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Abstract

In a real world environment, person re-identification

(Re-ID) is a challenging task due to variations in light-

ing conditions, viewing angles, pose and occlusions. De-

spite recent performance gains, current person Re-ID al-

gorithms still suffer heavily when encountering these vari-

ations. To address this problem, we propose a semantic

consistency and identity mapping multi-component genera-

tive adversarial network (SC-IMGAN) which provides style

adaptation from one to many domains. To ensure that trans-

formed images are as realistic as possible, we propose novel

identity mapping and semantic consistency losses to main-

tain identity across the diverse domains. For the Re-ID

task, we propose a joint verification-identification quar-

tet network which is trained with generated and real im-

ages, followed by an effective quartet loss for verification.

Our proposed method outperforms state-of-the-art tech-

niques on six challenging person Re-ID datasets: CUHK01,

CUHK03, VIPeR, PRID2011, iLIDS and Market-1501.

1. Introduction

Person re-identification (Re-ID) aims to match an image

of a person to a large gallery set, where probe and gallery

images are from different cameras. Although person Re-ID

is a widely investigated research area, it is still challeng-

ing to re-identify the target person accurately in the pres-

ence of domain variations including changes due to illumi-

nation, pose, viewing angle, and background. Thus in a real

world scenario where the domain of the target images has

no overlap with the gallery images, performance is severely

reduced. To address the domain variation challenge, previ-

ous researchers adopted feature extraction methods to learn

discriminative features across different cameras. However,

while these methods have helped relax the closed-world as-

sumptions of previous methods, performance is degraded

when confronted with a real-world scenario where target

image conditions are unseen.

Motivated by this problem, we propose a multi-

component generative adversarial network for style adapta-
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Figure 1: Illustration of the proposed SC-IMGAN and the

existing CycleGAN [53]. CycleGAN translates images be-

tween two domains at a time; while SC-IMGAN can trans-

fer images between multiple domains with an identity map-

ping loss to ensure that images retain their identity after

translation, and a semantic consistency loss to preserve se-

mantic information shared across domains. Thus for four

domains, CycleGAN requires 12 generator/discriminator

pairs while SC-IMGAN requires only 4 pairs.

tion, from one to many domains, to improve the discrimina-

tive ability of a CNN trained for person Re-ID. Specifically,

for image domain translation, a multi-component model is

proposed to generate synthetic images where the style of

a person is transferred from one domain to multiple other

domains with an identity mapping loss and a semantic con-

sistency loss. The identity mapping loss is used to ensure

that the identity of the transferred person is the same as the

original person, and the semantic consistency loss is used

to encourage the network to preserve the learned embed-

ding during domain translation. Thus the Re-ID model will

be trained with a larger set consisting of real and synthetic

images for the same person showing different styles, such

as changes in background and lighting.

Recently, CycleGAN [53] has been used by person Re-

ID researchers to transfer style from camera-to-camera or

domain-to-domain, however CycleGAN can only transfer

images between two domains at once. In contrast, our pro-
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posed SC-IMGAN is able to generate new images with the

style of multiple domains at a time, all with the same iden-

tity as the original image. As shown in Figure 1, let us

assume we have 4 domains. To transfer styles among these

4 domains, CycleGAN requires 12 generator/discriminator

pairs whereas the proposed SC-IMGAN requires only 4

generator/discriminator pairs. Our work also differs in that

the generator of SC-IMGAN aims to keep the same identity

after translation between domains. CycleGAN uses only

the cycle-consistency loss between the real and the recon-

structed images at the pixel-level, and as such fails to cap-

ture semantic features shared across domains. This leads

to a drop in performance when domains are vastly differ-

ent. To address this limitation, we propose a semantic-

consistency loss operating at the feature-level (i.e. on the

embeddings learnt by the encoder) to ensure consistent se-

mantic information is extracted for both the input and style

transferred images. These newly generated unlabeled syn-

thetic samples are then used as additional positive images

to train the Re-ID network alongside real images. Hence,

the trained network benefits as it learns different appearance

variations (pose, lighting and background) for a person.

Within the proposed framework, we adopt the

verification-identification approach of [18], with a quartet

loss. However, the quartet loss of [18] does not specify how

close the intra-class features should be in feature space,

resulting in a drop in performance due to large intra-class

distances between images of the same identity. As such,

we propose an improved quartet loss which forces the

network to minimise the intra-class distance more than

the inter-class distance, regardless of whether the positive

and negative pairs share the same probe image or not, and

simultaneously ensures intra-class features are close to

each other, improving network generalisation. Without this,

images of the same class may form a large cluster with a

relatively large average intra-class distance in feature space

which is not desirable. The contributions of this paper are:

• We propose to generate synthetic images with a multi-

component generative adversarial network where the

images from one domain are transferred to all other

available domains simultaneously.

