
Image to Video Domain Adaptation Using Web Supervision

Andrew Kae

Yahoo Research

andrewkae@verizonmedia.com

Yale Song

Microsoft Research

yalesong@microsoft.com

Abstract

Training deep neural networks typically requires large

amounts of labeled data which may be scarce or expensive

to obtain for a particular target domain. As an alternative,

we can leverage webly-supervised data (i.e. results from

a public search engine) which are relatively plentiful but

may contain noisy results. In this work, we propose a novel

two-stage approach to learn a video classifier using webly-

supervised data. We argue that learning appearance fea-

tures and temporal features sequentially, rather than jointly,

is an easier optimization for this task. We show this by first

learning an image model from web images, which is used

to initialize and train a video model. Our model applies

domain adaptation to account for potential domain shift

present between the source domain (webly-supervised data)

and target domain, and also accounts for noise by adding

a novel attention component. We report results competi-

tive with state-of-the-art for webly-supervised approaches

(while simplifying the training process) on UCF-101 and

also evaluate on Kinetics for comparison.

1. Introduction

Action recognition in videos is a well-studied problem in

computer vision with many important applications in areas

such as surveillance, search, and human-computer interac-

tion. Modern approaches to video action recognition are

based on deep neural networks, which typically require a

large labeled dataset. However, it may be difficult to ob-

tain sufficient labeled data because it may be too scarce or

too expensive to obtain. We can instead leverage webly-

supervised data (i.e. results from a public search engine)

which are relatively plentiful but may be noisy.

In this paper, we present a webly-supervised approach to

learn video models based on noisy web images and videos.

The high-level overview of our model is shown in Figure 1.

The noisy web image and web video domains are consid-

ered source domains that we want to domain adapt into a

target domain. We present a two-stage approach to first

learn an image model using a 2D-CNN, transfer the learned
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Figure 1: Given webly-supervised images and videos

(source domains), we learn a video classifier for the tar-

get domain. The model is learned in a two-stage process

by 1) learning an image model (2D-CNN) and 2) transfer-

ring the spatial filters to the video model (3D-CNN) to con-

tinue training. The model also accounts for domain shift

and noise present in the webly-supervised data.

spatial weights to a 3D-CNN, and continue training a video

model. Since our goal is to learn a video classifier, we

can potentially learn from web videos only, but we argue

that our proposed two-stage process is more appropriate for

learning from noisy, webly-supervised data. Web images

are typically higher resolution while web videos are typ-

ically lower resolution and may contain motion blur and

other artifacts. In addition, web videos may contain many

frames that are irrelevant to the target concept. Thus it may

be easier to learn spatial features first, based on the rela-

tively cleaner web images, and then learn temporal features

afterward. Previous work [26] has also hypothesized that

it may be difficult to learn both spatial and temporal fea-

tures simultaneously. We present empirical results in Sec-

tion 4 showing that our two-stage approach, which separates

learning appearance and temporal features, outperforms a

model that learns both jointly.

To account for domain shift, domain adaptation has

been successfully applied for tasks such as mapping from

MNIST [15] to StreetView digits [28, 10], RGB to depth

images [28] and webcam to product images [10]. In our

work we incorporate an adversarial training component
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Figure 2: Embeddings before and after domain adaptation. We randomly sampled embeddings from the web image

(red points), web video (green points) and target video (blue points) domains and show the T-SNE [29] plots of 4 actions:

balance beam, long jump, surfing, and throw discus ( from UCF-101 [24]). The top row contains the T-SNE plot before

domain adaptation using pre-trained RN-34 [12] embeddings and the bottom row shows embeddings of the same actions

after domain adaptation. Plot best viewed in color.

taken from Generative Adversarial Networks (GAN) [11].

To account for the noise present in webly-supervised data,

we incorporate a novel attention component to reduce the

effect of irrelevant examples.

In this work, the target domain consists of curated

videos, each containing only a single concept. We consider

these curated videos to be a separate domain from web im-

ages and web videos. We assume there are relatively few ir-

relevant chunks from videos in the target domain compared

to web videos. For example, this setting may be appropriate

if the target domain was surveillance videos.

