, first the plane parameters au, bu, cu
are obtained for every u. However for computational effi-

ciency, this is done only for those frequencies that account

for 99% of the signal energy. In our experiments, we found

that a set S of just about 15-20 frequencies (out of T/2)

sufficed for this. Thereafter for every non-tracked point

(x̄m, ȳm), we compute φu,m from Eqn.8. Armed with this,

the complete trajectory dm can be approximated as follows:

dm,x =
∑

u∈S

|βux|∠φu,mfu;dm,y =
∑

u∈S

|βuy|∠φu,mfu.

(9)

1Note that βu,i,x, βu,i,y have the same phase (cf Eqns. 5, 6) and pos-

sibly different magnitudes.
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Note that we drop the subscript m in the magnitude of

the Fourier coefficient |βux|, |βuy|, for reasons explained in

Sec. 2.3.3. In this manner, using the special spatio-temporal

properties of water waves, the displacement-trajectories at

all points in the image domain can be interpolated.

2.3.5 Handling conflating frequencies

Our algorithm is able to accurately estimate the

displacement-trajectories at all pixels in the image do-

main from a small set of salient feature point-trajectories,

if the FSP is indeed true. However there can certainly arise

cases where two or more constituent waves have partly

overlapping dominant supports in the Fourier domain.

In such a case, there will be a subset of frequencies

Cf from {0, 1, ..., T − 1} at which the aforementioned

phase-shifts will not form a plane - see Fig.2 for a com-

parison. To detect such ‘conflating frequencies’, we first

perform the least squares plane fit for each frequency

u on a subset T of {di}Ni=1. For each point (x̄j , ȳj) in

{1, ..., N}−T , the predicted partial displacement-trajectory

is du
j,x , fu|βux|∠φu,j (likewise for y). We consider u

to be a conflating frequency if du
j,x and du

j,y do not yield

a positive correlation with displacement-trajectories in

{dj}Nj=1 for most j ∈ {1, ..., N} − T .

If the K waves have some conflating frequencies, then

the initial motion correction step based on Eqn.9 has to be

modified. Instead, we find partial displacement-trajectories

for every pixel (x̄j , ȳj) as follows:

d̃j,x =
∑

u∈S−Cf

|βu,x|∠φu,jfu; d̃j,y =
∑

u∈S−Cf

|βu,y|∠φu,jfu.

(10)

These partial displacement-trajectories can be used to cor-

rect the deformations partially by simply applying the re-

verse deformation field to every frame. We have observed

that the partial displacement-trajectories (obtained via the

Fourier stage) account for ≈ 50% of the original motion in

a median sense. Details about the quantification of reduc-

tion in motion are explained in Sec. 3.2.1.

2.3.6 Comments about our algorithm

Our Fourier-based method acts as a geometrically- and

physically-motivated initial step for further distortion

removal by other techniques. As we shall further

demonstrate in Section 3, for videos with large mo-

tion, state of the art techniques by themselves are un-

able to yield results of the same quality without ini-

tial motion correction with the Fourier-based method.

Input : Distorted video J
Output: Restored image J̃

1 Track N feature points to obtain point-trajectories

{qi}Ni=1 as per Sec. 2.3.1.

2 Compute displacement trajectories {di}Ni=1 as per

Sec. 2.3.2.

3 For each di, compute Fourier decomposition as per

Eqn.7 as per Sec. 2.3.3.

4 For every u, perform RANSAC-based plane fitting to

the phase factors {φu,i}Ni=1 of the Fourier

coefficients from the previous step as per Eqn.8.

5 Identify non-conflating frequencies, and compute the

partial displacement-trajectories using Eqn.10 in Sec.

2.3.5.

6 Perform initial motion correction from the partial

trajectories to get an intermediate restored video.

7 Pass this partially restored video as input to other

methods, which will yield restored image J̃ .

Algorithm 1: Algorithm to Restore Video

Since the method uses RANSAC-based linear interpola-

tion, it is robust to the presence of moderate levels of out-

liers in the form of reflection or blur. This is because we are

able to interpolate the optical flow (at least partially) in all

such places based on physical wave properties. We note that

our algorithm does not break down even if the Fourier sep-

aration property is not obeyed for a few conflating frequen-

cies. This is because we are automatically able to detect the

conflating frequencies and do not use them for motion cor-

rection (Eqn.10). In such cases, we cannot obtain the full

deformation from Sec. 3.2.1 and Eqn.10.

It is to be noted that our method is very different from the

bispectral approach in [24] which chooses ‘lucky’ (i.e. least

distorted) patches, by comparing to a mean template. In that

method, the Fourier transform is computed locally on small

patches in the spatial domain for finding similarity with

corresponding patches from a mean image. On the other

hand, our Fourier decomposition is temporal. The idea of

dense optical flow interpolation (not specific to underwater

scenes) from a sparse set of feature point correspondences

has been proposed in the so-called EpicFlow technique [19].