• We demonstrate how identity can be better preserved

during style transfer by using an identity mapping loss

and a novel semantic consistency loss.

• We propose a novel improved quartet loss to minimise

the distance between images of the same identity more

than the distance between dissimilar identities, im-

proving the generalisation of the Re-ID network.

• We exceed the state-of-the-art accuracy compared to

existing methods on six challenging person Re-ID

datasets: CUHK01 [21], CUHK03 [22], VIPeR [15],

PRID2011 [16], iLIDS [34] and Maerket-1501 [46].

2. Related Work

In this section, we briefly summarise related research in

image domain translation using GANs, and deep learning

based person Re-ID.

2.1. Image Domain Translation by Generative Ad­
versarial Networks (GANs)

Generating realistic synthetic images from real images

is a challenging task, and requires a model to capture the

distribution of the real images. To generate synthetic im-

ages which have similar properties to the original training

dataset, GANs were introduced in [14]. Generally, GANs

use noise to synthesise an image and the network is trained

in an adversarial manner. Inspired by the success of GANs,

various extensions have been proposed for image-to-image

translation [13, 28], pixel-level transfer from source to tar-

get domains [43], and style transfer between domains [42].

Rather than using noise alone as the stimulus, the condi-

tional GAN (cGAN) [17] is proposed to control the mode

of generated images, however, cGANs need a pair of im-

ages for training which is not available for many tasks. To

address this, [26] introduced coupled GANs which use a

pair of GANs instead of a pair of images. CycleGAN [53]

also overcomes the requirement of paired data through a

cycle consistency model, where the source domain image

is translated according to the target domain and vice-versa.

However, CycleGAN can transfer the styles only between

two domains at a time. Similar to CycleGAN, [42] pro-

posed DualGAN for unpaired image-to-image translation

using dual learning to train the translator network with two

sets of images from two domains. Although in StarGAN

[9], a multi-domain translation network is proposed using

a single generator which takes one-hot vector along with

each input to represent domain information, this method is

only applied when there is no feature mismatch between do-

mains such as face attribute modification, where all the do-

mains have slight shifts in qualities of the same category of

images: human faces with a clear background. Moreover,

the restrictive nature of modeling all mapping function as

a single network may create problems when the mapping

functions between different pairs of domains varies.

As the performance of person Re-ID drops severely

due to variations between domains or cameras, researchers

adopted GANs for image translation to generate synthetic

images with different styles so that CNNs can be trained

with multiple styles of a person. Re-ID researchers [48, 50,

36] have typically adopted the traditional GAN [14] or Cy-

cleGAN [53] to generate synthetic images which are used to

train a Re-ID network. In [48], the GAN is first introduced

for person Re-ID to generate new samples which are not

present in the training data. However, [48] only generated

new samples for data augmentation instead of increasing the

number of positive pairs. To translate the images between

two domains, [50, 36, 51] employed CycleGAN, aiming to
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find a mapping function between two domains. Although

these methods achieve promising performance, they don’t

consider moving beyond two domains. As most camera

networks contain 10’s or even 100’s of cameras, the abil-

ity to transfer between an arbitrary number of domains is

required. As preserving person identity is crucial for Re-

ID, [36, 3] propose adding an identity preserving loss using

a foreground mask, however, they require an additional net-

work and extra supervision to extract the mask images.

2.2. Deep Learning For Person Re­ID

As deep CNN (DCNNs) combine feature extraction and

metric learning [2, 52] in a single framework, person Re-ID

researchers adopted DCNNs to achieve state-of-the-art per-

formance. Siamese networks are adopted by [31, 32, 22],

and a pair of images are taken as input and the network is

trained to push images of the same identity close to each

other in feature space. Other researchers adopted a triplet

network which minimises the intra-class distance with re-

spect to the same probe image. [8] improved the original

triplet loss by adding new constraints to further minimise

intra-class distance using a second margin; and [6] further

improved the triplet loss through the use of two margins:

the first performing the same function as the original triplet

loss, while the second seeks to maximise inter-class dis-

tance. However, the second margin is weaker than the first,

which leads to the network being dominated by the triplet

loss, i.e. minimising the intra-class distance when the probe

images belong to the same person. To address this prob-

lem, a new loss is proposed in [18] to force the network to

minimise the intra-class distance more than the inter-class

distance, regardless of whether the probe image comes from

the same person or not. However, [18] does not specify how

close the positive pair should be in feature space. In contrast

to [6, 18], we propose a new loss function for Re-ID which

not only reduces the intra-class distance more than the inter-

class distance with respect to multiple different probe im-

ages, but also specifies how close the positive pair should

be in feature space.

