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Abstract

Consider a set of images of a scene consisting of moving

objects captured using a hand-held camera. In this work,

we propose an algorithm which takes this set of multi-view

images as input, detects the dynamic objects present in the

scene, and replaces them with the static regions which are

being occluded by them. The proposed algorithm scans the

reference image in the row-major order at the pixel level

and classifies each pixel as static or dynamic. During the

scan, when a pixel is classified as dynamic, the proposed

algorithm replaces that pixel value with the corresponding

pixel value of the static region which is being occluded by

that dynamic region. We show that we achieve artifact-free

removal of dynamic objects in multi-view images of several

real-world scenes. To the best of our knowledge, we propose

the first method which simultaneously detects and removes

the dynamic objects present in multi-view images.

1. Introduction

The advent of digital photography has changed the way

of capturing and saving photographs. Nowadays, it is not

uncommon to take multiple photographs of the same scene.

While taking photographs of a scene at a public place, it is

very likely to have moving objects, like people, vehicles,

etc., present in the scene. Very often, it is not desirable

to have them in the photographs. To deal with this problem,

one can obtain masks highlighting the objects to be removed

from the user in each image and then remove them us-

ing single image completion techniques [9, 12, 18, 41, 26].

However, there are two major problems with this approach.

Firstly, it requires user input and secondly, single image

completion techniques either rely on the image statistics or

the model obtained by training on a large number of images.

Hence, it is not necessary that the filled region will be sim-

ilar to the static region which is occluded by the dynamic

object. To avoid user input, one can detect the dynamic ob-

jects present in the scene using a set of photographs of the

same scene and then remove them.

Detection of moving objects present in the scene has been in

itself an active area of research for a long time now. In many

applications, the moving objects hold important informa-

tion and hence their detection plays a crucial part [11, 20].

However, there are many applications where they are treated

as noise and need to be dealt with. Previously, the detection

of dynamic objects was performed on videos. The videos

contain spatiotemporal information which can be exploited

for this task. However, they require large memory and are

computationally expensive due to a large number of frames.

Recently, researchers have moved on to perform these tasks

on a sparse sample of frames from videos. We call it an im-

age sequence. Although an image sequence requires lesser

memory to store and transmit and is computationally effi-

cient, it poses certain challenges regarding finding corre-

spondences and handling deformations and occlusions.

In this work, we address the problem of detection and re-

moval of dynamic objects present in the multi-view images,

simultaneously. The algorithm takes a set of multi-view im-

ages as input. Then, we pick one of the images as the ref-

erence image and the rest as the source images. The task is

to simultaneously detect and remove the dynamic objects in

the reference image by utilizing the information present in

the source images. Our objective is to detect the dynamic

objects without any user intervention and fill those regions

with the static regions which are occluded by those objects.

We exploit the coherency present in the natural scenes to

achieve this. The proposed algorithm relies on the corre-

spondences in the static regions which are easier to obtain

in comparison to the dynamic objects.

Challenges. The images of a scene captured by a group

of people are not aligned. The dynamic objects can move

a large distance or even leave the scene, due to which es-

timating optical flow for the dynamic objects is erroneous.

We do not have any information regarding dynamic objects

present in the source images. We do not assume that the dy-

namic objects in the reference image are present in all the

source images. Since the dynamic objects do not obey the

epipolar constraint between the pair of images, it can be ex-

ploited to find the dynamic objects [10]. However, it will

not provide information about the static region which is oc-

cluded. These reasons make the problem of detection of the
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dynamic objects and simultaneously filling them with their

static counterparts extremely difficult. The major contribu-

tions of the work are as follows.

1. We propose a novel technique which simultaneously

detects and removes the dynamic objects present in the

multi-view images.

2. We achieve an artifact-free transfer of the static regions

from the source images to the reference image to fill

the dynamic regions which are occluding them in the

reference image.

3. We do not rely on the matches obtained on the dynamic

objects to detect or to remove them.

4. We exploit the coherency present in the natural scenes

to detect and remove the dynamic objects by filling

those regions with the corresponding static regions

which are occluded by them.

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 describes the proposed

approach in detail. Section 4 discusses the results obtained

using the proposed approach and their comparison with the

state-of-the-art methods. Section 5 provides the conclusion

and discusses the future scope of this work.

