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Abstract

To make the best use of the underlying structure of faces,

the collective information through face datasets and the in-

termediate estimates during the upsampling process, here

we introduce a fully convolutional multi-stage neural net-

work for 4× super-resolution for face images. We implicitly

impose facial component-wise attention maps using a seg-

mentation network to allow our network to focus on face-

inherent patterns. Each stage of our network is composed of

a stem layer, a residual backbone, and spatial upsampling

layers. We recurrently apply stages to reconstruct an inter-

mediate image, and then reuse its space-to-depth converted

versions to bootstrap and enhance image quality progres-

sively. Our experiments show that our face super-resolution

method achieves quantitatively superior and perceptually

pleasing results in comparison to state of the art.

1. Introduction

Our brains are wonderfully attuned to perceiving faces.

In addition to the visual cortex in the occipital lobe, the en-

tire region of the brain called the fusiform gyrus is dedi-

cated to interpreting and forming a mental representation

of faces [36]. From early childhood, even very shortly af-

ter birth, human brains possess facial inference capacities

and display more interest in face images than any other pat-

tern [38]. As a species, we almost obsessively monitor and

pay close attention to subtle details in paces that can allow

gleaning into the origin, emotional state, internal thought

process, level of engagement, and health qualities of oth-

ers around us. Most of us pay more attention to faces than

we do to anything other object categories. Supporting this,

many gaze tracking studies show that the profile picture or

avatar is the first place the eye is drawn to on social media

profiles [50]. Pictures with human faces are with a large

margin more likely to receive likes than the ones with no

faces. It is not surprising that almost one-third of social me-

dia images are selfies and more than half are tagged with a

label relates to face.

The resolution of the faces is an essential factor, and cer-

(a) Input LR image. (b) Our SR results.

Figure 1: Our method can 4× super-resolve face images of

any size. Top row: 64×64 LR input and our result. Middle

row: enlarged areas from the above images. Bottom row:

enlarged areas when the input LR image is 256×256 (see

supplementary for the whole image and its super-resolved

counterpart). Please zoom in for the best view.

tain features appear to be found more attractive in higher

resolution across individuals and cultures [29, 34]. Espe-

cially the eye and mouth regions are critical for face percep-

tion, as well as for neural responses to faces [44, 9]. More-

over, the interpretation of facial features is determined by

the relative arrangement of parts within a face context [37].

Attention selection and guidance, thus, are important ele-

ments of high-resolution stimuli in the modeling of the pro-

cesses in visual processing.

High-resolution face images provide crucial clues not

only for human observation but also for computer analy-

sis [12, 73]. The performance of common facial analy-
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sis techniques, such as face alignment [3] and identifica-

tion [49], degrade when the resolution of a face is low. To

provide a viable way to recover a high-resolution (HR) face

image from its low-resolution (LR) counterpart, many face

super-resolution methods [74, 67, 68, 66, 75, 5, 8] that rely

on deep neural networks are proposed in recent years. Some

of these methods explore direct image intensity correspon-

dences between LR and HR faces, albeit being limited to

low-resolution, e.g., 16×16, where an input image includes

the whole face. They can neither handle large input faces

due to computational and memory requirements in training

and inference times nor can they resolve fine-grained face-

specific patterns. Besides, their dependency on near-frontal

faces, which is prevalent in popular datasets [35, 20], re-

stricts their usage for large pose variations causing distorted

facial details. A naive idea to remedy this problem is to

augment the training data with large pose variations during

the training stage. However, this strategy leads to subopti-

mal results due to the increased variance of face data to be

modeled and also potentially erroneous localization of fa-

cial landmarks, which is a difficult task in small LR images

under large pose variations.

In this paper, in contrast to previous attempts that of-

ten demand and apply the whole face image through their

neural layers, we adapt a patch-based face super-resolution

method that can operate efficiently on large input faces. Our

intuition is that, although it is challenging to detect facial

landmarks of the face accurately, it is possible to estimate

patch-based attention maps of facial components approxi-

mately and steer the super-resolution process with these at-

tention maps to facilitate more natural and accurate resolu-

tion enhancement.

Our model consists of an off-line trained component net-

work and two super-resolution stages. We first segment

facial components using a neural network trained off-line.

