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Abstract

Automatic synthesis of realistic eye images with pre-

scribed gaze direction is important for multiple application

domains. We introduce EyeGAN, an algorithm to generate

eye images in the style of a desired target domain, that in-

herit annotations available in images from a source domain.

EyeGAN takes in input ternary masks, which are used as

domain-independent proxies for gaze direction. We eval-

uate EyeGAN against competing eye image synthesis al-

gorithms by measuring a specific gaze consistency index.

In addition, we present results from multiple experiments

(involving eye region segmentation, pupil localization, and

gaze direction estimation) showing that the use of EyeGAN-

generated images with inherited annotations for network

training leads to superior performances compared to other

domain transfer algorithms.

1. Introduction

We are interested in generating realistic images of human

eyes with a prescribed gaze direction. A direct practical ap-

plications of this technology is gaze redirection for telecon-

ferencing [4]. A more indirect application is the creation of

data sets for the training of image-based gaze tracking algo-

rithms. These systems require large amounts of images with

specific annotations. While some annotation types (e.g., the

location of the pupil center) can be easily obtained via man-

ual labeling, others are more challenging. For example, in

order to determine the gaze direction of people visible in the

images, data sets are often built by asking human subjects

to look at a certain point on a screen [42] or at a calibrated

location (such as an object [7]). Then, gaze direction an-

notations are extrapolated from geometric reasoning, such

as by drawing a line from the location on the screen been

fixated to the viewer’s pupil, whose location in 3-D is as-

sumed known. This is a relatively complex and error-prone

procedure. Other features that cannot be obtained by man-

ual labeling (because not observable) include the center of

rotation of the subject’s eyeball, which is needed to train

model-based gaze tracking algorithms [3, 37].
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Figure 1. Center: Image–mask (Is,Ms) pair synthesized by Uni-

tyEyes [39]. Left: The image generated by SimGAN [33] using

Is as input. Right: The image generated by our EyeGAN system

using Ms as input. Both generated images are shown with the as-

sociated mask, computed by the segmenter trained with EyeGAN.

Several methods have been proposed and demonstrated

for the generation of realistic eye images, with genera-

tive adversarial networks (GAN [9]) arguably producing

the best results. Controlling the gaze direction of the gen-

erated images, though, has proven more elusive. Part of

the problem is that assessing gaze direction from an im-

age, or at least determining whether it is congruent with

that of another image, is difficult. Consider, for example,

SimGAN [33], a popular algorithm that casts the synthesis

problem as one of domain transfer. Starting from purely

synthetic images, created using computer graphics from a

model of the human eye, with prescribed gaze direction and

head orientation, SimGAN generates realistic images sam-

pled from a specific target domain. Gaze direction is con-

trolled by adding to the adversarial loss a term that mea-

sures the L1 norm of the pixel-wise difference between the

generated and the input image. Unfortunately, substantial

photometric differences between the images in the two do-

mains tend to bias this simple measure of gaze discrepancy,

especially for larger image sizes. This is shown in the ex-

ample of Fig. 1, wherein an image generated by SimGAN

appears to look in a different direction than in the synthetic

image provided in input.

Our approach to controlling the gaze direction of the

generated images is inspired by the intuition that important

information about gaze direction is revealed by a segmen-
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tation mask of the eye image. A well-formed segmentation

mask describes three main components of an eye image:

the iris, the white sclera, and the skin area surrounding the

sclera (see Fig. 1, lower row.) It is well known that, for

a fixed head pose, the iris eccentricity (relative location of

the iris within the white sclera) determines the perceived

gaze direction [35], and that the amount of visible sclera

depends on the head orientation [30]. It thus stands to rea-

son that such a ternary mask could be used to represent gaze

direction and head orientation. It is also conceivable that a

well-designed segmenter should be able to extract accept-

able segmentation masks from real eye images. Based on

these observations, we decided to experiment with masks

as domain-independent proxies for gaze direction.