2. Related Works

Dynamic object detection in videos. Several methods

have been proposed to detect the dynamic objects in videos

[2, 6, 39, 31, 19]. Shi and Malik proposed a moving object

detection algorithm in which they treat video frames as a

3D spatiotemporal data [36]. Cremers and Soatto proposed

a variational approach for segmenting the image plane into

segments with parametric motion [8]. Later, several clus-

tering based algorithms were proposed for the task of de-

tecting moving objects in the videos [23, 3, 25]. Zhou et al.

proposed a unified framework which jointly addresses ob-

ject detection and background learning using an alternating

optimization [49]. Unger et al. showed a variational formu-

lation for joint motion estimation and segmentation [42]. In

videos, spatiotemporal information is present which can be

utilized to segment the moving objects. Unlike these meth-

ods, the proposed algorithm takes a set of images of a scene

as input and does not rely on the quality of matches obtained

on the dynamic objects for their detection.

Dynamic object removal in videos. Patwardhan et al.

presented a framework to inpaint the missing parts in the

videos [33, 32]. However, their technique is limited to the

cases with either no motion of the camera or a very small

camera motion. Later, the problem of filling the miss-

ing regions was posed as a global optimization problem

[45, 22]. This helped in obtaining better globally consis-

tent results. Recently, many methods have been proposed

to deal with the camera motion by using affine transforma-

tions [14, 15, 30]. Also, there are many methods which

rely on the dense flow fields to remove the dynamic objects

[37, 38, 29, 17, 24, 46, 28]. Generally, these techniques

take input from the user to specify which object needs to be

removed. Unlike these methods, we do not rely on the spa-

tiotemporal information for the dynamic objects removal.

Instead, we exploit the coherency present in the natural im-

ages.

Image inpainting in multi-view images. Thonat et al. pro-

posed a method which takes a set of multi-view images and

the masks of the objects which need to be removed as in-

put and performs a multi-view consistent inpainting [40].

Later, Philip and Drettakis introduced a plane-based multi-

view inpainting technique which utilizes the local planar re-

gions to provide more consistent multi-view inpainting re-

sults [35]. Recently, Li et al. introduced a technique which

takes an RGB-D sequence as the input to perform multi-

view inpainting [26]. Unlike [40, 35], we do not perform

multi-view 3D reconstruction which itself requires handling

of the dynamic objects present in the scene. We do not uti-

lize any depth information related to the input images. Also,

our objective is different from these works. Our goal is to

detect the dynamic objects present in an image of the input

set and fill those regions using the remaining images of the

set.

Dynamic object detection in image sequences. Wang et

al. proposed a method which estimates how an object has

moved between a pair of images [44]. However, in their

work, the dynamic object has to be present in both the im-

ages. Also, they rely on the point correspondences obtained

on the dynamic objects. Later, Dafni et al. proposed a

method which takes a set of images of a scene consisting

of dynamic objects and outputs a map highlighting the dy-

namic objects present in the scene [10]. Recently, Kanojia

et al. presented a technique which exploits image coherency

to detect the dynamic objects present in a set of images of a

dynamic scene [21].

In this work, we are interested not only in the detection of

dynamic objects present in a set of multi-view images of

a dynamic scene, but also their removal by replacing them

with the static regions which are occluded by them. Unlike

[21], our algorithm is iterative in nature. The changes oc-

curring in one scan are taken foward to the next, since the

reference image is updated. The way we update the refer-

ence image and the dense correspondence field during the

scan to achieve the task of simultaneaous detection and re-

moval of dynamic objects are our novel contributions.

3. Proposed Approach

The proposed algorithm takes a set of n images of a

dynamic scene captured using a hand-held camera as in-

put. An image from the set is labeled as a reference image
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(a) Reference image (b) Source images

(c)
Figure 1. Simultaneous Detection and Removal of Dynamic Objects. The figure shows the dynamic map L and the updated reference

image at certain intervals during the first scan (top-left to bottom right). (a) and (b) show the reference image and the source images,

respectively. (c) The first and second rows show the update of the dynamic map L and the reference image at certain intervals of the first

scan, respectively. In red border blocks, we can observe the disappearance of the dynamic object as they are being detected during the scan.

The third row provides the zoomed in version of the red border blocks.