To check whether there is indeed a difference be-

tween the separate domains, we extracted embeddings from

random images/frames from each domain using ResNet-

34 [12] and visualized T-SNE [29] plots for four different

action categories from UCF-101 [24]: Balance Beam, Long

Jump, Surfing, Throw Discus. The top row in Figure 2

corresponds to the embeddings before domain adaptation

for curated video frames (blue points), web video frames

(green points), and web images (red points). The bottom

row corresponds to the embeddings after domain adaptation

(details in Section 3). Before domain adaptation, there are

visibly distinct regions corresponding to the three domains

of web images, web videos and curated videos (we used

UCF-101 [24] videos), which may indicate domain differ-

ences. Afterward the different domains are packed closer

together, which may indicate less domain separation.

To summarize, our contributions include:

• A novel two-stage approach to first learn spatial

weights from a 2D-CNN and then transfer these

weights to a 3D-CNN to learn temporal weights.

• A novel attention component to account for noise

present in webly-supervised data.

• Results competitive with state-of-the-art video clas-

sification on UCF101 [24] for webly-supervised ap-

proaches, while simplifying training.

2. Related Work

Webly-Supervised Learning. Previous work using

webly-supervised data include [22, 4, 18, 30]. In addi-

tion, Gan et al. [7] jointly match images and frames in a

pre-processing step before using a classifier while LeadEx-

ceed [9] uses multiple steps to filter out noisy images and

frames. In contrast, our model does not have pre-processing

steps and learns to downweight noisy images as part of

model training. Li et al. [16] use web images to perform do-

main adaptation and learn a video classifier, but they man-

ually filter out irrelevant web images beforehand whereas

we incorporate this step into our model. DECK [8] applies

pretrained image and video classifiers to web image search

results in order to learn high-level concepts, but their ap-

proach is focused on zero-shot recognition.
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There has also been related work in using attention for

weakly-supervised learning. Zhuang et al. [33] stack noisy

web image features together with the assumption that at

least one of the images is correctly labeled. They then

learn an attention model to focus on the correctly labeled

images. UntrimmedNet [30] generates clip proposals from

untrimmed web videos and also incorporates an attention

component for focusing on the proposals with the correct

action. In contrast, our model learns from both images and

videos and ties attention closely with domain adaptation.

Video Classification. 3D-CNN video models such as

C3D [25], P3D [20], I3D [3], R(2+1)D [26], SlowFast [6]

are appealing for video classification since they learn ap-

pearance and motion features jointly. I3D [3] uses full 3D

filters, while R(2+1)D [26] and P3D [20] decompose the

spatio-temporal convolution into a spatial convolution fol-

lowed by a temporal convolution. The design of our 3D-

CNN is partly inspired by these latter approaches because of

this elegant decomposition, which allows us to reuse spatial

filters from a conventional 2D CNN. We could potentially

use the same bootstrapping technique to inflate 2D to 3D

filters as in I3D [3], but initializing and fixing the 2D filters

may allow for easier training (more detail in Section 3).

Domain Adaptation. There has been much work in

applying GANs [11] for domain adaptation. Models such

as PixelDA [2] learn to generate realistic-looking sam-

ples from the source distribution, while others such as

DANN [10] learn a domain-invariant feature representation.

We adopt this latter approach in our work.

Other related works include ADDA [28] which learns a

piecewise model by pre-training a classifier on the source

domain and then adds the adversarial component later.

Tzeng et. al [27] learn domain-invariance by incorporat-

ing a domain confusion loss (similar to a discriminator

loss) and transferring class correlations between domains

to preserve class-specific information. Luo et al. [17] pro-

pose a similar model to ours but for a fully-supervised set-

ting, and add a semantic-transfer loss to encourage trans-

fer of class-specific information. The main difference be-

tween our model and these approaches is that we use webly-

supervised data and assume the source and target domains

may contain noisy labels, which is a considerably more dif-

ficult, yet practical scenario.

Lastly, Zhang et al. [32] propose a similar approach to

our own for image tasks, which also includes a domain-

adversarial component and performs instance weighting

to account for noise in the source data. However, they

use a dual-discriminator approach for instance weighting

whereas we use an attention-based component.