A number of recent approaches have used part based

methods [20, 45, 4, 40] with the aim of overcoming oc-

clusions, and handling partial observations. These meth-

ods, however, all rely on verification or identification frame-

works only instead of jointly adopting both approaches, and

some methods require additional supervision and pose an-

notation. Other methods [12, 44, 23] are focused on clus-

tering or transfering the knowledge from a labeled source

dataset to an unlabelled data using pseudo labels. However,

different identities may have the same pseudo label which

can make it hard for the model to distinguish similar people.

Our work differs from the above approaches in archi-

tecture, loss function and motivation. Rather than only ad-

dress the issue of image translation between two domains,

we propose a multi-component adversarial network to trans-

fer the style from one to many domains at once. To improve

person Re-ID performance, we add an identity mapping loss

to preserve the identity of transferred images. In addition to

the cycle consistency loss applied at pixel level, we propose

a semantic-consistency loss applied at the feature-level to

capture shared semantic content for flexible cross-domain

image translation. The real and style transferred images are

then fed into the proposed four-stream CNN with the im-

proved quartet loss for verification, and softmax loss for

identification. Finally, as in a real world situation gallery

and query images likely have no overlap, we build a cross-

domain architecture to cope with such a scenario.

3. Proposed Method

The proposed architecture is shown in Figure 2, and con-

sists of two networks: one for image domain translation;

and one for Re-ID. These networks are explained in the fol-

lowing subsections.

3.1. Semantic Consistency and Identity Mapping
Multi­Component GAN

The widely adopted CycleGAN learns to map between

only two domains at a time. We propose an identity map-

ping and semantic feature preserving multi-component ad-

versarial network to address the problem of mapping images

when more than two domains exist. Let us assume that we

have N source domains: S1, S2, S3, .....SN . Thus the pro-

posed method learns to find a mapping among all available

domains. For N domains, the proposed method requires N
generators and discriminators where each of the generators

contains an encoder and decoder. To compare the distribu-

tion of the generated images to the distribution of other do-

mains, adversarial losses are used. For example, if we want

to transfer the style of domain S1 → S2, the adversarial loss

is given by:

LGAN (E1, G1, D2, S
1, S2) =x2∼P

S2
[logD2(x2)]

+x1∼P
S1
[log(1−D2(G1(E1(x1))))], (1)

where the mapping function is G1(E1) : S1 → S2 and

D2 is the discriminator. The generator attempts to gener-

ate images with the distribution of the new domain (S2) and

the discriminator D2 tries to differentiate generated images

from real images. However adversarial training requires

paired training data, otherwise infinitely many mappings

will induce the same distribution over the output; and thus

many input images will map to the same output image in

the absence of paired training data. To address this prob-

lem, we adopt the cycle consistency loss [53] to translate

images from domain S1 to domain S2, and then translate

it back from domain S2 to domain S1, and as such do not

require paired training data. For example, two domains re-

quire two mapping functions which should be bijective. The

cycle consistency loss can be expressed as,
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Figure 2: Architecture of the proposed model. At first, style transferred images are generated by SC-IMGAN. The cycle-

consistency loss and identity mapping loss are applied at the pixel level while the semantic-consistency loss is appiled at the

feature level. We use six domains (CUHK01, CUHK03, VIPeR, PRID2011, iLIDS and Market-1501) to transfer the styles

of pedestrians. The style transferred images are then concatenated with real images to train the proposed four-stream deep

CNN model. The extracted features are fed into the verification and identification losses to identify the person.

Lcyc =x1∼P
S1

[||G1
′(E1

′(G1(E1(x1))))− x1||1]

+x2∼P
S2
[||G2

′(E2
′(G2(E2(x2))))− x2||1], (2)

where G1
′(E1

′(G1(E1(x1)))) represents the reconstructed

version of the real image x1, and G2
′(E2

′(G2(E2(x2)))) is

the reconstructed version of the real image, x2 .

