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Abstract

Deep generative models are a set of promising methods,

that are able to model complex data and generate new

samples. In principle, they learn to map a random

latent code sampled from a prior distribution into a high

dimensional data space, such as image space. However,

these models have limited utilities as the user has minimal

control over what the network produces. Despite the

success of some recent work in learning an interpretable

latent code, the field still lacks a coherent framework

to learn a fully interpretable latent code, without any

random part for sample diversity. Consequently, it is

generally hard, if not impossible, for a non-expert user

to produce a desired image by tuning the random and

interpretable parts of the latent code. In this paper, we

introduce the Preference-Based Image Generation (PbIG),

a new method to retrieve the corresponding latent code

of the user’s mental image. We propose to adopt

preference-based reinforcement learning, which learns from

a user’s judgment of the generated images by a pre-

trained generative model. Since the proposed method

is completely decoupled from the training stage of the

underlying generative models, it can easily be adopted by

any method, such as GANs and VAEs. We evaluate the

effectiveness of PbIG framework using a set of experiments

on baseline datasets using a pretraind StackGAN++.

1. Introduction

Building generative models, that are able to produce

new samples of high-dimensional data distributions,

is a fundamental problem in many computer vision

applications, such as face generation [17], image-to-

image translation [14, 19], image editing [5, 18], domain

adaptation [47], and image in-painting [41]. Currently, the

most prominent approaches are the Generative Adversarial

Networks (GAN) [12], Variational Autoencoders (VAE)

[21], and Auto-Regressive Generative Models [28]. These

models capture the joint distribution between the data and a

set of hidden variables, called latent codes, which represent

different variations of the training data. The trained models

then generate new samples, given random latent codes,

which are sampled from their prior distributions. However,

in an unconditional setting, these models lack an inference

mechanism to find the corresponding latent representation

of a mental image (a desired image which user has in mind).

Consequently, prior works conditioned these models on

additional information to direct the data generation process.

The conditioning could be on another image for image-to-

image translation, part of an image for in-painting, some

desired data attributes [39], or even class labels [24].

Even though the generative models with their conditional

settings sidestep the common problem of random sampling

to some extent, they still need a random code to

generate diverse samples. To learn meaningful latent

representations, MMD-VAE was proposed in [45] which

maximizes the mutual information between the input and

the latent code. InfoGAN [2], an information-theoretic

extension of GAN, allows learning representation which

is partially interpretable. Graph-based methods have been

also proposed in [33, 32] for semi-supervised learning.

The resulting code then consists of a meaningful part

corresponding to specific semantic attributes of the data,

and a random part which injects diversity among the

generated samples. In contrast, two concurrent independent

works [8, 6] proposed a full inference of the random

code. They have demonstrated that these codes can learn

semantic attributes of the data. Several other papers

have also investigated supervised representation learning by

conditioning the discriminator on certain desired attributes

[22, 26]. Transferring attributes between images has also

been studied in the literature [5, 13]. Despite all the effort,

it remains unclear how non-expert users can exploit the

power of generative models to produce their mental images.

Moreover, some attributes of the data cannot be encoded

explicitly into a user-sensible code. [46] is the colsest work

in the literature in which the user is able to genrate or edit

an image using a set of computer paiting tools. However,

generating the exact mental image is quite hard with this

technique. However, this method could be an early step to

initialize the latent code or be combined with our method as
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a condition.

To overcome these limitations, we propose a universal

framework that enables users to produce arbitrary images

in a sequential fashion. At each step, the users are

required to compare a pair of generated images by a

pre-trained generative model and select their preferences.