These components can be hair, skin, eyes, mouth, eyebrows,

nose, ears, neck, and similar facial regions. In particu-

lar, we use three components; hair, skin, and other parts

(eyes, mouth, nose, eyebrows, ears) for simplicity. We ap-

ply Gaussian smoothing to decrease the sensitivity of com-

ponent segmentation errors. We multiply the input im-

age pixel-wise with each component heatmaps to obtain

heatmap-weighted components, which allows us to impose

components as implicit attention priors. We stack the origi-

nal image and the attention maps into a block. In the train-

ing phase, we randomly sample patches from this face-wise

block where each patch includes the cropped original im-

age and the corresponding attention maps. The random

sampling generates identically sized patches and their aug-

mented (flipped) versions. In testing, we process the LR

image patch-wise and aggregate their HR estimations.

Each super-resolution stage has three main components,

as shown in Fig. 2; a stem layer that blends the input patch

channels, a residual backbone that applies fully convolu-

tional blocks on low-resolution feature maps, and a spatial

upsampling layer that reconstructs the high-resolution im-

age. The residual backbone is made up of fully convolu-

tional residual units. After a series of residual units, we

embed a direct skip connection from the first feature layer

to the last one to maintain the influence of the original ref-

erence image on the feature map of the last layer. Thus,

our backbone is conditioned on reconstructing the residual

info, which includes the missing high-resolution patterns in

visual data. The residual blocks and direct skip connec-

tion also allow us to deepen the backbone, which boosts

the overall representation capacity of the network and in-

creases the areas of the receptive fields for the higher level

convolutional layers, which enables better contextual feed-

back. The residual backbone utilizes the low-resolution im-

age and space-to-depth shuffled estimated high-resolution

output of the previous stage, which permits transferring the

initial model into progressively more complex networks in

the following stages. Note that, each state is an indepen-

dent network. Following the residual backbone, we apply

spatial upsampling layers to reconstruct a higher-resolution

image from its feature map. These layers use pixel shuffling

with learned weights; therefore, we do not require deconvo-

lutions. The residual backbone prepares the best possible

feature maps, which have a large number of channels, and

the spatial upsampling layers rearrange these feature maps

into the high-resolution images using the learned weights of

the filters of these layers.

To summarize, the contributions of this paper are:

• We introduce a patch-based, fully convolutional net-

work for single image face super-resolution that pro-

cesses patches in their original low-resolution through-

out its backbone and layers, and then reconstruct the

high-resolution output from rearranged feature maps.

• We recurrently apply the super-resolution stages to

leverage on the reconstructed high-resolution outputs

from the previous stage to enhance estimated high-

resolution details progressively.

• As our experiments demonstrate, our method out-

performs existing face super-resolution methods by a

large margin without inducing perceptual artifacts.

2. Related Work

Image super-resolution aims at restoring the HR coun-

terpart of a given LR input. This task has been one of

the most fundamental challenges in computer vision, and

many approaches have been proposed within the last two

decades including kernel interpolations [31], edge statis-

tics [13, 46], patch-based schemes [15, 52, 22, 14, 62, 61,

21, 41], Bayesian methods [47, 26, 43], and supervised

371



Figure 2: CAGFace architecture. First, facial components are segmented, and component-wise attention maps are generated.

For training, random patches are sampled. The super-resolution network has two stages; the first stage estimates a 2×
intermediate HR image. The second stage builds on the space-to-depth converted intermediate HR image and uses the

original features of the first stem layer through a stage-wise skip-connection while implicitly imposing the component-wise

attention.

learning [1, 40, 70]. An in-depth discussion of the avail-

able solutions can be found in recent surveys [69, 17, 63].

With the compelling advance of deep learning models, in

particular, the generative adversarial networks (GAN) [16],

a new wave of convolutional neural network (CNN) based

image super-resolution methods have also been proposed.

Most notably, SRCNN [10] and SRGAN [30] apply a CNN

and a GAN, respectively, to hallucinate HR image pixels.

The work in [28] progressively estimates the residual of

high-frequency details using a Laplacian pyramid super-

resolution network, [54] introduces the SFT-GAN for class-

conditioned image super-resolution, and [55] proposes ES-

RGAN that leveraged a relativistic GAN [24] to estimate the

distance between two images. Unlike most super-resolution

models that are trained using synthetic LR images, [72]

obtains LR-HR image pairs by zooming-in and -out cam-

era lens to characterize the imaging system degradation

functions. We refer readers to [64] for a comprehensive

overview of deep learning-based and to [60] for canonical

super-resolution approaches.