3. Model

Our goal is to learn a video classifier in the target do-

main by training on the (source) webly-supervised image

Web Image

Web Video 
(Frames)

Target Video 
(Frames)

C

C

L

L

A

A

D

D

D

2D 
CNN

2D 
CNN

2D 
CNN

Figure 3: Image Model. Triplet network with branches

corresponding to web images, web video frames and target

video frames. We add discriminators D to enforce domain

invariance between the separate domains and add attention

components A to downweight irrelevant examples. C cor-

responds to the classifiers and L corresponds to the losses.

and video domains. We propose a two-stage approach by

first learning an image model using a standard 2D-CNN,

transferring the learned spatial weights to a 3D-CNN and

then continuing training on videos. We learn a separate

model for images and videos since it may be difficult to

learn appearance and motion features simultaneously.

Our model (1) learns appearance features in the image

model and motion features in the video model (2) trans-

fers the learned spatial weights from the image model to the

video model (3) accounts for noise present in the webly-

supervised data and (4) performs domain adaptation from

the webly-supervised domain to the target domain.

The image model shown in Figure 3 is a triplet network

that performs both domain adaptation and attention-based

filtering of noisy images. The three branches correspond

to web images, web video frames, and target video frames

(without labels). The image model learns domain invari-

ance between the different domains and also uses an atten-

tion component to downweight irrelevant web images and

web video frames, with respect to the target video frames.

Intuitively the attention component downweights web im-

ages/frames that look different from target video frames.

The video model shown in Figure 4 is a Siamese net-

work with branches corresponding to web videos and tar-

get videos (without labels). Note that the inputs are now

video chunks rather than images. The spatial weights in the

video model are initialized from the image model spatial

weights and fixed (as indicated by the dashed lines in Fig-

ures 4 and 5). Similar to the image model, the video model

also contains domain adaptation and attention components.

3.1. Notation

Let us define following notation:

• E: encoder (either a 2D or 3D CNN) returns Rd

• C: classifier returns predictions among L labels
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Figure 4: Video Model. Siamese model with branches cor-

responding to web video and curated video chunks. We ini-

tialize the spatial weights in the 3D-CNN from the image

model (Figure 3) and add an attention component A to re-

duce the noise from irrelevant shots or incorrect labels. C
corresponds to the classifier and L corresponds to the loss.

• N I , NV , NT : number of webly-supervised image and

videos, and curated (target) videos respectively

• XI = {xI
i , y

I
i }

NI

i=1
: set of webly-supervised images

where xI
i is the ith image and yIi is its corresponding

web label where yIi ∈ {1..L}

• XV = {xV
j , y

V
j }N

V

j=1
: set of webly-supervised videos

where xV
j is the jth video and yVj is its corresponding

web label and yVj ∈ {1..L}. Each video xV
j consists of

frames {xV
jf}

NV
j

f=1
where NV

j is the number of frames

in video xV
j

• XT = {xT
k }

NT

k=1
: set of curated videos where xT

k is the

kth video. Each video xT
k consists of frames {xT

kf}
NT

k

f=1

where NT
k is the number of frames in video xT

k

3.2. Classification

We use ResNet [12] as the base architecture for both our

image and video models, along with the standard softmax

cross-entropy loss to train a classifier for both web images

and web video frames. The losses are computed as

Lwimage = ExI

[

− yI · log(C(E(xI)))
]

Lwframe = ExV

[

− yV · log(C(E(xV )))
]

where the expectations are taken over examples xI and xV

and yI , yV are their corresponding webly-supervised labels.

3.3. Domain Adaptation

We learn an encoder E that can produce feature embed-

dings that are indistinguishable between different domains

in an adversarial setting [11]. The discriminator D tries

to distinguish between embeddings generated from differ-

ent domains (shown in Figure 3). By optimizing over a

min-max objective, E learns embeddings that can eventu-

ally “fool” D, thus learning a domain-invariant feature rep-

resentation. We define our domain-adaptation loss as

LI = ExT

[

logD(E(xT ))
]

+ ExI

[

log(1−D(E(xI)))
]

LV = ExT

[

logD(E(xT ))
]

+ ExV

[

log(1−D(E(xV )))
]

LB = ExI

[

logD(E(xI))
]

+ ExV

[

log(1−D(E(xV )))
]

Ldomain = LI + LV + LB (1)

LI distinguishes between web images and target frames,

LV distinguishes between web video frames and target

frames, and LB distinguishes between web images and web

video frames. In each term, the first component corresponds

to correctly distinguishing between different domains, and

the second component tries to “fool” the discriminator D.