The proposed framework then learns the corresponding

latent representation of users’ mental images. In essence,

this framework fits within the Preference Learning (PL)

paradigm [10]. Roughly speaking, preference learning is

about modeling the preference using a set of instances,

which are associated with an order relation. In recent

past, extensive research has been conducted to address

this problem proposing different techniques to learn from

human judgments [1, 11, 36, 38, 30]. After the success

of Reinforcement Learning (RL) in many applications [16],

they are extended to a new paradigm, namely Preference-

based Reinforcement Learning (PbRL), which enables RL

algorithms to learn from preferences rather than absolute

reward values [37]. Typically, they first learn a preference

function using a set of training examples, and subsequently,

a policy is learned to make actions which minimize the

number of mis-ranked pairs. A series of experiments are

conducted in [3, 23], involving actual human feedback, to

play video games or perform robotics tasks. In [43], a new

technique, called dueling bandit, is proposed which uses

preferences in an interactive, but non-sequential setting.

One notable difference is that they deal with a sequence of

actions in a relatively low dimensional space, while we need

to learn a single high dimensional action.

Our framework, which is developed based on PbRL,

jointly trains a reward network, which fits a reward function

to a user’s preferences, and a trainable latent code that

generates the user’s mental image. More directly, the

latent code optimizes the underlying function of the reward

network. Compared to prior work, our key contribution

is proposing a novel framework, called Preference-Based

Image Generation (PbIG), that can find the corresponding

random code of a desired image, for a given generative

model, through a sequence of preference judgments by

the user. We develop a training strategy, and the required

considerations for its success, to retrieve a latent code on

a relatively small number of judgments. It takes between

5-15 minutes in average for a non-expert user to generate

a mental image using PbIG, which is way less than a

couple of hours that they need to edit/generate an image in

many applications such as sketch-to-photo synthesis in law

enforcement or art, interior design (like bedroom/kitchen

datasets), and exterior designs (tower dataset).

To the best of our knowledge, this work is the first

to leverage the power of preference-based learning in

predicting the random codes of generative models to

produce user-desired images. Since PbIG is completely

decoupled from the training stage of the generative models,

it can be adopted by any pre-trained generative models with

no more effort. Note that conditioning on some human-

sensible attributes can also benefit PbIG, by limiting the

latent code search space. In this work, we evaluate the

PbIG framework using multiple baseline datasets. We

employed StackGAN++ [44] to conduct our experiments,

as it can efficiently generate more realistic and diverse

images in different domains compared to other generative

models. However, the whole framework is identical for

any other generative models. Finally, we utilize Model-

Agnostic Meta-Learning (MAML) [9] to reduce the number

of comparison required by the user.

2. Preliminaries

In this section, we provide some rudiments of GANs and

PbRL, necessary to understand the proposed preference-

based image generation framework.

2.1. Generative Adversarial Networks (GANs)

GANs [12] are a group of generative models which learn

the statistical distribution of the training data, allowing us

to synthesize data samples by mapping a random noise z

to an output image y: G(z) : z −→ y, where G is the

generator network. GAN in its conditional setting (cGAN)

is proposed in [15] which learns a mapping from an input

x and a random noise z to the output image y: G(x, z) :
{x, z} −→ y, using an autoencoder network. The generator

model G(x, z), is trained to generate an image which is

not distinguishable from ”real” samples by a discriminator

network, D. Simultaneously, the discriminator is learning,

adversarially, to discriminate between the ”fake” generated

images by the generator and the real samples from the train

dataset. The objective function of GAN is given by:

lGAN (G,D) = Ex,y∼pdata
[logD(x, y)] (1)

+Ex,z∼pz
[log(1−D(x,G(x, z)))],

where G attempts to minimize it and D tries to maximize

it. Since the adversarial loss is not enough to guarantee

that the trained network generates the desired output, one

may add an extra Euclidean distance term to the objective

function to generate images which are near the ground truth.

Consequently, the final objective is defined as follows:

G∗ = argmin
G

max
D

lGAN (G,D) + λlL1(G), (2)

where lL1(G) =‖ y − G(x, z) ‖1 and λ is a weighting

factor.