Our proposed system takes in input a ternary mask pro-

duced by the UnityEyes graphic engine [39] with the de-

sired head orientation and gaze direction, and generates an

eye image with the same gaze direction in the “style” of

the desired domain (Fig. 1, right column). The network

is trained using a conditional GAN under the pix-to-pix

paradigm [14]. Specifically, each training sample is formed

by a pair (image, ternary mask) from the target domain.

Whereas only the ternary mask is fed into the generator,

the associated image is used for two purposes: to facilitate

the job of the discriminator, and to enforce faithfulness of

appearance by means of a L1 loss term that penalizes the

difference between the input and the output images. Herein

lies a critical difference with SimGAN: we never directly

compare images from different domains, thus sidestepping

the risk of bias from effects that are independent of gaze

orientation.

A subtle but important characteristic of our algorithm is

that the actual angles of gaze direction or head orientation

are not needed at training time. We only use images from

the target domain during training, and don’t assume that

these images have been annotated (as mentioned earlier, ob-

taining the required type of annotation can be challenging).

Head pose and gaze direction information is embedded in

the ternary masks, which are computed from the images

themselves. When the generator is used to synthesize new

images for a desired gaze direction, it takes in input a proper

ternary mask, produced, for example, by UnityEyes.

For this system to work, it is critical that good quality

ternary masks be available for images in the target domain.

Standard segmentation algorithms can be used for this pur-

pose, provided that enough labeled data is available for their

training. Manual labeling (by drawing the iris and visible

sclera regions in each image) is a conceivable option, albeit

a time-consuming and error-prone one We decided instead

to experiment with a training procedure that only uses the

ternary masks automatically generated by UnityEyes along

with the synthetic eye images. The segmenter is trained

in parallel with the generator in an iterative fashion. This

scheme is shown to produce excellent results after just a

few iterations.

Our proposed EyeGAN system was evaluated compara-

tively in two different ways. First, we looked at the con-

sistency of gaze direction by comparing the ternary masks

computed on the generated images with the masks that were

given as input. If the two masks agree, it can be expected

that the perceived gaze direction of the generated images

is congruent with the prescribed gaze direction, which was

used to create the synthetic input. Second, we used Eye-

GAN to generate image data sets in target domains, while

inheriting original annotations, and used this data to train

networks for specific tasks: image region segmentation,

pupil localization, and gaze direction estimation. These are

applications of great interest for biometrics [27], medical

diagnostic [36], and eye gaze tracking [28]. In many situ-

ations, annotating this type of data can be difficult or im-

possible, hence the interest in domain transfer methods for

network training. The results of our experiments show that

EyeGAN compares favorably with other state of the art do-

main transfer algorithms under the metrics considered.

2. Related Work

Due to its relevance in multiple application scenarios, the

synthesis of realistic eye images has received considerable

attention in the literature. Le et al. [25, 24] captured im-

ages under different head poses; eye images for new head

poses were then synthesized via warping. Multiple cameras

were used in [34] to build a 3D reconstruction of the eye

region and to synthesize eye images for novel poses. Wood

et al. [40, 39] rendered eye images (via computer graph-

ics) using a 3D geometric eye model and head scans. This

tool can be used to build very large data sets of perfectly

annotated, high quality eye images. However, these syn-

thetic images may not be representative of specific target

domains, for which representative images may be available,

but annotations may be difficult or impossible to obtain.

An approach to improving the quality of training data,

while inheriting existing annotations, is to use a domain

transfer algorithm. For example, SimGAN [33] transforms

an eye image generated synthetically, with the desired head

orientation and gaze direction, into a new image with the

style of the target domain. This is accomplished by a

GAN, trained to minimize an expected loss that includes

two terms: the standard minimax adversarial loss (to ensure

that the generated images look like samples from the target

domain); and a L1 loss that penalizes discrepancies from

the input synthetic eye image. This second term is meant

to maintain consistency in gaze direction between the in-

put synthetic image and the generated image. SimGAN

produces impressive results, yet suffers from the problem

that direct comparison of the generated and of the input im-

age is difficult, as the images are from different domains.
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Pixel-wise differences between the two images may thus be

caused not only by a gaze direction discrepancy, but also by

other irrelevant photometric factors (see e.g. Fig. 1).