In addition, we use a multi-layer discriminator D,

dl = Dl(σ(dl−1 ⊕ El(x)))

where Dl is the discriminator at the l-th layer, dl is the dis-

criminator output at the l-th layer, ⊕ denotes concatenation,

El(x) is the CNN embedding from the l-th layer, and σ is

the (ReLU) activation function. Intuitively we take the en-

coder outputs from multiple layers, concatenate them and

feed them into a discriminator (a binary classifier). Similar

to [17], we have empirically found this multi-layer discrim-

inator to perform better than the single-layer version.

3.4. Attention

Learning from webly-supervised data is difficult because

it is inherently noisy. For example, if we query for a term

such as “archery”, we may get some results containing the

action of shooting a bow and arrow but we may also get ad-

vertisements for a sporting goods store, or product shots of

archery equipment, which are likely less relevant for learn-

ing to recognize the action itself.

We present a novel approach for filtering noisy data in-

spired by work from machine translation [1]. The atten-

tion component learns to “filter out” or downweight irrel-

evant images/frames by comparing the images and frames

in each source domain batch to the images from the target

domain batch. Intuitively, images from the source domain

batch that look very different to images in the target domain

batch should be given low weight. For example, it is un-

likely that an advertisement or product shot is going to look

like frames from the target video which we assume is cu-

rated and contains only the action. In this way, we jointly

learn the relevance of both web images and web videos by

comparison to the target videos.

Note that this weighting is similar to the loss update

from [32] but that is based on scores from a discrimina-

tor whereas our approach is based on learning a similarity

function between the different domains. Unlike previous
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work [7] that performs pre-processing to filter out irrele-

vant images/frames, our approach learns a model of rele-

vance jointly with other components during training. In

our approach we do not need to perform manual filtering

or pre-processing and instead the filtering happens jointly

with model training. Zhuang et.al [33] learns attention from

stacking web image activations together. In contrast our

model learns attention through a comparison of the source

and target domain, which may provide a more direct signal

for inferring the attention weights.

More formally, given a set of web images and their cor-

responding labels XI = {xI
i , y

I
i }

NI

i=1
, we compute an atten-

tion score αi for each image xI
i such that

∑NI

i αi = 1 (note

that we compute these attention weights per batch during

training). Let E(xI) ∈ R
D denote the CNN embedding for

a given image xI . We compute attention scores as follows

eik = A(E(xI
i ), E(xT

k ))

= E(xI
i ) ·W · E(xT

k )
⊤

where eik indicates the similarity between web image xI
i

and target image xT
k and A is the attention model. W is a

matrix with dimension R
D×D and parameterizes the simi-

larity between the embeddings from different domains. The

parameters for W are learned along with the rest of the

model parameters. We then compute

mit = TopT (ei,1:NT )

where mit consists of the top T scores along the ith row.

In practice we observed better performance when summing

over the top T scores instead of all scores in the row.

si =

T
∑

t=1

mit

We then compute the image attention weights as

αI
i =

exp(si/τ)
∑N

j′=1
exp(si′/τ)

where τ is a temperature term. αI
i is then used to weight the

image xI
i in the cross-entropy loss. The attention weights

for video frames αV
j are computed in the same way by com-

paring to the target video frames.

3.5. Image Model

The image model loss can be rewritten as:

L′

wimage = ExI

[

− αI · yI · log(C(E(xI)))
]

L′

wframe = ExV

[

− αV · yV · log(C(E(xV )))
]

Limage = L′

wimage + L′

wframe (2)

1 x d x d

...

t x 1 x 1

...

1 x d x d

...

t x 1 x 1

...

Spatial Block

Temporal Block

Figure 5: Spatio-temporal Block. (a) the decomposition

of the spatiotemporal block into a 2D spatial filter fol-

lowed by a 1D temporal filter (corresponds to R(2+1)D [26]

model) (b) our modified block with an added residual con-

nection. The spatial weights are initialized from the 2D

CNN weights and fixed, as indicated by the dashed lines.

where the αI is used to weight the batch. We also incor-

porate the domain adaptation loss from Equation 1 to get a

combined loss of

min
θE ,θC

max
θD

Limage(E,C) + βLdomain(E,D) (3)

where β is a tradeoff parameter between the weighted clas-

sification and domain adaptation terms. In practice we use

the gradient reversal layer [10] which multiplies the gra-

dient from the discriminator by a negative constant dur-

ing backpropagation, allowing us to perform optimization

in one step instead of the usual two-step optimization.