Ir and the remaining images are labeled as source images

{Is}
n−1
s=1 . Then, the algorithm scans the reference image

in a row-major order at the pixel level. During the scan, at

each pixel location of the reference image, it labels the pixel

as static or dynamic using the information from the source

images. If a pixel gets labeled as static, we move on to the

next location. On the other hand, if a pixel gets labeled as

dynamic, its pixel value gets updated by the corresponding

pixel value of the static region which is being occluded by

it. We maintain a map L : N×N → {0, 1} corresponding to

the reference image and keep updating it during the scans.

We call it a dynamic map. Here, 0 stands for dynamic and 1
stands for static. First, the algorithm scans the image from

top-left to bottom-right, then from bottom-right to top-left,

again from top-left to bottom-right, and so on, until there is

no pixel in the image which gets labeled as dynamic. The

algorithm outputs an image with only static regions and a

binary map highlighting the dynamic objects present in the

reference image. We assume that the origin is at the top-

left corner of the image and the coordinates increase as we

move towards right or downwards.

3.1. Dense Correspondences

Since we are dealing with multi-view images, there will

be deformations. In such cases, for comparison of two

patches, the intensity values will not be suitable. Hence,

we extract CIE Lab mean features and SIFT features [27]

for a patch of size p × p centered at each pixel location for

all the images of the given set. We normalize the SIFT fea-

tures by dividing them by the maximum of their values over

all the images in the given set. Let fg : R× R → R
128 and

fc : R × R → R
3 be the functions which map each pixel

location of an image to 128 dimensional SIFT feature de-

scriptor and CIE Lab mean feature descriptor, respectively.

We estimate dense correspondence map Nr→s : R × R →
R×R from the reference image Ir to each source image Is,

where s = 1, 2, . . . , n−1. Since, we want to exploit the co-

herency present in the scene, we have used dense flow fields

[17] for dense correspondence estimation. Here, we do not

rely on the quality of matches obtained on the dynamic ob-

jects, even incorrect matches on the dynamic objects will

not affect the results. Algorithms like Full flow [7] which

can compute optical flow for large displacements can also

be used to find the dense correspondences.

We also compute a similarity map Cs : R×R → R for each

source image Is, where s = 1, 2, . . . , n−1. The purpose of

the similarity map is to quantify the quality of each match

obtained by finding the dense correspondences between the

reference image and the source images.

Cs(xr) = λ1Se(fc(xr), fc(x̂), σc)+
λ2Se(fg(xr), fg(x̂), σg) + λ3Sf (xr, x̂,Fs)

(1)

Here, s = 1, 2, . . . , n − 1, xr = (x , y) is the pixel lo-

cation in the reference image Ir, and x̂ = Nr→s(xr)
is the nearest neighbour location of xr in Is. fc(x)
and fg(x) represent the CIE Lab mean feature vector and

SIFT feature descriptor extracted at the pixel location x

of an image, respectively. Here, Se(ft(x1), ft(x2), σt) =

e
−

||ft(x1)−ft(x2)||22
2σ2

t and Sf (x1,x2,F) = e
−

ds(x1,x2,F)

2σ2
e ,
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Algorithm 1 Simultaneous Detection and Removal of Dy-

namic Objects in Multi-view Images

Input: reference image Ir, source images {Is}
n−1
s=1

Output: Dynamic map L, Updated reference image Îr
with no dynamic objects

for s = 1 → n− 1 do

Extract feature descriptors for Ir and {Is}
n−1
s=1

Compute dense correspondence map Nr→s

Compute the confidence Map C(s) (Section 3.1)

end for

for scan ∈ {down, up} do

for x = 1 → cols do

for y = 1 → rows do

Find the candidate locations P in {Is}
n−1
s=1

(Section 3.2.1)

Find L(x, y) using P (Section 3.2.1)

if L(x, y) == 0 then

Update Ir(x, y) using patches at P
(Section 3.2.2)

Update Nr→s(xr) and C(s)(xr),
∀s = 1, . . . , k (Section 3.2.3)

end if

end for

end for

end for

where t ∈ {c, g} and ds is the squared Sampson distance

[16]. The values used for λ1, λ2, λ3, σc, σg , and σe are

0.15, 0.4, 0.45, 4.8, 0.25, and 0.17, respectively. Fs is the

fundamental matrix estimated between Ir and Is [16]. The

similarity map considers appearance and geometric consis-

tency in order to quantify the quality of correspondences.