In order to mitigate the problem of cross-domain com-

parison, Lee et al. [21] relied on the CycleGAN training

procedure [43]. CycleGAN trains two generators, mapping

images from source to the target domain, and vice-versa.

A “cyclic loss” is defined (in additional to the standard ad-

versarial loss) that penalizes the L1 norm of the difference

between an image I in one domain, and the image obtained

by mapping I to the other domain, then mapping the re-

sult back to the original domain. Hence, the L1 loss term

is computed only between images in the same domain. Yet,

this strategy alone cannot ensure that gaze direction is pre-

served. For example, the generator mapping images from

the source to the target domain may still introduce a gaze

direction discrepancy, provided that the generator from the

target to the source domain learns to remove this discrep-

ancy (that is, to “re-direct” gaze back to the original direc-

tion.) While CycleGAN maps source and target domains

into separate latent spaces, other algorithms [20, 22] use a

shared latent space for domain transfer from unpaired data.

The method by Wang et al. [38] combine image synthesis

and gaze estimation in a unified model.

Our EyeGAN system is directly inspired by the pix2pix

algorithm for domain transfer [14]. Pix2pix requires pairs

of images for training, where one image is from the source

domain, and the other is the associated image in the target

domain. A key insight of EyeGAN is that the generator

does not need a highly detailed eye image input to produce a

target domain image. What is needed is an input image with

enough information to guide generation of a target domain

image with the prescribed gaze direction. We use ternary

mask images for this purpose. Closely related to our work

is the Cycada algorithm [12], which used CycleGAN for

domain transfer, then segmented the resulting images using

a fully convolutional network (FCN) [23] (symultaneously

trained), where the FCN loss is fed back into the GAN to

ensure correctness of the inherited annotations. Differently

from Cycada, our EyeGAN algorithm directly starts from a

segmentation mask.

A related area of research is gaze redirection, wherein

both input and output images are in the same domain. Initial

work in this area aimed to learn a warp function to “turn”

one’s gaze to the desired direction [18, 8]. Improved results

were recently obtained using adversarial training [11].

3. The EyeGAN Algorithm

Our system generates eye images with a desired style, as

represented by a set of (un-annotated) images taken in a par-

ticular target domain. Head pose and gaze direction for the

generated images are controlled by means of ternary masks

which, as discussed in the Introduction, function as prox-

ies for the desired pose and gaze direction. Specifically, we

assume that a data set of synthetic images Is (where the sub-

script s stands for “source”) is available, along with associ-

ated masks Ms, also synthetically produced. (Alternatively,

real images with manual mask annotations could be used.)

At run time, the generator, implemented as a convolutional

network, takes one such mask in input, and produces an im-

age in the desired style. Note that, unlike similar algorithms

such as SimGAN or CycleGAN, we do not use syntheti-

cally generated eye images as input, but only the associated

masks.

The generator is trained according to two criteria: (1) Re-

alism: the generated images must look realistic (as if they

were actual samples from the target domain); (2) Consis-

tency: the perceived gaze direction and head orientation of

a generated image must conform to the prescribed values,

in the sense that the associated mask should look similar

to the mask fed into the generator. To generate realistic

images, we follow the same conditional GAN strategy as

pix2pix [14]. Specifically, the training data is formed by

pairs mask–image in the target domain, of which only the

mask is fed into the generator. The network is trained using

a minimax adversarial loss, to which a L1 loss term is added

to ensure that the generated image looks similar to the im-

age associated with the input mask. This loss term enforces

consistency: if the output image is similar (in L1 norm) to

the image associated with the input mask, then the mask as-

sociated with the output image can be expected to be similar

to the input mask. Critically, the L1 loss component is com-

puted from two images that can be assumed to be from the

same domain (unlike SimGAN). We used quadratic loss for

the adversarial component, as it was shown to be superior to

log loss in terms of training stability [26]. The overall loss

function is thus:

L(G,D) = EIt [D(It)− 1]2 + EM(It)[D(G(M(It)))]]
2

(1)

+λEIt‖It −G(M(It))‖1

This training scheme requires availability of images It in

the target domain along with associated masks Mt. Unfor-

tunately, such masks are normally not available, and their

production via manual labeling can be exceedingly time

consuming. Instead, we create the required masks from tar-

get domain images using a properly trained semantic seg-

mentation algorithm (such as FCN [23]) that takes in an im-

age It to produce a mask M(It) (note the overloaded use

of the symbol M ). Still, the problem remains: in order to

train the segmenter, we need image–mask pairs. We tackle

this problem by leveraging the pairs (Is,Ms) available in

the synthetic eye image data set. Intuitively, a segmenter

trained on this data should be able to produce a recogniz-

able, albeit probably not accurate, masks when applied to a

target domain image. An example is shown in Fig. 3.
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Figure 2. The overall training scheme of EyeGAN. At each step, the modules being trained are shown on a grey background.

It M(It) M(It) M(It)

Iteration 1 Iteration. 2 Iteration 3

Figure 3. Two examples of segmentation of target domain im-

ages It. At Iteration 1, the segmenter was only trained using

synthetic images and masks (Is,Ms). In further iterations, pairs

(G(Ms),Ms) were added to the data set.

In order to improve the quality of segmentation, we aug-

ment the training data set for the segmenter (Fig. 2, top left)

with image–mask pairs from the target domain. Of course,

no improvement should be expected by simply adding to

the training set pairs (It,M(It)), where the masks M(It)
were obtained using a suboptimal segmenter. Rather, we

add pairs image-mask of the form (G(Ms),Ms), where the

masks Ms come from the synthetic data set (and thus are

of perfect quality), and the associated images G(Ms) are

created by the generator, which, as explained earlier, was

trained using pairs (It,M(It)). While not “real”, these im-

ages can be considered to be samples from the distribution

of the target domain (thanks to adversarial training.) We

have observed that, after retraining the segmenter with this

augmented data set, its performance on the target domain

images improve noticeably (see Fig. 3). The process is

then repeated. After 2–3 iterations, the segmenter produces

satisfactory results, leading to good quality target domain

image-mask pairs, which are used to re-train the generator.

Fig. 2 shows the overall training scheme. Note that, at run

time, the generator is only fed with synthetic mask Ms.

3.1. Implementation Details

In all of our experiments, source eye images and masks

were created using the UnityEyes tool [39]. The images

were cropped to only include the eye region, and resized

to 120 × 88 pixels. The ternary masks were obtained from

the landmark points provided to indicate the boundary the

sclera and of the iris regions. A set of 25,000 synthetic im-

ages and masks was thus generated.

The segmenter was implemented using the FCN-8s ar-

chitecture [23]. The learning rate was set to 0.001,

with batch size of 8. The network was optimized using

Adam [17]. A pytorch implementation1 of the pix2pix

scheme [14] was used to train the generator mapping masks

to target domain images. The architecture of the generator

was similar to that of [15, 43] with six Resnet [10] blocks.

The discriminator used the same PatchGAN architecture

of [43]. The balancing coefficient λ was set to 40.

4. Experiments

4.1. Gaze Direction Validation

A simple way to evaluate whether a generated eye image

in the target domain (target image for short) is consistent

with a desired gaze direction, is to compare its associated

ternary mask (obtained via segmentation) with the mask fed

1https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix
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into the generator, which was synthetically created accord-

ing to the prescribed gaze direction. If the two masks are

identical, we may assume that gaze direction is maintained

(more precisely, the gaze direction as perceived when ob-

serving the image coincides with the gaze direction repre-

sented by the input mask). A target image It = G(Ms)
whose mask M(It) (as computed by the segmenter) is dis-

similar from the input mask Ms, is unlikely to be judged

to have the same gaze direction. We measure the similarity

S of two equally-sized ternary masks M1, M2 by the num-

ber of pixels in which the masks agree, divided by the total

number of pixels in each masks. The number S(M1,M2)
takes values between 0 and 1, and is equal to 1 only when

the masks are identical. When considering the similarity

of two masks, one synthetically produced2 for gaze direc-

tion θ (denoted by Mθ
s ), the other obtained by segmen-

tation of the target image generated with input mask Mφ
s

(M(Iφt ), where Iφt ≡ G(Mφ
s )), we will use the shorthand

Ss,t(θ, φ) ≡ S(Mθ
s ,M(Iφt )).