3.6. Video Model

The next step is to transfer the spatial filters learned from

the image model to the video model. We assume the spa-

tial filters have been learned appropriately from the images

and we want the video model to focus on learning the mo-

tion filters. One natural way to capture this intuition is by

sequentially arranging the spatial filter followed by the tem-

poral/motion filter, as shown in Figure 5a. In this way we

elegantly decompose the spatiotemporal kernel into a spa-

tial filter followed by a temporal filter. Note that this formu-

lation corresponds to the R(2+1)D [26] architecture.

Unfortunately, there is a problem with simply placing the

temporal block directly after the spatial block as shown in

Figure 5a for our case. The “good” spatial filters (initialized

from the image model) are now interleaved with untrained

temporal filters, which means it is possible the output distri-

bution of the spatiotemporal blocks can change significantly

since the temporal filters still need to be learned (related

to the problem of covariate shift [13] in training deep net-

works). We can mitigate this effect by initializing all the

temporal filters to the identity matrix, which will reduce the
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video model to the image model. However, it is still possi-

ble that any slight change to the temporal weights may re-

sult in significant distribution changes to the spatiotemporal

block, which can result in complicated optimization.

Similar to the motivation of ResNet [12], and different

from R(2+1)D [26], we propose to alleviate this issue by

adding a residual connection (as shown in Figure 5b) and

initializing the temporal filters to zero. This effectively al-

lows our model to learn the temporal filters gradually, and

to have the “fallback” option to use just the spatial filter out-

puts when temporal information is not useful. We empiri-

cally found that adding the residual connection is crucial to

have good performance, as detailed in Section 4.

The video model includes the same domain adaptation

and attention components as earlier. The loss for the video

domain in Figure 4 is

Lvideo = ExV

[

− αV · yV · log(C(E(xV )))
]

(4)

which has the effect of ignoring or downweighting irrele-

vant video chunks in a soft way. The combined loss is sim-

ilar to the image loss

min
θE ,θC

max
θD

Lvideo(E,C) + βLV
domain(E,D) (5)

where β is a tradeoff parameter.

3.7. Training

Putting all the pieces together, we first learn an image

model (shown in Figure 3) using web images, web video

frames, and target video frames as inputs. Each input is fed

into a 2D CNN where we extract embeddings that are used

to compute the domain adaptation and weighted classifica-

tion losses. We then learn a video model (shown in Fig-

ure 4) by initializing the spatial filters from the learned 2D

CNN and continue learning temporal filters from the videos.

Similar to the image model, we use a 3D CNN to extract

embeddings which are used to compute the domain adapta-

tion, and weighted classification losses.

4. Experiments

4.1. Data

We evaluate our model on a standard benchmark for

video classification, UCF-101 [24], and a larger dataset,

Kinetics-400 [14]. UCF-101 consists of about 13K video

clips for 101 action categories while Kinetics-400 is a larger

dataset of 300K video clips for 400 action categories.

Similar to previous webly-supervised approaches [7, 9],

we used standard image search engines (Bing and Google)

to collect between 800-900 images (using the “photo” filter

in the query) and YouTube to collect between 25-50 videos

for each category. For our UCF experiments, the whole

dataset consists of about 200K images and video keyframes.

We follow the same process for Kinetics and collected about

400K images and video keyframes.1

Since UCF and Kinetics videos are both drawn from

YouTube, it is possible there may be overlap with the webly-

supervised images and videos we collected. To remove any

potential overlap, we compared CNN embeddings extracted

from video keyframes in the UCF/Kinetics videos and com-

pared them to embeddings from the web images and videos.

We then removed any web image or web video containing

an embedding that had cosine similarity above a threshold

(we used 0.9) with any UCF/Kinetics keyframe embedding.

This process removed about 5% of the collected videos.

4.2. Implementation

We used ResNet-34 [12] as the base network for all ex-

periments. Every image is resized such that the shorter di-

mension is 256 and then a random crop of 224x224 is ex-

tracted. For videos we first resize the video in a similar man-

ner and then use the Hecate [23] tool to extract keyframes

and video chunks. For each video chunk, we extract 24

frames, sampling every other frame to obtain a volume size

of 12x224x224x3 per chunk. We use a batch size of 32 for

images and 10 for videos.During training we take a random

crop with the given volume size; during evaluation we take

a center crop. We use a value of β = 0.5 and set T to be

0.9 × batch size. All models are coded in PyTorch [19]

and trained using stochastic gradient descent with momen-

tum. We use a held out validation set (20K for UCF-101

and 40K for Kinetics) to choose model hyperparameters.