2.2. Preference­Based Reinforcement Learning

In standard reinforcement learning setup, an agent

interacts with an environment E. At each timestep the agent
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receives an observation o ∈ O from the environment, and

takes an action a ∈ A based on a policy, π : O → A,

which maps states to a probability distribution over the

actions. Subsequently, the environment assign a scalar

reward r(o, a) ∈ R to the taken action. The goal in

reinforcement learning is to learn an optimal policy, which

maximizes the discounted sum of rewards through all the

steps. However, in PbRL the environment does not supply

any rewards to the agent. In contrast, the agent’s actions are

evaluated by a human user, and a label is provided to the

agent in terms of preferences between pairs of actions. In

this context, we write o1 > o2 indicating the observation o1
is preferred, by the user, to the observation o2.

In PbRL, the policy and reward estimators are

implemented as two neural networks which are updated in

the following steps: first, the agent takes an action, a, based

on the policy network π, i.e., a = π(o). The parameters of

π are optimized to maximize the sum of estimated rewards

r̂ = NR(o, a) where NR is the reward network; then, a

pair of observations are passed to the user for comparison;

finally, the parameters of the reward network are updated to

estimate a higher reward for the user preferred observation.

2.3. Model­Agnostic Meta­Learning (MAML)

The goal in meta-learning is to train a model which can

rapidly adapt to new tasks with a few training iterations.

The Model-Agnostic Meta-Learning (MAML) [9] is a meta

learning algorithm which learns a data-driven initialization

of the models that accelerate the standard reinforcement

learning on new task drawn from a task distribution p(τ).
The meta-training objective of MAML is:

θ′i = θ − α▽θLτi(πθ) (3)

θ = θ − β▽θ

∑

τi∼p(τ)

Lτi(πθ′

i
),

where θ is the parameters of the policy network πθ which

maps states to a probability distribution over the actions,

and L represent an arbitrary loss function which is selected

based on the application. In effect, the MAML finds model

parameters that with small changes will improve the loss

function of any task drawn from the p(τ), when moving

in the direction of that loss [9]. Our framework employs

MAML to initialize the reward network parameters and

accelerate the preference-learning process. Its effectiveness

is explored in Sec 5.3.

3. Preference-Based Image Generation (PbIG)

In our proposed Preference-Based Image Generation

(PbIG) the state of environment does not change as the user

has a fixed mental image at all time, and taking new actions

does not change the desired image. In other words, we can

look at our problem as a continuous multi-armed bandit

(stateless reinforcement learning) [34]. Consequently, the

reward is a sole function of the action (see Figure (1)).

In our formulation, we do not have a policy network. In

contrast, we optimize directly the GAN random code z that

produces user’s mental image. This code is considered as

the action in our RL formulation. Note that for the rest

of this paper, for the sake of consistency with the GAN

formulation, we use z to refer to the actions.

Following the approach in [3], the reward estimator

network, NR, can be interpreted as a preference-predictor

when we consider r̂ = NR(z) as a factor which quantifies

the user’s judgments. Then, the probability of preferring an

action depends exponentially on the value of the estimated

reward and can be calculated as follows:

P [z1 > z2] =
er̂1

er̂1 + er̂2
, (4)

where r1 = NR(z1) and r2 = NR(z2) are the

corresponding rewards of the two latent codes z1 and z2,

respectively.

At each time step, the user is given a pair of images

generated from z1 and z2 to indicate (a) which image is

more similar to the desired image, (b) the two images are

equally similar, or (c) none of them is comparable to the

desired image. If one of the images is selected as preferable,

then its corresponding label l is set to one. Correspondingly,

the label of the unfavored image is set to zero. In the case

of neutral preference, both the labels are set to 0.5. Finally,

when both images are rejected by the user, both labels are

set to zero. In other words, the corresponding label of

each image, or its corresponding latent code, determines the

probability of being preferred by the user.