We frame gaze orientation validation in probabilistic

terms by defining a probability density function on the gaze

direction θ perceived upon observation of a target image

generated under prescribed gaze direction φ: p(θ|Iφt ). This

means that, upon observing the target image Iφt , with proba-

bility p(θ|Iφt )dθ the perceived gaze direction angle is within

an interval dθ around θ.

We will make the assumption that p(θ|Iφt ) is a function

of the similarity between the mask M(Iφt ), and the “ideal”

mask for gaze direction θ, which is Mθ
s . Formally:

p(θ|Iφt ) = K(φ)f(Ss,t(θ, φ)) (2)

where f(S) = exp(−α · (1 − S)). α is a parameter

that controls the dispersion of the density p(θ|Iφt ) (we set

α=10 in our experiments.) K(φ) is a normalization con-

stant that can be estimated as follows. We sample N
gaze directions {θi} uniformly within the angular inter-

val Θ in which θ can take values, and compute the mean

f̄φ =
∑N

i=1 f(Ss,t(θi, φ))/N :

f̄φ ≈
1

K(φ)
Eθ∼U(Θ)[p(θ|I

φ
t ] =

1

K(φ)‖Θ‖
(3)

from which we obtain:

K(φ) = 1/(f̄φ · ‖Θ‖) (4)

Given a target image generated for gaze angle φ, the

probability that the perceived gaze direction coincides with

φ with tolerance dφ is p(φ|Iφt )dφ. Hence, the probability

that the perceived gaze direction for a generic target image

is “correct” (coinciding with the prescribed gaze direction,

2For simplicity of exposition, we only consider here one angle, instead

of two, of gaze direction, and conflate head orientation with gaze direction.

Figure 4. Sample images from the UBIRIS data set [29] (selected

from those taken at a distance of 4 meters.) The images were his-

togram equalized.

which is assumed to be uniformly distributed) within toler-

ance dφ, is p(Cs,t)dφ, with:

p(Cs,t) = Eφ∼U(Θ)[p(φ|I
φ
t )] (5)

≈
1

N

N∑

j=1

p(φj |It(φj)) =
1

N

N∑

j=1

K(φj)f(Ss,t(φj , φj))

≈
1

‖Θ‖

N∑

j=1

f(Ss,t(φj , φj))∑N

i=1 f(Ss,t(θi, φj))

=
1

‖Θ‖

N∑

j=1

e−α(1−Ss,t(φj ,φj))

∑N

i=1 e
−α(1−Ss,t(θi,φj))

where the prescribed gaze directions {φj} are sampled uni-

formly within Θ.

The relative effectiveness of different eye image syn-

thesis methods at preserving gaze direction can be quan-

tified by comparing p(Cs,t), computed for each method,

with the same quantity computed in the “ideal” case, where

M(It) is substituted by Ms (the resulting value is denoted

by p(Cs,s)). The ratio p(Cs,t)/p(Cs,s) (termed gaze con-

sistency index) is shown for the SimGAN, CycleGAN, and

EyeGAN methods in Tab. 1 (note that term ‖Θ‖ disappears

in the ratio.) We used the segmenter designed as part of the

EyeGAN training process to extract masks from the target

images in all three methods. These results were obtained

using Eq. (5) on N = 81 input masks Ms (or associ-

ated synthetic images Is in the case of SimGAN and Cy-

cleGAN), sampled uniformly in terms of gaze direction and

head orientation. Target domain images were culled from

the UBIRIS data set [29], selecting those taken at a distance

of 4 meters. The images were resized to 120 × 80 pixels

and histogram equalized. The results show that EyeGAN

produces a substantially higher gaze consistency index than

the other methods.