The 2D CNN encoders and classifiers in the image model

(Figure 3) and the 3D CNN encoders and classifiers in the

video model (Figure 4) have tied weights.

4.3. Results

Our initial hypothesis was there may be a domain dif-

ference between images and videos that may be reducing

the effectiveness of the model. To test this hypothesis, we

trained a binary classifier (using ResNet-34 [12]) to distin-

guish between web images and web video frames and found

that the classifier was over 99% accurate. We hypothesize

that compared to web images, web videos tend to be lower

resolution and may contain motion blur and compression

artifacts not typically found in web images.

Next, we show an example of the weights learned by at-

tention using a batch size of 32 in Figure 6. The weight

(α in Equation 2) is shown for each web image along with

the category of the image (the weights sum to 1). Images

that are cartoon-like or contain excessive text tend to re-

ceive lower weight since they appear less similar to images

from the target domain (UCF-101 [24]). Failure cases can

be observed for the “CliffDiving” and “Drumming” images

1Note that we did not notice a significant improvement when using

more data and we wanted to reduce computational overhead.
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Input Arch Features Accuracy (%)

I S App 62.9

F S App 57.9

I + F S App 70.1

I + F (A) T App 71.4

I + F (DA) T App 72.2

I + F (A + DA) T App 72.6

V S App + Temp 72.6

V (A) D App + Temp 74.0

V (DA) D App + Temp 74.3

V (A + DA) D App + Temp 74.9

Table 1: Ablation study on UCF-101. We evaluate the im-

age and video models as well as the DA and attention com-

ponents. We show the top-1% performance of each model

averaged over 3 splits of UCF-101 [24]. Abbreviations are

I: web image, F: web video frame, A: attention component,

DA: domain adaptation component, V: web video, S: sin-

gle branch (standard 2D CNN), T: triplet branch, D: dual

branch (Siamese), App: appearance, Temp: temporal.

Input Arch Features Accuracy (%)

I + F S App 39.6

I + F (A) T App 41.8

I + F (DA) T App 41.9

I + F (A + DA) T App 42.3

V S App + Temp 42.2

V (A) D App + Temp 42.5

V (DA) D App + Temp 42.5

V (A + DA) D App + Temp 42.8

Table 2: Ablation study on Kinetics.. We evaluate dif-

ferent model components and show the top-1% accuracy of

each model. The abbreviations are the same as in Table 1.

in the last row. These images look reasonable but may have

received lower batch score due to the extreme perspective

and atypical color palette, respectively. Also attention does

not help for images with the wrong semantic category (e.g.

“CliffDiving” in the first row).

Table 1 shows ablation study results on UCF-101 [24].

For each row, the accuracy is averaged over the 3 splits of

UCF-101. The inputs correspond to I: web images, F: web

video frames, I + F: web images and video frames together,

V: web video chunks. In addition, we train on the differ-

ent model components A: the attention component, DA: the

domain adaptation (adversarial) component, A + DA: both

components. The model architectures correspond to S: sin-

gle branch (i.e. a standard 2D CNN), D: dual branch (i.e.

a Siamese network) corresponding to the image model, T:

triplet branch corresponding to the video model. Lastly the

features correspond to App: appearance (image) features,

Temp: temporal (video) features, App + Temp: both ap-

pearance and temporal features.

We can see that a model trained with images and video

frames together (I+F) outperforms a model trained with im-

age (I) and video frames (F) separately. We verified that

simply adding more images or video frames did not im-

prove performance. Next, we can see that adding the do-

main adaptation (DA) and attention (A) components sepa-

rately helps improve performance by a small amount, but

both components together leads to the best image model,

I+F(A+DA), at 72.6% top-1 accuracy.

The next step is to initialize the video model using the

spatial weights of the image model, and then continue train-

ing on web videos. The video model V has an accuracy

of 72.6%, which is the same as the image model accuracy.