We can update the parameters of NR to predict the user’s

preference labels. To this end, we minimize the cross-

entropy loss between the estimated preferred probability

and the actual labels provided by the user:

LR(r̂1, r̂2) =−
∑

(z1,z2,l1,l2)∈B

l1 logP [z1 > z2] (5)

+ l2 logP [z2 > z1],

where B is the training batch, l1 and l2 are the

corresponding rewards of the two random codes z1 and

z2, respectively. We update the reward and code with

some modifications to the proposed steps in PbRL. Since

our formulation is stateless, we cannot generate a pair of

codes using a policy network to update the parameters

of reward function. In order to sidestep this issue, we

select two codes following a modified ǫ-greedy policy. The

GAN generator then produces two images from the given

codes for user comparison. The parameters of the reward

network are updated based on the user-assigned labels and

their estimated values to minimize the loss function in (5).
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Figure 1: The proposed PbIG framework, is trained in two steps: The reward network update is based on the user’s preference

labels assigned to two random codes z1 and z2; The goal of the latent code update is to find the random code z which

maximizes the estimated reward r̂. Note that incorporating the generator and discriminator, minimizing the discriminator

loss, is optional in this step, but can avoid the codes with non-satisfactory results.

Subsequently, a latent code, z is send to the reward function.

The latent code then is optimized to maximize the estimated

reward, minimizing the following loss function:

Lz = −
∑

z∈B

NR(z). (6)

As a final step, we find the best initialization of our

reward network using the MAML. Note that the MAML

in the original paper [9] is used to find the initialization

of the policy network. However, in our formulation of a

stateless RL, we used the same technique to find the best

initialization for the reward network. It usualy being trained

based on multiple tasks which could come from a single or

multiple datasets. However, in our probelm, since for each

experiment we need to train a new reward network from

scrach, and it can be considered as a new task, we employ

MAML for find the best initial weights for the reward

network using a series of synthetic-feedback experiments.

The meta-training objective of MAML is defined as:

θ′i = θ − α▽θLτi(N
θ
R) (7)

θ = θ − β▽θ

∑

τi∼p(τ)

LR(N
θ′

i

R ),

where LR is defined in (5).

4. Implementation

We adopt the ”memory replay” to speed up the learning

process by utilization of earlier samples. However, early

experiments showed that the size of memory replay should

be relatively small, or the network stops learning due

to the very old randomly selected samples with limited

information. We also propose to use a weighted memory,

which enables us to adopt a bigger memory size. In this

setup, we assign a distinct weight to each sample in the

memory replay upon its arrival. The assigned weights then

decay after each step, which means the older samples in the

memory replay have less contributions to the loss function.

We train an ensemble of reward networks on randomly

selected pairs from the replay memory. The final estimate

of the reward is calculated by normalizing each of the

estimators and then averaging the results. Also, similar to

[3], we normalize the reward values, estimated by NR, to

have zero mean and constant standard deviation.

Even though GANs can learn to map a random code from

a fixed distribution to an image in the training domain, they

still fail to generate satisfactory results for some areas of the

latent space. Preliminary experiments showed that there is

a possibility that the code update stops in any of these areas

of the code space. To overcome this issue, we incorporate

the discriminator loss when updating the code.

Ltotal
π (o) = Lz − LD(G(z)), (8)

where LD(G(z)) is the loss of discriminator for the

generated image G(z). We use this general notation, as

different GAN variants employ different losses.

Finally, with a pre-defined frequency, we generate a

query from two randomly selected latent codes among the

previous user’s preferences. We also let the user select

the current preference as the best generated image. If the

current preference is not selected as the best generated

image, we add the current preference and the best generated

image as another pair to the memory. Clearly, the former is

labeled as the preferred image.

4.1. Latent Code Sampling Policy

Since the environment is stateless in our formulation,

we only have a single action. However, we need a pair of

actions to train our reward network. In order to overcome

this problem, we select at least one of the codes at random.