p(Cs,t)/p(Cs,s)
EyeGAN CycleGAN SimGAN

0.89 0.36 0.48

Table 1. Gaze consistency indices for the methods considered.
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SimGAN

CycleGAN

EyeGAN

Figure 5. The five generated eye images with the lowest similarity

score Ss,t(φ, φ) for each method. Each image is shown with the

synthetic image Is or mask Ms that was fed into the corresponding

generator. For reference, we also show the synthetic images Is
corresponding to the masks Ms for the EyeGAN case in the last

row, even though only the masks Ms were fed into the generator

in this case.

Figure 6. Examples of poor quality images generated by EyeGAN.

Examples of generated images for the three methods

considered are shown in Fig. 5. For each method we se-

lected the five images It with the lowest similarity score

Ss,t(φ, φ). Each image is shown next to the source image

Is or mask Ms (for EyeGAN) that was fed into the genera-

tor. We noted that EyeGAN generally produces images with

better overall quality than the other two methods. Some ex-

amples of poor quality images generated by EyeGAN are

shown in Fig. 6.

4.2. Eye Region Segmentation

Segmentation of various ocular regions as well as of the

periocular region is instrumental for ocular biometric ap-

plications [27, 2]. Eye segmentation is also useful for an-

imation of eyes and eyebrows of avatars for virtual real-

ity [41]. Generation of training images via manual eye

region segmentation and labeling, however, can be time

consuming and thus expensive, and possibly error-prone.

Domain transfer techniques can be used to generate large

data sets with inherited annotations from labeled source do-

mains. We comparatively evaluated our EyeGAN network

as a tool to generate annotated training data for a segmenter

tasked with extracting specific regions in eye images.

We considered two available labeled data sets for these

experiment. The first data set (UBIRIS, already considered

in Sec. 4.1) has manual annotations of the iris region. The

second data set (SBVPI [31, 32]) contains 1822 eye images

of 55 subjects looking towards four different directions (im-

ages were resized to 120 × 88 pixels.) SBVPI contains iris

and pupil annotation for only a small number of subjects,

but sclera and periocular masks are available for all sub-

jects. Since both sclera and iris lie within the periocular

region, the iris mask can be easily obtained as the area in-

side the periocular region that is not part of the sclera. Thus,

for images in the SBVPI, we are able to access ground-truth

ternary masks. Note that binary (for UBIRIS) and ternary

(for SBVPI) masks were only used for validation (not dur-

ing training).

Two subsets were culled from each data set, by partition-

ing the set of subjects associated with the images (i.e., any

two eye pictures of the same subject were assigned to the

same subset.) The first subset (1,750 images for UBIRIS,

1092 images for SBVPI) was used to train the domain–

transfer network G(Ms), while the remaining images in

the considered data set were used to validate the segmenter,

which was trained on images synthesized by EyeGAN using

the synthetic masks.

Four different FCN segmenters were trained, where in

all cases the labels were represented by synthetic masks Ms.

Note that when experimenting with the UBIRIS data set, the

ternary synthetic masks generated using UnityEyes were

transformed into binary by conflating the sclera and back-

ground into one region. We first considered a baseline sce-

nario, with the segmenter trained using the synthetic images

Is associated with the synthetic masks Ms, then tested on

the real images. We then re-trained the segmenter using the

same masks Ms as labels, but with domain–transferred im-

ages in input. These training images were generated starting

from synthetic images (G(Is)) using SimGAN and Cycle-

GAN, and from synthetic masks (G(Ms)) for EyeGAN. All

four segmenters were trained on 25,000 domain–transferred

images. We used the metrics considered in [23] (Tab. 2 and

Tab. 3) to evaluate the quality of segmentation. We also
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show the results when the segmenter is trained directly on

the real labels available in the training data (“train on tar-

get”, or TT.) For both data sets, training the segmenter us-

ing target domain data produced by EyeGAN with inherited

annotation from UnityEyes gave the best results. In fact, for

the UBIRIS data set, the results using EyeGAN images for

training are better than when the segmenter is trained on

the real labels (TT). This can be justified by the fact that

many more EyeGAN images (with inherited annotations)

with variations in iris positions and size were available for

training than real target images.