3.2. Simultaneous Detection and Removal of Dy
namic Objects

We rely on the coherency present in the natural images,

i.e., if two patches are nearby in one image, then their near-

est neighbours are likely to be close to each other in the

other image of the same scene captured from a different

(or same) angle. We scan the reference image in two or-

ders: top-left to bottom-right and bottom-right to top-left.

During the scan, at each pixel location, we select some can-

didate locations from the source images. Then, based on

those candidate locations, we make a decision on whether

the pixel belongs to a dynamic object or not. If the pixel

belongs to a dynamic object, we update its pixel value with

the pixel value of the corresponding static region, its dense

correspondence map, and the similarity map. Otherwise,

we move on to the next location.

3.2.1 Decision

We select a set of candidate locations P from the source im-

ages {Is}
n−1
s=1 . We compute these candidate locations simi-

lar to Generalized PatchMatch [1] and Kanojia et al. [21].

The set of candidate locations depends on the order of scan.

Let xr = (x , y) be the current location in Ir during the

scan. Let x̂l
s, x̂u

s , x̂r
s , and x̂

b
s, be the nearest neighbour lo-

cations of the left, upper, right, and bottom of the current

location xr in the source image Is, respectively. Let xl
s,

x
u
s , xr

s , and x
b
s be the pixel locations on the right, bottom,

left, and upper of x̂l
s, x̂u

s , x̂r
s , and x̂

b
s, respectively. Let Ps

be the set of candidate locations in the source image Is and

Bs be the set of their corresponding values in the similarity

map Cs.

During the scan from top-left to bottom-right, Ps =
{xl

s,x
u
s } and Bs = {Cs(x − 1, y), Cs(x , y − 1)}, and

from bottom-right to top-left, Ps = {xr
s,x

b
s} and Bs =

{Cs(x + 1, y), Cs(x , y + 1)}. Then, P =
n−1
⋃

s=1
Ps is the set

of candidate locations for xr and B =
n−1
⋃

s=1
Bs is the set

of their corresponding values in the similarity map. Here,

an entry of B represents the confidence of the contender lo-

cation to be the corresponding location of x in the source

image. B relies on the image coherency to assign weights

to the contender location. It uses the similarity measure of

matching of the neighbours as weights. For example, if

xr = (x, y) is the current location, then, (x − 1, y) is its

left neighbour. Let x̂r = (x̂, ŷ) be the nearest neighbour

of (x − 1, y) in image Is, then (x̂ + 1, ŷ) is the candidate

location to be the nearest neighbour of xr . The confidence

of (x̂ + 1, ŷ) to be the candidate location depends on how

well (x− 1, y) and x̂r are matched.

Here, we make an assumption that the static part is exposed

in majority of the images. Now, we label the current pixel

location as static or dynamic. We make the decision based

on the candidate locations of the current location. We apply

a clustering algorithm on P to obtain a set of clusters [21].

The distance function for the clustering algorithm is given

by Eq. 2.

B(x1,x2) =1− λ4Se(fc(x1), fc(x2), σc)
−λ5Se(fg(x1), fg(x2), σg)

(2)

Here, x1,x2 ∈ P , and λ4 = λ1

λ1+λ2
, λ5 = λ2

λ1+λ2
, σc, and

σg are constants. Se, fc, and fg are defined in section 3.1.

The corresponding location of the current location could be

occluded in some of the source images by the same (or dif-

ferent) dynamic object(s). Hence, we use DBSCAN, as we

do not know the number of clusters [13]. Let us assume that

we obtain k clusters {Ak}
k
i=1. Let bk =

∑

l Bl, where Bl

is an entry of B and l represents the index corresponding to
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the candidate locations belonging to the kth cluster.

(f̂c, f̂g) = (
1

bm

∑

xl∈Am

Blfc(xl),
1

bm

∑

xl∈Am

Blfg(xl))

(3)

Here, Bl is the entry of B corresponding to xl, and m is

such that bm = max
k

bk.