The random code sampling policy is the key element of the

whole framework to succeed. Sampling uniformly from the

code distribution tends to destabilize the reward network

training. Consequently, at each step we select a pair of
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(a) Shoes Dataset (b) Handbags Dataset

(c) CelebA Dataset (d) Bedroom/Church Datasets

Figure 2: The evolution of the generated images by the latent code, and the desired image on different databases. Since the

latent code is initialized randomly, in each experiment the StackGAN++ generates a random image. In each experiment, the

first two rows are generated by human feedback and the last two rows are generated using synthetic feedback. However, for

bedroom and church datasets, all samples are generated by human feedback.

codes as follows:

z =

{

z ∼ N (zlast, σ
2) w. probability 1− ǫ

z ∼ N (µc, σ
2
c ) w. probability ǫ

, (9)

where ǫ is the probability of taking a completely random

action from the code space, zlast is the latest learned

latent code, N(zlast, σ
2) is a normal distribution with mean

zlast and variance σ2, and N (µd, σ
2
d) is the distribution

of GAN latent code, which is assumed to be a normal

distribution with mean µc and variance σ2
c in this paper.

Here, σ2 and ǫ are the two hyper-parameters. To face the

need to trade off between exploration and exploitation, ǫ

is initialized to one and decays over time. Following this

formulation, we generate completely random images and

gradually give more chance to explore the neighborhood

of the learned latent code. Early experiments showed that

simply sampling pairs from the entire code space collapses

the model. Similar to [4], we sample multiple pairs at each

step, and select the pair with highest reward variance among

the ensemble of models, based on the current learned reward

networks, as a query to the user.

4.2. Conditional Setting

Even though the PbIG framework can be applied to

the generative models, both in their unconditional and

conditional settings, conditioning on some human-sensible

attributes can benefit PbIG, by limiting the latent code

search space. For example, in face generation, conditioning

the generated face on some facial attributes, such as the

gender, hair and skin colors narrows down the problem

into looking exclusively for the geometrical properties of

the desired face. This can reduce the average number of

comparisons by the user drastically.

In conditional setting, we provide the generator network

with an interpretable code c, like facial attributes, and a

random code z, which represents the subtle variations of

the image. Therefore, our framework only needs to learn

the random code z.

5. Experiments

The main goal of our experiments is to investigate if a

human subject can generate a desired image in a reasonable

time. The framework should be able to find the latent

code with the minimum number of user judgments. We

evaluate PbIG on CelebA [40], edges ↔ handbags [46],

edges ↔ shoes [42], LSUN bedroom and church [27],

and CUB [35] datasets. To the best of our knowledge,

this work is the first attempt to retrieve GAN’s random

codes based on the human preferences, consequently we

use the Nearest Neighbor (NN) sample in training set as the

baseline for comparison. Note that NN is not applicable in

practice as it needs the ground truth. The image realism

and diversity of the output is always the same as the

underlying GAN framework and reporting them has no

meaning. However, we compared the results of CelebA

with IC-GAN [26] which is a conditional GAN based on

the facial attributes. We conducted a comprehensive set of

experiments in different settings, to evaluate the proposed
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PbIG both qualitatively and quantitatively.

Human or synthetic feedback: We trained the models

using both human and synthetic feedbacks. In human-based

experiments, feedback was provided by a subject who is

given a pair of generated images. For synthetic feedback,

the agent queries for comparison based on deep image

features, extracted from a VGG19 [29], instead of human

preferences. Note that, here, we use synthetic feedback in

order to conduct more experiments. Any comparison of the

human and synthetic feedbacks, which represents how well

the synthetic feedback mimics human evaluation is out of

scope of this work.

Viewed and Semi-viewed: For human subjects, we

set up viewed and semi-viewed scenarios. In former, the

desired image was available to the subjects for comparison

all the time. In contrast, in the semi-viewed case, the

desired image was shown to the subjects for 30 seconds,

and they were asked to compare the generated images based

on their memories. The latter simulates the forensic facial

reconstruction performed by the law enforcement.