As preserving person identity is crucial for person Re-

ID, we add an identity mapping loss [30] alongside the cycle

consistency loss to force the generator to preserve the iden-

tity of the source domain’s real images in the target domain,

i.e. we require that if the source domain shows an image

of person p, then the person p is also rendered in the target

domain. The identity preserving loss can be expressed as,

Lidentity =x1∼P
S1

[||G1(E1(x1))− x1||1]

+x2∼P
S2
[||G2(E2(x2))− x2||1], (3)

where G1(E1(x1)) and G2(E2(x2)) are the style trans-

ferred images from the real images, x1 and x2 respectively.

Further, we propose a feature-level semantic-consistency

loss to preserve semantics during cross-domain translation,

helping maintain identity between vastly different domains.

The semantic-consistency loss is given by,

Lsemantic =x1∼P
S1

[||E1
′(G1(E1(x1)))− E1(x1)||1]

+x2∼P
S2
[||E2

′(G2(E2(x2)))− E2(x2)||1]. (4)

This loss is applied to the embeddings so that the encoder

extracts the same high level features for both the input and

output, such that semantic information is consistent across

domains. Here, E1
′(G1(E1(x1))) represents the embed-

ding of the translated images from domain S1 to S2 and

E1(x1) is the embedding of the S1 domain’s real images,

and similar for the reverse mapping. Thus to transfer the

style from domain S1 to S2 with the preserved identity and

semantic features, the objective of SC-IMGAN is,

LSC−IMGAN = LGAN (E1, G1, D2, S
1, S2)

+LGAN (E2, G2, D1, S
2, S1)

+λ1Lcyc + λ2Lidentity + λ3Lsemantic. (5)

When training the proposed multi-component network, we

train the mapping between two domains at a time, and iter-

ate through pairs of domains to train all mappings, with the

aim of preserving semantic information and person iden-

tity. In this work, we consider six domains (CUHK01,

CUHK03, VIPeR, PRID2011, iLIDS and Market-1501) for

image translation which requires 6 generator/discriminator

pairs. Each of the generators are disengaged to utilize half

as encoders and the other half as decoders. Thus for each

domain, an encoder and a decoder from different domains

can be combined to reduce the required number of genera-

tors. As such, the network can translate an image from one

domain to all other domains.

3.2. Joint Verification­Identification for Person Re­
Identification

The newly generated style transferred images are used as

the input alongside real images in a CNN for person Re-ID.

Here, a four-stream DCNN is proposed to combine verifi-

cation and identification tasks in a single framework. We

propose an improved quartet loss for verification which re-

quires four input images denoted as, Ii = I1i , I2i , I3i , I4i
where I1i is the anchor image, I2i is the positive image, and

I3i and I4i are two different negative images. Although great

success has been had with the triplet loss for person Re-ID,
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it suffers from poor generalisation in real world scenarios

due to totally unseen target data. The triplet loss pushes

images of the same identity close to each other only when

the probe images come from the same identity, which is

not practical in the real world. We also notice that nei-

ther the triplet or quartet loss specify how close the positive

pair should be in feature space. Thus intra-class variation

within feature space may be high, resulting in a severe drop

in performance. To overcome these challenges, we propose

an improved quartet loss to minimise the intra-class varia-

tion over the inter-class variation, regardless of whether the

probe image belongs to the same person or not. We further

insert a new term to push the network to minimise the intra-

class distance more than the inter-class distance, and ensure

this distance is less than a second margin. The full objective

of the proposed verification loss is given by,

LImpQuartet =

n
∑

i=1

(

max
{

‖ Θw(I
1

i )−Θw(I
2

i ) ‖
2

− ‖ Θw(I
1

i )−Θw(I
3

i ) ‖
2 + ‖ Θw(I

1

i )−Θw(I
2

i ) ‖
2

− ‖ Θw(I
4

i )−Θw(I
3

i ) ‖
2, τ1

}

+max
{

‖ Θw(I
1

i )−Θw(I
2

i ) ‖
2, τ2

}

)

. (6)

Here, the positive pair, comprised of Θw(I
1

i ) and Θw(I
2

i ),
is included twice in the first term of Equation 6 to compen-

sate for having two negative pairs (Θw(I
1

i ), Θw(I
3

i ); and

Θw(I
4

i ), Θw(I
3

i )). The first negative pair shares a common

probe image with the positive pair (i.e. Θw(I
1

i )), while

the second negative pair uses two different images. Thus,

the proposed loss forces the network to maximize the inter-

class distance even if the target image comes from a dif-

ferent identity, while the second term forces the distance

between Θw(I
1

i ) and Θw(I
2

i ) to be less than τ2, where τ2 is

less than τ1, ensuring that features for the same identity are

close in feature space. Thus by using the improved quartet

loss, the inter-class distance is required to be larger than the

intra-class distance irrespective of whether the probe image

comes from the same identity or multiple different identi-

ties; while ensuring that the intra-class features will lie close

to each other in the feature space.