M(xr) = λ4Se(fc(xr), f̂c, σc) + λ5Se(fg(xr), f̂g, σg)
(4)

If M(xr) > tr, then xr belongs to the static region. Else,

xr belongs to the dynamic region. Here, tr is a constant.

L(xr) =

{

1, if M(xr) > tr
0, otherwise

(5)

Here, L is the dynamic map, 0 stands for the dynamic region

and 1 stands for the static region.

3.2.2 Removal

If the current pixel location xr belongs to the static region,

we move on to the next location. However, if xr belongs

to a dynamic object, we update the reference image Ir. Let

us consider that xr belongs to a dynamic object. We can

separate the candidate locations in P into two parts, i.e.,

x
a
s ∈ Am and x

a
s 6∈ Am, where, s ∈ {1, 2, . . . , n− 1} and

x
a
s is a candidate location. During the scan from top-left to

bottom-right, a ∈ {l, u} and during the scan from bottom-

right to top-left a ∈ {r, b} (Section 3.2.1).

We update the reference image Ir using candidate locations

in Am. Let qxa

s
be an image patch of size p × p extracted

from x
a
s from the source image Is, where x

a
s ∈ Am. We

extract a set of patches P = {qxa

s
: xa

s ∈ Am} from the

corresponding source images. Let xl
r , xu

r , xr
r , and x

b
r be

the left, upper, right and bottom pixel locations of xr in Ir,

respectively. Let qxl

r

, qxu

r
, qxr

r
, and qxb

r

be the patches of

size p × p centered at xl
r , xu

r , xr
r , and x

b
r , respectively.

During the scan from top-left to bottom-right, qxl

r

and qxu

r

will be used and from bottom-right to top-left, qxr

r
, and qxb

r

will be used.

First, we will discuss the scan from the top-left to bottom-

right. When an image patch q ∈ P is placed at xr , let

w1
q and w2

q be the overlapping region of the image patch

q with qxl

r

and qxu

r
, respectively. Let w1

r and w2
r be the

overlapping regions of the image patches qxl

r

and qxu

r
with

q, respectively.

q∗ = max
q∈P

2
∑

i=1

(

λ6Se(gc(w
i
q), gc(w

i
r), σc)+

λ7Se(gh(w
i
q), gh(w

i
r), σh)

)

+ λ8Sf (xr,xq,Fq)
(6)

Here, gc and gh are the functions which compute CIE Lab

mean and rotation invariant histogram of oriented gradient

(HoG) feature descriptor of the input image patch, respec-

tively. xq is the pixel location of the patch q ∈ P and Fq

is the fundamental matrix between the reference image and

source image Is in which the patch q lies. The values used

for λ6, λ7, λ8, and σh are 0.12, 0.36, 0.03, and 4.8 respec-

tively.

We replace the patch in Ir at xr by q∗. Also, we update

fc(xr) and fg(xr) with the CIE Lab mean feature descrip-

tor and SIFT feature descriptor of the image patch q∗. There

can be a scenario where multiple patches in P lie on the

minima or very close to the minima. This is possible when

the overlapping area is the same. However, there is a pos-

sibility that the non-overlapping area is different. Let P̂ be

the set of such patches. In such a case, we replace the patch

in Ir at xr by q̂.

q̂ = min
q
x
a
s
∈P̂

λ4||f̂c − fc(x
a
s)||

2
2 + λ5||f̂g − fg(x

a
s)||

2
2 (7)

During the scan from bottom-right to top-left, we follow the

same procedure except that qxl

r

and qxu

r
are replaced by qxr

r

and qxb

r

, respectively and a ∈ {r, b}.

3.2.3 Update

After we replace the patch belonging to the dynamic object

at xr with its static counterpart, we update Nr→s(xr) and

Cs(xr), ∀s = 1, 2, . . . , n− 1. Let,

H(xr,x,F) = λ1Se(fc(xr), fc(x), σc)+
λ2Se(fg(xr), fg(x), σg) + λ3Sf (xr,x,F)

(8)

Here, xr,x ∈ R
2 and F is a fundamental matrix. Now,

we have two sets of candidate locations, one that belongs

to Am and the other that does not. The candidate locations

were constructed in such a way that each source image con-

tributes two candidate locations. Now, there can be three

cases.