Network Structure: We train the PbIG using the Adam

optimizer [20], with learning rate of 0.0002, β1 = 0.5,

β2 = 0.999 and mini-batch size of 20. The algorithm

is implemented in PyTorch [25]. The reward network

has 4 Fully-Connected (FC) layers with 300, 300, 300, 1

nodes. Each FC layer, except the last one, is followed by a

LeakyRelu activation function and a dropout layer. For all

the three datasets, we train a distinct Stack-GAN++ with a

random code of size 100 drawn from a normal distribution

with zero mean and unit variance, i.e., z ∼ N (0, 1). The

generator is trained to generate images of size 256 × 256.

We set all the hyper-parameters as in the original paper

to train our Stack-GAN++. Finally, we use σ = 0.5 for

random code sampling policy.

Synthetic Feedback: We generate the synthetic

feedback in a way to simulate the human comparisons.

To this end, an L1 loss is computed over deep image

features, extracted from a pretrained VGG19 [29], which is

sometimes referred to as perceptual loss [7]. To evaluate the

similarity using both fine and course features, we calculate

an average perceptual loss over conv3 4 and conv5 4 of

the VGG19 network. Since the perceptual loss can only

represent the content of an image, we use the Gram matrix,

which is the inner product between the vectorized feature

maps of a layer, over conv2 2 and conv3 4 to consider the

style of generated images as well. Finally, we define the

total similarity distance between a generated image and the

desired image as a weighted average of the content and style

losses. Next, the preferred image is defined as the image

with the minimum perceptual loss with the desired image

Figure 3: PbIG in conditional setting (CUB dataset).

based on the following formulation:

li, lj =























1, 0 ls(imgi) < ls(imgj)− thc

ls(imgi) < ths

0.5, 0.5 ‖ ls(imgi)− ls(imgj) ‖< thc

ls(imgi) < ths or ls(imgj) < ths

0, 0 else

,

where imgi, i = 1, 2 represent the images to be compared,

ls(imgi) is the total similarity distance between imgi
and the desired image, thc is the minimum difference

between the similarity distances of img1 and img2 to be

comparable, and ths is the maximum value of similarity

distance between imgi and the desired image to select imgi
as the preference. More specifically, it simulates the human

inability to compare two images when both are too far from

the desired image. We also randomly modified the values of

l1 and l2 with a probability of 5% to simulate user mistakes.

We use thc = 0.1 for the synthetic-feedback experiments.

The value of ths selected as 90% of the dataset Average

Similarity Distance (ASD), computed between randomly

selected images of each dataset (see Table 1).

5.1. Qualitative Analysis

Figures 2a, 2b, and 2c show how the generated images

evolve during the comparison steps, following the proposed

PbIG framework. For each experiment, the desired image

is generated randomly using the StackGAN++ generator.

The first two rows of each experiment are generated by

the human feedback and the last two rows show the results

of synthetic feedback. We stopped each human-feedback

experiment as soon as the user is satisfied with the generated

image. The user has access to the goal image during the

whole experiment. The synthetic-feedback experiments

were also executed for 600 comparisons and the resultant

generated images are stored to be compared by the user.

The stopping step is defined as the earliest step which

satisfies the user. The result clearly reveals the success of

PbIG to reach the desired image in a limited number of

comparisons. For the CelebA dataset, the best achieved

results of IC-GAN are also illustrated in Figure 2c. We

also conducted more experiments on bedroom and church

datasets which has more complexity (see Figure 2d). Note

that all the experiments for these datasets are human-

feedback generated, as the synthetic-feedback experiments
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Dataset Dataset ASD NN ASD Feedback
Final ASD ANS