The identification model in this work is the same archi-

tecture as [18, 7] which forces the network to push images

of different identities away from each other to identify the

query image. As the proposed model trains the network

with four input images, three pairs are created for identi-

fication, one is a positive pair and the remaining two are

negative pairs. For identification, a softmax layer is used

to obtain the similarity between the probe and the gallery

images. The identification loss is,

Lidentification = −

n
∑

i=1

pilogp̄i = −logp̄t, (7)

where pi is the probability distribution of the target, i is the
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Figure 3: Architecture of the GAN where N , k, and s rep-

resents the number of neurons, kernel size and stride re-

spectively. For six domains, our method requires six gen-

erator/discriminator pairs, i.e. an encoder, a decoder and a

discriminator per domain.

number of classes, p̄i is the predicted probability distribu-

tion and t is the target class.

According to [33], the lower layers of deep architectures

encode more discriminative features to capture intra-class

variations and provide more detailed local features and the

higher layers of deep architectures focus on identifiable lo-

cal semantic concepts. We borrowed this idea and compare

the images based on low level features for verification and

extract identification features from higher layers as in our

work, we need to focus on intra-class variations for verifica-

tion purpose and local semantic concepts for identification.

3.3. Training the Network

For style-transferred image generation, we use the train-

ing data from six person Re-ID databases to train SC-

IMGAN. For each training image, we map to each target

domain, such that the network learns how to map each im-

age to each domain. We use pytorch and we empirically set

λ1 o 10, and λ2 and λ3 to 0.1 (see Equation 5). The Adam

optimizer is used to train SC-IMGAN from scratch with a

batch size of 1 and a learning rate of 0.0002. We train for

200 epochs. The learning rate is constant for the first 100

epochs, and then linearly decays towards zero over the next

100 epochs. The styles are transferred among 6 domains

which requires 6 generator/discriminator pairs whereas Cy-

cleGAN requires 30 generator/discriminator pairs, i.e. 30

training networks. To train for 200 epochs, the proposed

SC-IMGAN takes approximately 120 hours whereas Cy-

cleGAN takes around 1560 hours to train the generators,

on a single GPU. The generator and discriminator architec-

ture of SC-IMGAN is illustrated in Figure 3. The encoder

contains three convolutional layers. The output activation is

then passed through a series of nine residual blocks, which

is expanded by the decoder.

For person Re-ID, we use a four stream CNN, fine-tuned

from an Alexnet [19] model pre-trained on ImageNet [10].

We set the learning rate to 0.001 and use a batch size of 128

during training. τ1 is set to -1 and τ2 to 0.01 in Equation 6.
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Method Type
CUHK01 CUHK03 VIPeR PRID2011 iLIDS Market1501

R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10
DML [41] ID - - - - - - 28.2 59.2 73.4 17.9 37.5 45.9 - - - - - -
FPNN [22] ID 27.9 - - 20.7 51.3 68.7 - - - - - - - - - - - -
DRDC [11] V - - - - - - 40.5 60.8 70.4 - - - 52.1 68.2 75.1 - - -
FLCA [27] ID 46.8 71.8 80.5 - - - 42.5 72 91.7 - - - - - - - -
DGD [38] ID 71.7 88.6 92.6 75.3 - - 38.6 - - 64 - - 64.6 - - - - -
Improved Trp [8] V 53.7 84.3 91.0 - - - 47.8 74.7 84.8 22.0 47.0 57.0 60.4 82.7 90.7 - - -
SIRCIR [32] ID+V 71.8 - - 52.2 - - 35.8 - - - - - - - - - - -
DRPR [5] V 70.9 92.3 96.9 - - - 38.3 69.2 81.3 - - - - - - - - -
PersonNet [37] V 71.1 90 95 64.8 89.4 94.9 - - - - - - - - - - - -
DLCNN [47] ID+V - - - 83.4 97.1 98.7 - - - - - - - - - - - -
GSCNN [31] ID - - - 68.1 88.1 94.6 37.8 66.9 77.4 - - - - - - 65.9 - -
CAN [24] ID - - - 72.3 93.8 98.4 - - - - - - - - - 60.3 - -
Re-ranking [49] ID - - - 61.6 - - - - - - - - - - - 77.1 - -
DCF [20] ID - - - 74.2 94.3 97.6 - - - - - - - - - 80.3 - -
SSM [1] V - - - 76.6 94.6 98.0 53.7 - 91.5 - - - - - - 82.2 - -
EDM [29] ID 69.4 - - 61.3 - - 40.9 - - - - - - - - - - -
MTDNet [7] ID+V 77.5 95.0 97.5 74.7 95.9 97.5 45.9 71.9 83.2 32.0 51.0 62.0 - - - - -
BTL [6] V 62.6 83.4 89.7 75.5 95.1 99.1 49.0 73.1 81.9 - - - - - - - - -
P2S [52] V 77.3 93.5 96.7 - - - - - - 70.7 95.1 98.9 - - - 70.7 - -
Spindle Net [45] ID 79.9 94.4 97.1 88.5 97.8 98.6 53.8 74.1 83.2 67.0 89.0 89.0 66.3 86.6 91.8 76.9 91.5 94.6
DaRe [35] V - - - 73.8 - - - - - - - - - - - 90.9 - -
AACN [39] ID 88.1 96.7 98.2 91.4 98.9 99.5 - - - - - - - - - 88.7 - -
MLFN [4] ID - - - 82.8 - - - - - - - - - - - 90.0 - -
DFSN [18] ID+V 83.9 98.2 98.9 85.5 98.7 99.8 68.7 88.9 94.6 75.0 93.0 97.0 - - - - - -
CamStyle [50] ID - - - - - - - - - - - - - - - 89.5 - -
SC-IMGAN + Imp Quartet ID+V 95.3 99.5 99.8 92.8 99.8 99.8 72.8 95.1 98.0 80.7 96.2 99.4 86.0 96.2 98.3 94.7 95.7 98.5