The interpolation uses non-parametric kernel regression or

a locally affine method. However our method uses physi-

cal properties of water waves and also considers temporal

aspects of optical flow, which is missing in EpicFlow.

Lastly, our approach is also significantly different from

[13]. There the entire spatio-temporal displacement vec-

tor field, represented as a 3D complex valued signal

d(x, y, t) = dx(x, y, t) + ιdy(x, y, t), is considered

Fourier-sparse and sampled by means of salient feature

point tracking. To be effective, it typically requires a larger

number of point-trajectories. On the other hand, our method

considers independent Fourier decompositions of individ-

113



Figure 3. Point-trajectories at four different salient points in a real

video sequence. As mentioned in 3.1, this verifies that the water

waves are not unidirectional

ual point- or displacement-trajectories, and can work with a

smaller number of trajectories.

3. Experimental Results

In this section, we present our results on two datasets of

real video sequences, gathered from different sources. All

image and video results are available in the supplemental

material.

3.1. Description of datasets

We demonstrate our algorithm on two sets of real video

sequences: Real1 initially used in [13], and Real2 initially

used in [21]. Real1 contains real video sequences (of size

∼ 700 × 512 × 101 with a 50 fps camera) of laminated

posters kept at the bottom of a water-tank in a ‘wave-flume’,

where waves were generated using paddles. The sequences

showed distortions that could not have emerged from sin-

gle cyclic waves. An example of this can be seen in Fig.3,

since the point trajectories at different salient features are

not cyclic shifts of each other. Real2 contains three video

sequences of size ∼ 300× 250× 101, acquired at 125 fps.

3.2. Description of parameters and comparisons

In all the datasets, we tracked around N = 256 salient

feature points. In rare cases, there were tracking errors lead-

ing to trajectory outliers. However, such outliers were fil-

tered out during the RANSAC-based plane fitting step. We

evaluate the performance using two measures (1) the re-

duction in the amount of non-rigid distortions after Fourier

stage and (2) improvement in recovered image quality

Figure 4. Effect of increase in number of frames T (top) and num-

ber of salient points N (bottom) on restoration performance for

Fourier method. Notice that the SSIM values get saturated after a

small T and N

(measured by SSIM and NMI) when Fourier method is used

as pre-processing step. Both these measures are explained

in the following subsections respectively.

3.2.1 Motion reduction

This quantity indicates the percentage of the distortion esti-

mated (and hence removed) by the Fourier stage. It is cal-

culated as follows: (i) The Fourier interpolation step is per-

formed using displacement trajectories at a set of N points

which we denote as P1. We obtain the displacement trajec-

tories at some N2 salient feature points, {dj}N2

j=1
at some

N2 salient feature points, which form a set P2 which is dis-

joint from P1. (ii) We estimate the displacement trajectories

{d̂j}N2

j=1
at locations in P2 using the Fourier model, per-

forming interpolation via Alg.1 from displacement trajecto-

ries at points only in P1 without using those in P2. Then,

we compute the measure of the motion reduction given
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FM LWB FM + LWB SBR FM+SBR

Time MR (%) NMI SSIM NMI SSIM NMI SSIM NMI SSIM NMI SSIM

Real1

Cartoon 1m 42s 54.91% 1.164 0.848 1.152 0.836 1.179 0.870 1.173 0.843 1.232 0.890

Checker 2m 3s 35.53% 1.166 0.809 1.105 0.660 1.164 0.845 1.158 0.791 1.186 0.824

Dices 1m 36s 47.65% 1.109 0.814 1.086 0.783 1.132 0.869 1.100 0.758 1.154 0.876

Bricks 1m 35s 54.56% 1.119 0.699 1.118 0.673 1.140 0.775 1.128 0.686 1.159 0.770

Elephant 1m 40s 44.70% 1.081 0.589 1.068 0.584 1.093 0.699 1.075 0.516 1.119 0.724

Eye 1m 41s 58.95% 1.203 0.915 1.155 0.903 1.209 0.940 1.179 0.913 1.265 0.941

Math 1m 22s 62.99% 1.106 0.816 1.067 0.766 1.141 0.885 1.100 0.841 1.163 0.857

Real2

Middle 1m 12s 40.03% 1.113 0.586 1.163 0.761 1.171 0.815 1.189 0.782 1.187 0.775

Small 0m 58s 29.47% 1.118 0.505 1.151 0.688 1.144 0.704 1.153 0.741 1.142 0.654

Tiny 1m 46s 10.05% 1.142 0.587 1.167 0.654 1.157 0.689 1.161 0.657 1.154 0.625
Table 1. Comparison of various methods on video sequences w.r.t. Running Time, Motion Reduction, NMI, SSIM. Higher SSIM and NMI

are better.

as MR , medianj∈{1,...,N2}‖d̂j − dj‖2/‖dj‖2. Hence,

this measure indicates how much of the original motion the

Fourier stage is able to predict.