w/ DGAN w/o DGAN w/ DGAN w/o DGAN

CelebA 1.135 0.483
Human 0.46 ± 0.17 0.47 ± 0.20 310 ± 33 322 ± 40

Synthetic 0.39 ± 0.14 0.40 ± 0.13 302 ± 29 276 ± 39

Handbags 1.782 0.532
Human 0.54 ± 0.16 0.56 ± 0.14 360 ± 52 381 ± 59

Synthetic 0.49 ± 0.12 0.49 ± 0.15 332 ± 50 297 ± 62

Shoes 1.637 0.419
Human 0.48 ± 0.19 0.51 ± 0.18 347 ± 45 369 ± 53

Synthetic 0.46 ± 0.13 0.47 ± 0.15 311 ± 42 289 ± 64

CUB
1.72 0.387

Human 0.43 ± 0.22 0.49 ± 0.25 98 ± 39 124 ± 51

(conditional) Synthetic 0.40 ± 0.18 0.42 ± 0.20 102 ± 36 123 ± 40

Table 1: The average perceptual distance between the final generated image and the goal image, and the average number of

steps to stop training the latent code on different datasets for human and synthetic feedbacks.

Figure 4: The evolution of the generated image by the latent

code, and the goal image on CelebA database in semi-

viewed setting. The users looked at goal images for 30

seconds and then asked to generate it.

fail to converge to an user-acceptable image. The final

results on these datasets show the lack of our framework’s

ability on capturing small image details. A possible

reason could be the poor performance of the StackGAN++

in these datasets, having too much of artifacts. Note

that the performance of our framework is bounded by

the performance of the underlying GAN framework in

generating high quality images. Figure 3 also shows the

PbIG results in conditional setting (CUB). The images are

generated using conditional StackGAN++, conditioned on

text description, which narrowed down the search space.

We also conducted a series of semi-viewed human-

feedback experiments. Figure 4 illustrates the results of our

semi-viewed experiments on CelebA dataset.

5.2. Quantitative Analysis

Table 1 presents the quantitative analysis of the

generated images by the proposed framework. We

evaluate the PbIG using two metrics, namely average

similarity distance (ASD), and average number of steps

(ANS). The ASD is calculated by averaging the similarity

distance between the generated image after the experiment

termination, based on the explained stopping criteria, and

the goal image (over 100 experiments in the synthetic-

feedback setting, and 20 experiments in the human-

feedback setting). The effect of incorporating the

discriminator of StackGAN++, DGAN , in training the latent

code is also investigated. Based on our human-feedback

experiments each query takes 3 seconds in average to

receive a user feedback. That means, based on the values

of ANS in Table 1, it takes roughly 15 (5) minutes for

the users to generate their goal images using unconditional

(conditional) PbIG. We also tried to redo the human-

feedback CelebA experiments for IC-GAN by tuning its

conditions. The ASD was calculated as 0.694, compared

to 0.458 of PbIG, which confirms the visual difference

in Figure 2c. Table 2 is also lists the results of more

experiments on LSUN bedroom and church datasets. Note

that we conducted it only in human-feedback setting, as the

synthetic-feedback did not generate acceptable results. The

reason is that the poor performance of the StackGAN++ in

these datasets, having too much of artifacts.

Since the ASD might not be a perfect alternative to the

human comparison ability, its value for the human-feedback

experiments is greater than the synthetic-feedback. A

possible reason could be that the network, when using

synthetic feedback, learns to apply subtle modifications to

the generated images that are almost undetectable to the

human eyes (see adversarial samples [31]). For the sake

of clarity, the average similarity distance between 1000

randomly generated images is also reported for each dataset.

We also reported ASD for NN training sample.

Employing the discriminator of StackGAN++, DGAN ,

unexpectedly increases the ANS of the synthetic-feedback

experiments while the ASD remains almost unaltered.

This increase is a direct consequence of changing the

direction of policy search by the discriminator to satisfy

the realism of the generated image. However, the final

result could be in average more plausible to the human

user as some unrealistic images might have a low similarity

distance to the goal image. In contrast, for human-feedback

experiments, using DGAN reduces the ANS notably. Here,

removing the DGAN , results in the latent code to generate

unrealistic images in some experiments, while learning,
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which increases the number of selecting ”not comparable”

by the user (see the generated images in the first row of

Figure 4). The ASD of the human-feedback experiments

is rather similar with and without DGAN , while its

larger variation, in comparison with synthetic-feedback

experiments, is associated with its relatively smaller number

of experiments over which the ASD is calculated.