Table 1: Comparison of SC-IMGAN with state-of-the-art methods on CUHK01, CUHK03, VIPeR, PRID2011, iLIDS and

Market-1501 datasets. ID, V and ID+V indicate that an identification, a verification or a combination is used. R1, R5 and

R10 indicates rank-1, rank-5 and rank-10 identification accuracy respectively.

The training iterations are set to 30,000 and training takes

approximately 24 hours. Stochastic gradient descent (SGD)

is used to update network parameters.

4. Experimental Results and Discussions
4.1. Datasets

For SC-IMGAN, six Re-ID datasets (CUHK01,

CUHK03, VIPeR, PRID2011, iLIDS, and Market1501)

are used to train the generator network where the training

images (training splits are the same as discussed below)

are used to generate synthetic images. For each dataset,

the generated synthetic images are used to train the Re-ID

network alongside real images.

For Re-ID, we use the above mentioned six datasets

separately to evaluate the proposed method; i.e. for the

CUHK01 dataset, the Re-ID network is trained with the

real images from CUHK01 dataset along-with the gener-

ated images from CUHK01 in the style of other domains.

CUHK01 [21] consists of 3884 images of 971 persons taken

by different two camera views, each identity has four im-

ages. CUHK03 [22] consists of 1467 identities, captured by

six surveillance cameras from a university campus. VIPeR

[15] contains 1264 images of 632 identities, captured by

different cameras with changes in viewing angles, poses

and lighting conditions. PRID2011 [16] contains 385 and

749 identities in two camera views which are captured from

videos. Among 1134 persons, only 200 are common to both

camera views. iLIDS [34], consists of 479 images of 119

identities which are extracted from video images in a busy

airport environment. Market-1501 [46] consists of 12936

training images of 751 identities and 19732 testing images

of 750 identities which is close to a real world setting. For

all six datasets, we follow the same settings for training and

testing as [45].

4.2. Comparison with state­of­the­art approaches

We compare the results of our proposed method with

state-of-the-art approaches as shown in Table 1. For

CUHK01, the proposed SC-IMGAN with the improved

quartet loss achieves 95.3% rank-1 accuracy whereas the

previous state-of-the-art approach achieved 88.1%, which

used an identification task only. For CUHK03 and Market-

1501, the proposed method achieves 92.8% and 94.7%

rank-1 accuracy respectively. The previous best method

achieved 91.4% on CUHK03, though they used additional

semantic information such as pose estimation for identi-

fication and rely on body part detectors; and 90.9% on

Market-1501 where features from multiple layers are com-

bined to capture both high-resolution and semantic de-

tails and adopted the traditional triplet loss. For VIPeR,

PRID2011 and iLIDS, we outperform the previous state-of-

the-art methods by 4.1%, 5.7% and 19.7% rank-1 accuracy

respectively.