Many super-resolution methods employ facial priors to

achieve higher-resolution faces. Earlier methods assume

faces are in a controlled environment, and the variations are

minor. For instance, the work proposed in [2] uses a spa-

tial gradient distribution as a prior for the frontal faces. In

[53], a mapping between LR and HR faces is modeled by an

eigen-transform. [27] learns a nonlinear Lagrangian model

for HR face images by finding the model parameters that

best fit the LR image. The work in [59] incorporates face

priors by mapping specific facial components (similar to our

method), yet the correspondence between the components

is explicitly based on landmark detection, which is diffi-

cult to obtain when the upsampling factor is large. The cas-

caded framework proposed by [75] super-resolves tiny faces

by alternatively optimizing for face hallucination and dense

correspondence field estimation. The method presented in

[45] generates facial parts by CNNs and explicitly synthe-

sizes fine-grained facial structures through part enhance-

ment. FSRNet [6] computes facial landmark heatmaps and

alignment parsing maps for end-to-end training.

The imposed image quality measure and the terms of

the loss function between the reconstructed and original

HR images play a critical role in super-resolution. Peak

Signal-to-Noise Ratio (PSNR) is the most common metric

to measure the quality [19]; however, a higher PSNR value

does not necessarily imply a more visually appealing re-

sult [57]. To better simulate the human visual perception,

Structural Similarity Index Measure (SSIM) [56] separates

the task of similarity measurement into three components:

luminance, contrast, and structure. Multi-Scale Structural

Similarity Index Measure (MS-SSIM) [58] adapts to the

variations of viewing conditions, and Feature Similarity In-

dex (FSIM) [71] extends SSIM to feature space. Incep-

tion Score (IS) [42] measures the quality of generated im-

ages and their diversity, and Fréchet Inception Distance

(FID) [18] extracts features from an intermediate layer of

an Inception Network [48].

Accordingly, many loss functions have been proposed

to train deep neural networks for super-resolution, such as

pixel-wise mean squared error (MSE) [51]. While the MSE

results in higher PSNR values, it often causes blur and

suppresses sharp textures [57]. To overcome this, percep-

tual loss [23] imposes feature similarity between the super-

resolved and LR images. Perceptual loss is computed over
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the layer right before the FC layers of VGG19 in [30], or the

B1, B2, and B3 blocks of ResNet50 in [4]. A heatmap loss

is proposed to preserve structural consistency between LR

and HR images further [4]. Leveraging an adversarial loss

from a discriminator has been shown to generate convincing

results [30, 55, 39] as well.

3. Proposed Method: CAGFace

Our face super-resolution solution is composed of multi-

ple stages. Here, we use two consecutive stages that achieve

4× super-resolution, yet our methodology can be applied

recurrently for higher upsampling goals. As aforemen-

tioned, we bootstrap the super-resolution process by space-

to-depth rearranging the estimated high-resolution image

into multiple low-resolution channels, imposing the fea-

ture maps of the first stem layer (explained below) via a

stage-wise skip connections for additional regularization,

and applying a second stage network. Our patch-recurrent

approach progressively bootstraps on the estimated high-

resolution results, thus provides additional performance im-

provements.

First, we use a network that segments the facial com-

ponents. We apply a layer that imposes spatial atten-

tion by multiplying the LR input image by the component

heatmaps. After a random sampling of patches, we apply

two stages of super-resolution networks.

We achieve 4× super-resolution with two consecutive

stages of 2× resolution enhancing networks. Notice that,

unlike existing methods, our method does not employ a 2×
super-resolution, followed by a second 2× super-resolution

on the output of the first stage. The spatial size of the input

feature map to the second stage is identical to the size of

the original LR image. We learn the most useful features

for 4× super-resolution after the first stage that also recon-

structs a 2× image. This mid-stage reconstruction enables

us to provide an additional regularization for our loss func-

tion.

Each stage contains a separate stem layer, a collection

of multiple residual blocks, and an upsampling layer fol-

lowed by a final mixing layer, as illustrated in Figure 2.

Please see Table 1 for the network parameters. In addition

to these, the second stage has a depth-to-image conversion

layer. These stages have similar kernels, yet their hyperpa-

rameters are different. Our network has conventional resid-

ual block skip connections and also a stage-wise skip con-

nection that propagates the original features after the first

stem layer to just before the final 4× upsampling layers, as

well as a skip-connection over the component network that

imposes attention priors on the input image. In testing, we

process the LR image patch-wise and aggregate their HR

estimations.

r

(a) Input (b) Skin (c) Hair (d) Other parts

Figure 3: Sample attention maps from component network.