This may be due to irrelevant frames and noise present in

the web videos that are unaccounted for. Similar to the

image model, adding the attention and domain-adaptation

components separately leads to a small improvement but

adding both components together leads to the best perfor-

mance of 74.9% top-1 accuracy on UCF-101 for the video

model V(A+DA).

We also explored a couple variations of training the

video model V. We first initialized V from ImageNet [5]

spatial weights rather than the image model, which resulted

in an accuracy of 59.1%. This drop in performance com-

pared to model V (from 72.6% to 59.1%) may vindicate

our two-step approach of training an image model based on

web images first, since training on web videos directly led

to worse performance. In addition, we explored a variation

of the video model V which does not use the residual con-

nection (corresponding to Figure 5a). This model achieves

an accuracy of 70.3% which is significantly lower than the

accuracy of V at 72.6%, which may indicate that adding the

residual connection is crucial in our approach.

We compare our approach to previous work on UCF-

101 in Table 3. Among webly-supervised approaches, we

are competitive with the state-of-the-art LeadExceed [9]

model at 76.3% vs 74.9% for our model. LeadExceed re-

quires 5 stages of model training/refinement steps, while

our model unifies classification and filtering, and requires

only 2 stages. Thus our model simplifies the training pro-

cedure at the cost of a small drop in accuracy (about 1.4%).

We note there is still a large gap between webly-supervised

methods and the state-of-the-art methods which directly use

the UCF training data (which is curated) and other features

such as optical flow.

We also evaluate on the larger Kinetics [14] dataset. The

results in Table 2 show similar improvements as the im-

age model, by adding the attention and domain adaptation

components, leading to the best performance of 42.8% ac-

curacy. We also compare against leading methods in Ta-

ble 4 and note that there is a large gap between our webly-
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Figure 6: Attention Weighting. For a web image batch, we show the weights (α in Equation 2) for each image and the

category of the image (the weights sum to 1). Images with lower weight in the last row tend to be more cartoon-like or contain

excessive text while images with higher weight tend to be more representative of the action. Images such as “CliffDiving”

and “Drumming” in the last row appear reasonable and can be considered failure cases since they are assigned lower weight.

Approach Type Pre Train Acc(%)

UnAtt [16] App IN Web 66.4

Webly [7] App IN Web 69.3

LeadExceed [9] App + Temp IN Web 76.3

Our model App + Temp IN Web 74.9

C3D [25] App + Temp K UCF 82.3

2Stream [21] App + Temp IN UCF 88.0

R2D-2S [26] App + Temp K UCF 97.3

I3D-2S [3] App + Temp IN+K UCF 98.0

Table 3: UCF-101 Results. Comparison to several top ap-

proaches on UCF-101 [24]. Abbreviations are App: appear-

ance, Temp: temporal, Pre: pretraining data, Train: training

data, Acc: top-1 accuracy, IN: ImageNet, K: Kinetics.

supervised approach and state-of-the-art. State-of-the-art

approaches such as SlowFast [6] use multiple spatial crops

to improve video-level accuracy, which we can incorporate

in the future. We are not aware of other webly-supervised

approaches evaluated on Kinetics.

5. Conclusion

We presented a new webly-supervised approach for

video classification using noisy web images and videos.

Our model proceeds in two stages by first learning spatial

Approach Pretrained Training Acc(%)

C3D[25] ImageNet Kinetics 57.0

2S [21] ImageNet Kinetics 61.0

R2D-RGB [26] 2S Sports-1M Kinetics 75.4

I3D-2S[3] ImageNet Kinetics 75.7

NL I3D [31] ImageNet Kinetics 77.7

SlowFast [6] None Kinetics 79.8

Our model ImageNet Web 42.8

Table 4: Kinetics-400 Results. Comparison to popular ap-

proaches on Kinetics [14] for top-1% accuracy on the vali-

dation set. The Two-Stream model is abbreviated as 2S.

filters of a 2D CNN from images, transferring the learned

spatial weights to the 3D CNN video model, and contin-

uing learning temporal filters with videos. To address the

domain gap between the web and the curated data, as well

as between images and video frames, our model incorpo-

rates an adversarial component to learn a domain-invariant

feature representation between source and target domains.

We also account for noise in web data using a novel atten-

tion component. We demonstrated performance competi-

tive with state-of-the-art for webly-supervised approaches

on UCF-101 [24] while simplifying training, and also eval-

uated on the larger Kinetics-400 [14] for comparison.
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