3.2.2 Fourier method as pre-processing stage for other

methods

The Fourier Method (FM) predicts a significant amount

(≈ 50%) of non-rigid distortions, and hence acts as a de-

sirable pre-processing step before other algorithms for mo-

tion reduction can be used. We compare two state of the art

methods with and without our Fourier-based pre-processing

step, to demonstrate that in almost all cases, the Fourier-

based step significantly improves their performance. We

demonstrate these results on (1) the two-stage method in

[17] consisting of spline-based registration followed by Ro-

bust Principal Component Analysis[7] (SBR) which is con-

sidered state of the art for underwater image restoration; (2)

the method from [21] using learned water bases (LWB).

For quality assessment referring to ground truth, we used

the following measures: (i) visual inspection of the restored

video Jr as well as its mean-frame J̄r, (ii) normalized

mutual information (NMI) between J̄r and J̄ (grayscale),

where J̄ is the ground-truth image representing the undis-

torted static scene, and (iii) SSIM (grayscale) between J̄r
and J̄ . All the values were calculated after normalizing

the intensities of each image to the range [0, 1]. We did

not compare with [20] since it is modelled on unidirectional

wave motion assumption (whereas we assume more general

wave models), and due to unavailability of publicly released

code. Likewise, we did not compare with [11] due to un-

availability of publicly released code. We did not compare

with the deep-learning technique in [15], since it did not

perform well in comparison to SBR and LWB. This might

be because, the deep-learning technique is designed to do

restoration from a single distorted image and does not take

into account the extra temporal information available in the

video sequences. Please see Table.1 of [13] for the quanti-

tative comparison of [15] w.r.t SBR and LWB. We also did

not compare with [13] since it is based on the sparsity of the

motion vector field and reducing the magnitude of motion

does not alter it’s performance much.

3.3. Discussion of results

The numerical results are presented in Table 1. The mean

images (post-restoration) for a sample video, restored by

various methods, are presented in Fig.5. The supplemental

material contains results on 10 videos (videos and mean im-

ages post-restoration) for all methods. Also, Fig.6 higlights

local SSIM errors between the mean image produced by

restoration with various methods w.r.t. the ground truth im-

age. The SSIM Overlay Image is created in the following

manner 0.7 × RestoredImage + 0.3 × (1 − SSIM-Map) ×
Red-Color. Such a visualization highlights the low SSIM

regions with brighter shades of red color. The figure shows

that pre-processing the state of the art methods with Fourier

method reduced the structural dissimilarity of the restored

image w.r.t the ground truth. Our Fourier method was

able to achieve around ≈ 50% motion reduction in a me-

dian sense, as indicated by the MR column in the Table 1.

Also, the table further conveys that the Fourier based pre-

processing stage has increased the recovered image quality

for all videos for [21] and 7 out of 10 videos for [17]. Also,

in the 3 videos where Fourier did not perform well, preced-

ing SBR with FM improved the image quality at the cen-

tral regions. However, the overall SSIM value got reduced

due to artifacts at the borders. This can be observed in the

SSIM overlay images inside ’Collage MeanImages’ folder

in the supplemental material folder. 4 shows the variation in

SSIM wrt number of frames and number of tracked salient

feature points. It can be observed that both the plots attain

saturation after a small number of points. When it comes to
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Figure 5. Left to right, top to bottom: mean frame of the video

after restoration by the following methods: FM; LWB [21], FM

followed by LWB; SBR [17], FM followed by SBR. Zoom into

pdf for better view. Notice that geometric distortions in LWB and

SBR are corrected when those were preceded by Fourier method.

computational time, SBR and LWB take more than an hour

for a single video. As indicated in 1, Fourier based pre-

processing step just adds one and a half minutes on average

to the processing time and significantly improves the image

quality.

4. Conclusion

We have presented a novel method for removal of refrac-

tive distortions induced in images of scenes imaged from air

Figure 6. SSIM Overlay : For each of the two set of videos, Left

to right, top to bottom order: LWB, FM + LWB, SBR, FM+SBR.

More red implies more deviation of the restored image from the

ground truth. Notice that pre-processing by FM significantly re-

duces the dissimilarity with the ground truth. See supplemental

material for more results.

but situated underneath a fluctuating water surface, based

on a novel usage of Fourier decomposition for interpolat-

ing optical flow sequences starting from a very small set

of point-trajectories. We have demonstrated that the state

of the art methods can be significantly improved with this

computationally inexpensive pre-processing step.
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