3.1. Component Network

For segmentation of the facial components, we followed

a similar model that to BiSeNet [65] that is developed ini-

tially for generic purpose pixel labeling such as segmenta-

tion of Cityscapes images. BiSeNet has spatial and context

paths that are devised to handle the loss of spatial infor-

mation and shrinkage of the receptive fields, respectively.

The spatial path has three convolution layers to obtain a

smaller feature map. Context path appends a global aver-

age pooling layer on the tail of the Xception network [7].

We fine-tuned this model on the CelebAMask-HQ dataset,

which has 30,000 high-resolution (1024×1024) face images

selected from the CelebA-HQ. Each image has a 512×512,

manually-annotated, binary segmentation mask and 19 fa-

cial attributes such as skin, nose, eyes, eyebrows, ears,

mouth, lip, hair, hat, eyeglass, earring, necklace, neck, and

cloth.

We apply a spatial pooling layer that employs fixed

Gaussian spatial kernels to suppress the segmentation er-

rors by providing smoothing. This layer also allows higher

values in attention maps to be assigned to more confidently

segmented pixels. Finally, we multiply the input image with

three spatially pooled components to obtain three gray-level

attention maps. Sample attention maps are shown in Fig-

ure 3. We stack the original LR image and the attention

maps into a block, which is our approach to administer at-

tention to the input image. We steer the remaining of our

super-resolution network using these maps as attention pri-

ors. In the training phase, we randomly sample patches

from this block. Each patch, as a result, has the cropped

original image and the corresponding attention maps. The

random sampling generates identically sized patches and

their augmented (flipped in 6 ways) versions.

3.2. Stem Layer

The stem layer takes a patch block as the input tensor and

applies convolutional filters on it. Each depth-wise chan-

nel is a color channel of the LR image and corresponding

heatmap-weighted components, which are normalized to [-
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1,1] for efficient backpropagation. The stem layer in the

first stage arranges the patch block in a 6-channel tensor.

It then applies 256 filters, 3×3×6 each. For the following

stage, we have additional channels. After the first stage,

we estimate a 2× super-resolved HR image, rearrange (i.e.,

space-to-depth) the pixels of an estimated HR image into 4

LR images, and then combine these LR images into a 12-

channel tensor. Notice that we do not impose the heatmaps

explicitly again.

Our network uses the original LR resolution frames in all

its layers and stages. Since we use the same image size for

all layers (except the upsampling layers), the learning be-

comes more efficient. Multiple references provide spatially

vibrant local patterns.

3.3. Residual Backbone

The residual backbone applies fully convolutional blocks

on low-resolution feature maps generated by the stem lay-

ers. It is made up of 16 fully convolutional residual units.

Each residual unit has a front convolutional layer followed

by a ReLU and a second convolutional layer with a skip

connection from the first one. Similarly, the residual back-

bone has also a direct skip connection from the input to the

last residual block. This skip connection allows our network

to learn the missing high-resolution details by reconstruct-

ing the residual info. The structure of the residual backbone

of each stage is identical. The residual blocks and the direct

skip connection also permits deepening the residual back-

bone for each stage. This boosts the overall capacity and

increases the receptive field sizes. Thus, residual backbone

feature maps have better access to contextual information.

3.4. Spatial Upsampling

We apply spatial upsampling layers to reconstruct a

higher-resolution image from the feature map of the resid-

ual backbone. Since we shuffle pixels and we apply a set

of convolutional filters, our upsampling does not require

deconvolution operations. We rearrange the comparably

large number of feature map channels per pixel into a high-

resolution image using the learned weights of the filters of

the upsampling layers. We set the number of layers for the

first stage and the second stage to 4 and 5 as the second

stage feature map has to generate pixels. Each stage pro-

vides 2× super-resolution, yet it is possible to set the up-

sampling factor to larger ratios since the feature maps are

sufficiently deep.