First, consider that only one of the two candidate locations,

let us call it x, of Is lies in Am. Then, we have

Nr→s(xr) = x

Cs(xr) = H(xr,x,Fs)
(9)

Here, Fs is a fundamental matrix estimated between Ir and

Is.

Second, consider that both the candidate locations, let us

call them xs1
and xs2

, from Is lie in Am. Then, we have

x
∗ = max

x∈{xs1
,xs2

}
H(xr,x,Fs) (10)

and,
Nr→s(xr) = x

∗

Cs(xr) = H(xr,x
∗,Fs)

(11)

Third, consider that none of the candidate locations from Is
lie in Am. This implies that the static region corresponding
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Figure 2. The figure shows the comparsion between the detection

results obtained in Kanojia et al [21] and using the proposed ap-

proach. The left column shows the results obtained in Kanojia et

al. [21] and the right column shows the results obtained using the

proposed approach.

to xr in Is is occluded by a dynamic object. In this case, we

cannot rely on appearance, instead we have to completely

rely on geometry. Let xs1
and xs2

be the candidate loca-

tions picked from Is and xs1
,xs2

6∈ Am . During the scan

from top-left to bottom-right, X = {xs1
,xs2

, x̂l
s, x̂

u
s },

and from bottom-right to top-left, X = {xs1
,xs2

, x̂r
s, x̂

b
s}.

Then,

x
∗ = max

xs∈X
Sf (xr,xs,Fs) (12)

and,
Nr→s(xr) = x

∗

Cs(xr) = H(xr,x
∗,Fs)

(13)

These matches will have low similarity value. Hence, they

will not affect the selection of the most confident cluster,

i.e., Am for the next location. This will continue during

the scan until the dynamic region completely passes in that

source image. The geometry helps the match to slide over

the dynamic region while keeping it close to the occluded

static counterpart of xr in that source image. The reason

behind including {x̂l
s, x̂

u
s } and {x̂r

s, x̂
b
s} is the image

warping due to wide baseline. The corresponding location

of xr may not always increment in the source image as we

proceed in the scan.

Figure 3. The figure shows the comparison between the object re-

moval results obtained using Kanojia et al. [21] and the results

obtained using the proposed approach. The first row shows the

reference images of some of the datasets. The second row shows

the results obtained using the approach by Kanojia et al. [21]. The

third shows the results obtained using the proposed approach.

Dataset
Dafni et al.

[10]

Kanojia

et al. [21]
Ours

Skateboard 0.42 0.5 0.67
Basketball 0.47 0.51 0.47
Climbing 0.13 0.34 0.28

Playground 0.32 0.36 0.43
Toy ball 0.6 0.44 0.31

Table 1. The table shows the comparison of the dynamic object

detection results between Dafni et al. [10], Kanojia et al. [21], and

the proposed approach on the CrowdCam image sets used in [10]

in terms of Jaccard index. We obtain better/comparable results

with the state-of-the-art even when we are not only focusing on

the detection but also the removal of the dynamic objects.

4. Results and Discussion

Dataset. As, a dedicated dataset of multi-view images with

dynamic objects is not publicly available, we constructed

the dataset for this work as follows. We selected some

scenes from the DAVIS dataset [34]. We sampled frames

at an interval of around 6-10 frames to create image sets

with 5-7 images in each set. Similarly, we extracted some

multi-view sets from Freiburg Berkeley Motion Segmenta-

tion dataset [5]. We also used the skateboard, basketball,

climbing, playground, and toyball datasets used in Dafni et

at. [10], and tennis dataset used in [4]. We have used the

VLFeat implementation of dense SIFT feature descriptors

in all our experiments [43].

Results. We applied the proposed algorithm on the image

sets from the prepared dataset to obtain the results. In Fig.