4.3. Cross­domain Evaluation

For person Re-ID, cross domain experiments are more

relevant for real world deployments. To evaluate whether

the domain gap is reduced by SC-IMGAN, we trained

the network on CUHK03 and Market1501 and tested on

PRID2011 as summarised in Table 2 . From Table 2, the

model is trained with images from CUHK03 transferred

to other domains by SC-IMGAN alongside real images,

and achieves significant performance gains when tested on

PRID, e.g., a 13.5% and 10.5% increase in rank-1 accuracy

compared to [36]. Similar improvements can be observed

when trained with the Martket1501 dataset transfered to

other domains, outperforming state-of-the-art approaches
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Method
CUHK03 → PRID Market1501 → PRID

cam1/cam2 cam2/cam1 cam1/cam2 cam2/cam1
R1 R10 R1 R10 R1 R10 R1 R10

PTGAN(cam1) [36] 18.0 43.5 6.5 24.0 17.5 50.5 8.5 28.5
PTGAN(cam2) [36] 17.5 53.0 22.5 54.0 10.0 31.5 10.5 37.5
ATNet(cam1) [25] - - - - 24.0 51.5 21.5 46.5
ATNet(cam2) [25] - - - - 15.0 51.0 14.0 41.5
SC-IMGAN (cam1) 31.5 50.0 20.0 32.5 28.0 56.5 26.0 49.5
SC-IMGAN (cam2) 28.0 57.5 36.5 60.5 21.5 55.0 20.5 45.5

Table 2: Cross-domain performance comparison on

PRID2011 dataset trained with CUHK03 and Market1501

dataset. cam1/cam2 indicates that cam1 of PRID is used

as the query set while cam2 is the gallery set and vice-versa.

R1 and R10 indicates rank-1 and rank-10 identification ac-

curacy respectively.

[36, 25]. The comparison indicates the effectiveness of the

proposed SC-IMGAN in a cross-domain setting.

4.4. Ablation Study

Effectiveness of Improved Quartet Loss

In this section, we investigate the effectiveness of the im-

proved quartet loss. We train the Re-ID model with both the

triplet loss and quartet loss to evaluate the effectiveness of

improved quartet loss. From Table 3, we see that the rank-

1 accuracy of ImpQuartet outperforms Quartet by 6.3%,

3.2%, 1.6%, 3.2%, 1.2% and 6.1% for CUHK01, CUHK03,

VIPeR, PRID2011, iLIDS and Market-1501 datasets; in-

dicating that considering the distance between the positive

pairs within the loss is important. Further, we show that the

proposed multi-component image generation helps to im-

prove performance compared to CycleGAN and StarGAN.

Effectiveness of Identity Mapping Loss

For person Re-ID, the style transferred image of a per-

son should have the same identity before and after im-

age translation. To this end, our proposed identity map-

ping multi-component network forces the generator to pre-

serve the identity of the real images such that after style

adaptation the identity will be the same. To justify the

effectiveness of the identity mapping loss, we compare a

multi-component model without the identity mapping loss

(MC − GAN ), with a multi-component GAN with the

identity mapping loss but without the semantic-consistency

loss (IMGAN ), as shown in Figure 4 and Table 3. From

Table 3, rank-1 performance of IMGAN achieves a 0.9%,

1.6%, 0.4%, 0.7%, 0.6% and 1.5% increase over MC-GAN

on CUHK01, CUHK03, VIPeR, PRID2011, iLIDS and

Market-1501 datasets. We also observe from Figure 4 that

without the identity loss, it is harder for the model to gener-

ate images with the same identity, reducing performance.

Effectiveness of Semantic Consistency Loss

In person Re-ID, domains are vastly different such as

between the PRID2011 and Market-1501 datasets. This

leads to a performance drop when transforming the images

from one domain to others. Thus, preserving semantic in-

formation across domains helps improve translation across

domains, and improves performance. To evaluate the ef-

Method C1 C3 V P L M
R1 R1 R1 R1 R1 R1

Triplet 79.5 83.8 61.0 71.0 71.5 79.3
Quartet 83.9 85.5 68.7 75.0 82.4 83.6
Imp Quartet 90.2 88.7 70.3 78.2 83.6 89.7
CycleGAN + Imp Quartet 90.8 89.0 70.9 78.5 84.0 90.2
StarGAN + Imp Quartet 91.4 89.5 71.2 78.8 84.1 91.6
MC-GAN + Imp Quartet 93.7 90.1 71.5 79.4 84.9 92.1
IMGAN + Imp Quartet 94.6 91.7 71.9 80.1 85.5 93.6
SC-IMGAN + Imp Quartet 95.3 92.8 72.8 80.7 86.0 94.7

Table 3: Ablation studies on CUHK01, CUHK03, VIPeR,

PRID2011, iLIDS and Market-1501 datasets. “MC-GAN +

Imp Quartet”: multi-component image generation network

without identity-mapping loss and semantic-consistency

loss but with improved Quartet loss. “IMGAN + Imp Quar-

tet”: with identity mapping loss and improved Quartet loss.