Baseline EyeGAN CycleGAN SimGAN TT

IoU:Skin 0.95 0.98 0.93 0.96 0.97

IoU:Iris 0.77 0.90 0.68 0.80 0.87

mean IoU 0.86 0.94 0.81 0.88 0.92

f.w. IoU 0.92 0.96 0.89 0.93 0.96

pix. acc. 0.96 0.98 0.94 0.96 0.98

mean pix. acc. 0.90 0.97 0.88 0.93 0.94

Table 2. Comparison of segmentation into sclera and iris produced

by the different algorithms considered for the UBIRIS data set, us-

ing standard metrics for multi-class segmentation [23], and specif-

ically: IoU for each class; mean IoU; frequency weighted (f.w.)

IoU; pixel accuracy; and mean pixel accuracy. The last column

shows the “trained on target” (TT) results.

Baseline EyeGAN CycleGAN SimGAN TT

IoU:Skin 0.86 0.94 0.84 0.83 0.96

IoU:Sclera 0.44 0.78 0.34 0.35 0.86

IoU:Iris 0.68 0.84 0.45 0.49 0.89

mean IoU 0.66 0.85 0.54 0.56 0.91

f.w. IoU 0.78 0.91 0.72 0.72 0.94

pix. acc. 0.87 0.95 0.82 0.82 0.97

mean pix. acc. 0.73 0.92 0.71 0.72 0.94

Table 3. Comparison of segmentation into skin, sclera, and iris

produced by the different algorithms considered for the SBVPI

data set. (See caption of Tab. 2.)

4.3. Pupil Localization

Another feature of interest in eye images is the location

of the pupil center. High accuracy is needed for applica-

tions such as model–based gaze tracking [3]. We conducted

an experiment similar to the one described in the previous

section, where in this case the output of the network is a pair

of numbers, representing the normalized coordinates of the

estimated pupil center location. For this purpose, we used

a DenseNet [13] architecture, with the last softmax layer

replaced by a linear layer producing the coordinates vec-

tor. L2 loss was used for training. Specifically, we used the

compact variant DenseNet-BC with the following configu-

ration: L (number of layers) =100; k (growth rate of feature

maps in each layer) =12; four dense blocks. The learning

rate was set to 0.001 and the network parameters were opti-

mized using Adam [17].

Figure 7. Examples of eye images generated by EyeGAN in the

style of the BioID data set (top row), shown together with the Uni-

tyEye masks that were fed to the generator (middle row). For ref-

erence, we also show the synthetic images Is corresponding to the

masks Ms for the EyeGAN case in the last row.

As in the previous section, we trained a baseline regres-

sor, using solely synthetic images generated by UnityEyes,

as well as three regressors trained on domain–transferred

images, inheriting annotations from UnityEyes. The tar-

get domain distribution was represented by the BioID data

set [1], which contains 1521 grayscale images of 23 sub-

jects taken at different head orientations. The images were

resized to 120 × 72 pixels and histogram equalized. The

location of the pupil center was available for each image;

this information was only used in the final evaluation. Sam-

ples of the images produced by EyeGAN in the style of the

BioID data set, generated starting from UnityEyes masks,

are shown in Fig. 7. Fig. 8 shows the cumulative distribu-

tion function (CDF) of the Euclidean norm of the localiza-

tion error for the different methods considered (where the

CDF for a certain error value e represents the portion of im-

ages with error smaller than e.) For comparison, we also

showed results using two well–known existing algorithms

for pupil localization: ExCuSe [5] and ElSe [6], both based

on fast elliptical fitting of the pupil region. Note that train-

ing with EyeGAN gave the best results.