1, we show the progress of the detection and the removal of
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Figure 4. The figure shows the detection and the removal results obtained on the multi-view datasets extracted from DAVIS dataset [34]

using the proposed approach. It can be observed in each image set that the dynamic objects has been replaced by the static regions which

were occluded by them.

the dynamic object at certain intervals during the first scan

of the algorithm. Fig. 1(a) and 1(b) show the reference im-

age and the source images, respectively. The first and the

second row of Fig. 1(c) show the detection and the removal

of the dynamic object in the reference image at certain in-

tervals during the first scan, respectively. In each column of

Fig. 1(c), the detection and the removal results are shown

for the same iteration. It can be seen that the dynamic ob-

jects are being detected and removed, simultaneously. In

the third row of Fig. 1(c), it can be observed that the text

and the symbols which were occluded by the dynamic ob-

ject have been properly filled in the dynamic region. It can

be observed that the text and the symbols which are get-

ting updated in the reference image are consistent with the

corresponding regions in the sources images in which those

static regions are not occluded. This example shows the ef-

ficiency of the algorithm in transferring the static regions

from the source images into the reference image without

any artifacts. In general, the proposed approach requires

multiple scans of the reference image to arrive at an artifact-

free transfer of the static regions from the source images to

the reference image.

The algorithm proposed in [21] mainly deals with the detec-

tion of the dynamic objects present in the images of a scene.

They showed some preliminary results of their proposed al-

gorithm on the removal of the dynamic objects when the

scene is captured using a static camera. However, such as-

sumptions are not valid when the images are captured using

a hand-held camera. In Fig. 2, we compare the dynamic

object detection results obtained in Kanojia et al. [21] with

the results obtained using the proposed approach. It can be

observed that we obtain better coverage over the dynamic

object which is very crucial for the artifact-free removal

of the dynamic objects. Table 1 shows the comparison of

the dynamic object detection results obtained in Dafni et al.

[10] and Kanojia et al. [21] with our results on the datasets

used in [10] in terms of Jaccard index used in [10]. We ob-

tain better/comparable results with the state-of-the-art even

when we are not only focusing on the detection but also

the removal of the dynamic objects. In Fig. 3, we com-

pare the dynamic object removal results obtained on image

sets captured using hand-held cameras using the approach

by Kanojia et al.[21] with the proposed approach. The first

row shows the reference images of some of the datasets.
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Figure 5. The figure shows the dynamic object detection and re-

moval results obtained on the reference image of four multi-view

image sets extracted from Davis dataset [34] using the proposed

approach.

The second row shows the results obtained using the ap-

proach by Kanojia et al. [21]. The third shows the results

obtained using the proposed approach. It can be seen that

the proposed algorithm performs much better in comparison

to [21]. In all our experiments, the threshold used in DB-

SCAN and the threshold tr used in Eq. 5 range beween 0.15

to 0.8. In Fig. 4, we show the detection and the removal

results obtained on the multi-view datasets extracted from

DAVIS dataset [34] using the proposed approach. It can be

observed in each image set that dynamic objects has been

replaced by static regions which were occluded by them.

In Fig. 5, we show the detection and the removal results

obtained on the reference images of four multi-view image

sets extracted from Davis dataset [34] using the proposed

approach. In Fig. 6, we show the detection and the removal

results obtained on the reference images of four multi-view

image sets extracted from Freiburg Berkeley Motion Seg-

mentation Dataset [5] using the proposed approach. The

results for the complete set for the image set shown in Fig.

5 and 6 are provided in the supplementary material.

The previous learning-based image completion works used

a single image as the input [18, 47] and the networks were

trained on datasets like Places2 [48]. On the other hand, the

proposed approach utilizes multiple images to not only fill

the dynamic objects but also to detect them. Hence, a fair

comparison is not plausible. However, just for reference, we

have provided some comparisons with the learning-based

single image inpainting methods in the supplementary ma-

Figure 6. The figure shows the dynamic object detection and re-

moval results obtained on the reference image of four multi-view

image sets extracted from Freiburg Berkeley Motion Segmentation

Dataset [5] using the proposed approach.

terial. We have also provided some more qualitative and

quantitative results in the supplementary material.

5. Conclusion and Future Work

We have designed a novel framework which detects the

moving objects present in the multi-view images while

simultaneously removing them. We replace the moving

objects with the static regions which are occluded by them.

We do not rely on the quality of correspondences obtained

on the dynamic objects. However, the quality of detection

and removal depends on the quality of correspondences

obtained in the static region. We exploit image coherency

and epipolar geometry to detect and remove the dynamic

objects. Also, we do not take any user assistance. Our

algorithm does not involve 3D reconstruction of the scene

which in itself needs handling of the dynamic objects.

We show that we achieve an artifact-free transfer of static

regions from the source images to the reference image for

several complex real-world scenes.
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