3.5. Loss Function

For the goal of higher PSNR results, MSE would be the

ideal loss function. However, MSE heavily penalizes the

outliers. Recently, the work in [33] empirically demon-

strated that the mean absolute error (MAE) works better

than the MSE. In our experiments, we also made a sim-

Subnetwork Kernel shape Kernel params (bias)

Stem 1 3x3x6x256 13824 (256)

Backbone 1: 16×

ResBlocks (2 layer)

3x3x256x256 9437184 (4096)

3x3x256x256 9437184 (4096)

Spatial

Upsampling 1

3x3x256x256 589824 (256)

3x3x256x1024 2359296 (1024)

3x3x256x3 6912 (3)

3x3x12x256 27648 (256)

Stem 2 3x3x256x256 587520 (256)

Backbone 2: 16×

ResBlocks (2 layer)

3x3x256x256 9437184 (4096)

3x3x256x256 9437184 (4096)

Spatial

Upsampling 2

3x3x256x256 589824 (256)

3x3x512x2048 9437184 (2048)

3x3x512x2048 9437184 (2048)

3x3x512x3 13824 (3)

3x3x3x3 81 (3)

Total trainable parameters in Stage 1 21881859

Total trainable parameters in Stage 2 38952791

Table 1: CAGFace network parameters.

ilar observation. In particular, at the initial stages of the

training, using the MSE based loss functions caused insta-

bility. However, MAE-based loss at the later epochs con-

verges slowly. Therefore, we opted to impose the Huber

loss function, which is differentiable and combines the ben-

efits of the MAE and MSE. It is defined as

Lδ(d) =

{

1

2
d2 for |d| ≤ δ,

δ|d| − δ2

2
otherwise

(1)

where

d = IHR(x, y)− ÎHR(x, y) (2)

is the pixel-wise difference between the target (ground-

truth) HR image IHR and the estimated HR image ÎHR.

Above, we set δ = 1, which is the point where the Huber

loss function changes from quadratic to linear.

We trained the first stage and then the second stage by

using the learned first stage parameters for initialization.

4. Experiments

4.1. Dataset

We use 1024×1024 face images from the Flickr-Faces-

HQ Dataset (FFHQ) [25], which consists of 70,000 high-

quality PNG images with considerable variation in terms of

facial attributes such as age and ethnicity as well as image

background. It also provides sufficient coverage of acces-

sories such as eyeglasses, sunglasses, and hats. The im-

ages were crawled from Flickr. We then randomly split the

FFHQ dataset into non-overlapping training, testing, and

validation subsets of ratio 80%, 15%, and 5%, respectively.
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(a) Input

(PSNR / SSIM)

(b) Bicubic

(30.96 / 0.830)

(c) SRCNN [10]

(27.54 / 0.750)

(d) FSRCNN [10]

(23.56 / 0.749)

(e) SRGAN [30]

(22.32 / 0.482)

(f) ESRGAN [55]

(17.41 / 0.183)

(g) EDSR [33]

(27.14 / 0.773)

(h) EnhanceNet [41]

(29.24 / 0.799)

(i) SRFBN [32]

(26.65 / 0.765)

(j) Ours

(33.92 / 0.893)

Figure 4: Comparison with state-of-the-art methods for the patch-based version (output HR image is 1024×1024). As

visible, our method can super-resolve without artifacts and noise-like patterns. Reconstructed images are visually pleasing

and resemble the ground-truth better than the existing methods (for a better view, see in color on digital display).

4.2. Evaluation Metrics

To quantitatively measure the performance and provide

comprehensive comparisons with state-of-the-art methods,

we used four quality assessment metrics including PSNR,

SSIM, FID, and MS-SSIM. FID [18] is defined as:

FID = ||µr − µg||
2 + Tr(Σr +Σg − 2(ΣrΣg)

1/2), (3)

where Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are ac-

tivations of Inception-v3 pool3 layer for real and gener-

ated samples, respectively. Lower FIDs mean the gener-

ated results are closer to the original image, measured by

the Fréchet distance between two distributions.

4.3. Comparisons

We quantitatively compare our method with seven state-

of-the-art super-resolution approaches as well as with the

bicubic upsampling.

In the inference (test) time, we can process the given

image either by taking it as a whole (whole-face) or by

patch-by-patch (patch-based). The memory limitations of

GPUs set an upper bound on the input image size, in par-

ticular for the training phase. For example, memory limi-

tations of the single GPU we used prohibited training with

1024×1024 input images. Thus, to train with and infer from

such relatively large images (e.g., 1024×1024), we employ

the patch-based version. For these two alternative versions,
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