“SC-IMGAN + Imp Quartet”: with semantic-consistency

and identity mapping loss and improved Quartet loss. We

also compared to StarGAN [9] and CycleGAN [53]. R1

indicates rank-1 identification accuracy.

fectiveness of the proposed feature-level loss, we evaluate

a multi-component model for target domain style adapta-

tion without the semantic-consistency loss (IMGAN ), and

compare this to the proposed approach (see Figure 4 and

Table 3). According to Table 3, removing the the semantic-

consistency loss drops performance by 0.7%, 1.1%, 0.9%,

0.6%, 0.5% and 1.1% on the CUHK01, CUHK03, VIPeR,

PRID2011, iLIDS and Market-1501 datasets, indicating

that the semantic consistency loss leads to a substantial im-

provement in performance.

From the above, we see that both the semantic consis-

tency loss and identity mapping loss improve performance.

It is clear that person Re-ID also benefits from being trained

with multiple different styles of a person. Inspecting Fig-

ure 4, the proposed SC-IMGAN helps preserve the identity

and semantics during image domain translation. The pro-

posed model overcomes the limitation of CycleGAN only

being able to transfer between two domains by transfer-

ring styles among N domains, greatly reducing the com-

putational requirements over CycleGAN. SC-IMGAN also

performs better than StarGAN which uses an external code

for image translation, and thus can not perform well when

domains are vastly different.

From Table 1 and 3, it can be observed that the improved

quartet loss outperforms [18]. While [18] used a quartet of

images, it did not take into account the distance between the

positive pairs and therefore features from the same identity

may be separated by a large intra-class distance which leads

to a drop in performance. The proposed improved quartet

overcomes this problem by not only increasing the inter-

class distance with multiple different probe images, but also

simultaneously penalising large intra-class distances.

To obtain further insight, a t-SNE visualisation of

learned embeddings for the PRID2011 dataset is shown in

Figure 5. Here, we have considered 10 classes for clear

visualization. From Figure 5, the proposed improved quar-
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Figure 4: Examples of style-transferred images in six domains : (a) the samples of the proposed SC-IMGAN (with iden-

tity mapping and semantic-consistency loss), (b) samples without semantic-consistency loss, (c) samples without identity

mapping loss, (d) StarGAN and (e) CycleGAN. The six rows represent real images from the CUHK01, CUHK03, VIPeR,

PRID2011, iLIDS and Market-1501 domains. Inputs from all these domains are transferred to the distributions of CUHK01,

CUHK03, VIPeR, PRID2011, iLIDS and Market-1501 respectively, represented as D1−D6.
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Figure 5: t-SNE visualizations of the CNN activations for PRID2011 (a) quartet, (b) improved quartet, (c) MC-GAN, (d)

IMGAN and (e) SC-IMGAN. The 10 different colours correspond 10 different identities. It can be seen that SC-IMGAN has

the tightest grouping of points, indicating that it is best suited to separating the classes.

tet loss optimizes the embedding space such that the data

points with the same identity are closer to each other than

we see for the quartet loss, for example, the red points are

wrongly clustered in Figure 5 (a). The effectiveness of the

identity mapping loss and semantic loss can also be clearly

observed.

5. Conclusion
In this paper, we propose SC-IMGAN, a semantic-

consistency and identity mapping multi-component GAN

for deep person Re-ID. The SC-IMGAN model learns to

transfer styles among six domains to generate new train-

ing images. An identity mapping loss ensures that style-

transferred images contain the same identity as the orig-

inal images, and a semantic-consistency loss is also pro-

posed to ensure that encoders extract the same high level

features for images belonging to the same identity, regard-

less of the image domains; improving performance gain

during cross-domain translation. The style-transferred im-

ages are then used with real images to train the proposed

four-stream person Re-ID network. To ensure that we max-

imise the distance between negative pairs relative to the

positive pairs and with respect to multiple different probe

images, we propose to use an improved quartet loss with

joint verification-identification, which further keeps intra-

class features close to each other. Evaluations on 6 popular

databases show our technique outperforms current state-of-

the-art methods. To emulate a real-world scenario, we per-

formed cross-domain experiments on the proposed methods

and the results demonstrate our architecture superior perfor-

mance in this challenging real world scenario.
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