4.4. Gaze Estimation

Appearance-based gaze estimation algorithms compute

the direction of gaze directly from images of the user taken

by a camera, without resorting to geometrical models of

gaze formation. Training a network for appearance-based

gaze estimation requires availability of data with precise an-

notation of gaze direction for each image. This can only be

obtained indirectly, i.e. by asking the user to look at a cer-

tain point on the screen, and then inferring gaze direction

from the known location of the user’s head location. The

ability to generate realistic images with inherited annota-

tion is highly desirable, as it would enable construction of

larger and more diverse training data sets.

We used NVGaze [16], a data set that contains both real
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Figure 8. The cumulative distribution functions (CDFs) of the Eu-

clidean norm of pupil localization error for the different algorithms

considered (Sec. 4.3.)

eye images captured under IR illumination from a wear-

able headset device, as well as synthetic eye images from

a similar viewpoint. The real eye images are annotated

with gaze direction; the synthetic images have both gaze

and segmentation mask annotation. The goal of this ex-

periment was to learn a mapping from real images to gaze

direction, but without making use of any available ground-

truth labels for these images during training. We decided

to use an intermediate representation, formed by a set of 25

feature points extracted from the segmentation masks (12

points uniformly distributed around the edge of the perioc-

ular region, 12 points around the iris, and one point in the

center of the iris.) We trained a fully connected neural net-

work (with two hidden layers of size 500 each) to learn a

mapping from feature points extracted from the synthetic

masks to gaze direction. We then trained another network

to predict the location of feature points from images gener-

ated with EyeGAN. During training, each EyeGAN image

was associated with the feature points extracted from the

synthetic mask used to generate the same image. This net-

work used the same DenseNet [13] architecture described

in Sec. 4.3, this time with a 50-dimensional (25× 2) output

(using L2 loss.) We then tested our system on real eye im-

ages using a cascade of the two networks just described: for

each image, we first predicted the associated feature points,

and then, from these feature points, the gaze direction.

The synthetic image portion of NVGaze contains two

million images, while real eye images are collected for 35

subjects take at a high frame rate. For synthetic data, we

sampled 50000 images. For real world data, we randomly

selected one subject for with 76000 images containing 50

gaze directions, We sampled 128 images, ensuring that all

gaze directions were covered. When testing the gaze de-

tector on the real eye images, we reserved 22 such im-

ages for subject calibration [16]. This procedure, akin in

spirit to subject calibration for standard IR gaze tracker,

is designed to remove individual bias (as due, for exam-

ple, to the kappa angle between the visual and the pupillary

axes [19]. Specifically, we computed a quadratic regression

from the predicted gaze directions to the ground-truth gaze

directions over these 22 images; we then applied the same

quadratic function on the predicted gaze for the remaining

images, before computing the angular error with respect to

the ground-truth gaze direction. The results are shown in

Tab. 4, where “Baseline” represents the case in which the

predictor for the feature points was trained entirely on syn-

thetic data. This experiment once more shows that training

the network (in this case, the feature points predictor) on

EyeGAN-generated images with inherited annotations re-

sults in the best performance.

Baseline EyeGAN CycleGAN SimGAN

23◦ 5.3◦ 20◦ 16◦

Table 4. Mean gaze angular errors for the experiment described in

Sec. 4.4.

5. Conclusions

We have introduced a new algorithm, EyeGAN, for the

generation of eye images with a prescribed gaze direction

in the style of a desired target domain. Like similar tech-

niques, EyeGAN operates within the framework of domain

transfer: starting from synthetically generated data, it pro-

duces an image that can be considered as a sample from

the target domain distribution. The key difference between

EyeGAN and other competing algorithms is in the way it

enforces consistency of gaze direction. Our experiments

have shown that ternary masks, which are easy to generate,

contain enough information to “guide” the generation pro-

cess into producing realistic images with the desired gaze

direction. Comparative tests with different tasks and differ-

ent target domains have shown that the images produced by

EyeGAN lead to better results when used as training data

with inherited annotations.
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