We also study how sensitive is the proposed framework

for the complexity of the reward network. To this end, we

calculated the ASD on the synthetic-feedback experiments

for multiple reward networks with different complexity,

namely 2 × fc200, 3 × fc200, 3 × fc300, 4 × fc300,

3 × fc400, and 4 × fc400. Here, ”n x fcm” represents n

subsequent fully-connected layers with m nodes. Figure 5a

shows how the reward network complexity affects the ASD

(models sorted as reported above). The proposed learning

scheme is quite robust to the complexity of the reward

network. However, for very simple or complex networks,

the ASD increases drastically due to the underfitting and

overfitting, respectively. More specifically, in both cases,

the learned latent code diverges significantly from its mean

(zero in StackGAN++). Figure 5b illustrates how the ASD

decreases as more feedbacks are provided to the framework.

The ASD eventually starts settling down which means the

PbIG is able to generate an acceptable representation of the

goal image in less than 350 comparisons. Note that the

results of this figure, as well as the results on Table 1, are

reported for the reward network #3.

5.3. Ablation Study

To further gain deep insights of the improvements

obtained by each part of the proposed method, we

conduct more additional synthetic-feedback experiments

for ablation studies:

MAML initialization: Adding MAML initialization to

the reward network results in a roughly %25 improvement

in ANS. Table 3 shows the ANS of synthetic feedback

experiments with and without MAML initialization.

However, the final ASDs changed for less than ±%2.

Random queries: Replacing the proposed random code

sampling policy, in which we gradually give more chance

to explore the neighborhood of the learned latent code,

with complete random selection, results in the learned latent

code converging to a point with a high similarity distance.

Best sample tracking: Removing the best sample

tracking, significantly increases the ANS. Table 3 shows

the ANS for the same experiments as in Table 1, without

best sample tracking. The improvement in ANS is a result

of incorporating automatically generated pairs, to train the

reward network, which provides a global information about

the most significant direction of reward maximization.

Weighted replay memory: We conducted the same

experiments with un-weighted replay memory. The ASD

Feedback ASD ANS

Bedroom Human 0.67 320

Church Human 0.71 291

Table 2: Human feedback results on LSUN bedroom and

church datasets.

w/o CelebA Handbags Shoes

BST 365 (21% ↑) 378 (14% ↑) 367 (18% ↑)

MAML 359 (19% ↑) 417 (25% ↑) 387 (24% ↑)

Table 3: Removing the best sample tracking (BST) or

MAML increases the average number of steps significantly.

(a) ASD vs Complexity (b) ASD vs Steps

Figure 5: ASD vs. model Complexity and number of steps.

at step 500 increased by 18%, 27%, and 20% for CelebA,

Shoes, and Handbags datasets, respectively. Note that, as

was mentioned, using a weighted replay memory will allow

the network to learn faster, specifically in the early steps

as most of the samples are drawn randomly from the latent

code space. However, in late steps, there is more chance of

sampling from the neighborhood of the learned latent code.

Comparison of previous preferences: Asking the users

to compare their preferred images from the previous steps

decreases the ANS by 9%, 12%, and 14% for CelebA,

Shoes, and Handbags datasets, respectively. This trend

of comparison, provides relative scores between previous

preferred samples, which results in training of a better

reward estimator.

6. Conclusion

In this paper, we present PbIG which enables the user

to control the generation process of a generative model.

To the best of our knowledge, it is the first universal

framework which retrieves the desired latent code of a

generative model which produce the user’s desired image.

The proposed method leverages the power of preference-

based reinforcement learning to find the desired latent code

from a set of user’s preferences. The proposed framework

can be easily be adopted by any generative model in its

conditional or unconditional setting. Our future work will

explore a more systematic sampling policy to minimize the

number of comparisons by the human user.
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