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Abstract

Existing methods for visual anomaly detection predom-

inantly rely on global level pixel comparisons for anomaly

score computation without emphasizing on unique local

features. However, images from real-world applications are

susceptible to unwanted noise and distractions, that might

jeopardize the robustness of such anomaly score. To alle-

viate this problem, we propose a self-supervised masking

method that specifically focuses on discriminative parts of

images to enable robust anomaly detection. Our experi-

ments reveal that discriminator’s class activation map in

adversarial training evolves in three stages and finally fix-

ates on the foreground location in the images. Using this

property of the activation map, we construct a mask that

suppresses spurious signals from the background thus en-

abling robust anomaly detection by focusing on local dis-

criminative attributes. Additionally, our method can fur-

ther improve the accuracy by learning a semi-supervised

discriminative classifier in cases where a few samples from

anomaly classes are available during the training. Ex-

perimental evaluations on four different types of datasets

demonstrate that our method outperforms previous state-

of-the-art methods for each condition and in all domains.

1. Introduction

Anomaly detection [7] handles the task of recognizing

whether an input sample lies close to the distribution of

a given target normal class or anomaly class (outliers).

Anomaly detection methods have applications in various

fields such as medical imaging, industrial inspection, and

fraud detection. The typical problem setting involves sam-

ples from the normal class distribution, and the goal is to

detect whether or not an input test sample belongs to the
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Figure 1: Proposed method is robust against noise by atten-

tions from the network. Top: noisy MNIST dataset, Bot-

tom: pigeon gesture [48] dataset. From left: input image,

reconstructed image from VAEGAN [26], difference image

for AnoVAEGAN [3], adversarial discriminative class ac-

tivation map, and difference image for proposed method.

The difference between the reconstructed image and the

original image should be low for normal samples and high

for anomaly samples. However, the prior method produces

a higher score for the normal sample due to background

noise (0.13 > 0.08 for MNIST dataset). The proposed

method produces the correct classification (0.04 < 0.06).

normal class. This setting is also referred to as one-class

classification [6, 33] or out-of-distribution detection [29].

A standard approach for this kind of problem setting

is to learn a representation of the normal class distribu-
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Figure 2: Overview of proposed method showing that a mask obtained from the class activation maps focuses on salient

features, suppressing background noise, and thus improving robustness of anomaly score detection.

tion and define an anomaly score metric that provides a

measurement of how different the test image is from the

normal class distribution. Modern anomaly detection sys-

tems employ generative models to learn the manifold for

the normal class. The anomaly score is usually com-

puted as the difference in the Euclidean space between the

reconstructed and original images. Auto-encoders, vari-

ational auto-encoders (VAEs), and generative adversarial

networks (GANs) are commonly used for training such dis-

tributions [1–3, 10, 12, 39–41, 51].

However, such methods are liable to make erroneous de-

tections due to background noise and noise on objects. For

example, in industrial applications, using anomaly detection

for robotic inspection might give a false positive output if

there is an unexpected change in the background of the im-

age. In contrast, humans can identify relationships among

objects and focus only on the parts of the image that are rel-

evant for visually discerning whether the image belongs to

the normal class or not.

A straightforward approach to remedying this problem

is to calculate detections or segmentations from saliency

labels [17, 36]. However, the preparation of labeled data

causes laborious real-world problems, and human biases

can be misleading. We need an unsupervised method for ob-

taining saliency. The recently proposed gradient-weighted

class activation mapping (Grad-CAM) [43] computes such

saliency from gradients of convolutional neural networks

(CNNs) without region labels.

In this work, we use visual saliency calculated by Grad-

CAM [43] from an adversarial network to improve the noise

robustness of anomaly detection. Figure 1 shows the bene-

fits of introducing the attentions generated from the class ac-

tivation maps, and Fig. 2 gives an overview of the proposed

method. The visual saliency is calculated from the discrim-

inator network in a variational auto-encoder with genera-

tive adversarial network [26], which is trained for recon-

structing normal images. We use the class activation maps

from the discriminator networks to focus on spatially rel-

evant areas of the image to reduce the effect of unwanted

background distractions and noise. After getting the activa-

tion map, we use it as a mask for calculating an anomaly

score on the basis of error in the reconstruction of a given

input. This technique is self-supervised method with adver-

sarial network for anomaly detection, and does not require

preparation of labeled segmentation data. We argue that,

for discerning normal and anomaly class distribution, the

discriminators attention map would align with the location

of the primary object in the image and hence would mask

unwanted noisy perturbations outside the main discrimina-

tive area. In this paper, we compare our method with the

state-of-the-art methods on four different kinds of anomaly

detection problems which have a wide variety of samples.

We especially focus on realistic dataset settings that con-

tain complex noise and extremely few training images [31].

Experiments are conducted to validate that our method can

discard the effect of noise in the images, and thereby im-

prove the AUROC scores for anomaly detection.

In addition, when we look at real-world anomaly detec-

tion problems, we find that in many cases, a small number

of anomaly examples are known beforehand. For exam-

ple, it is common for factory workers to know some typ-

ical anomaly modes of manufactured products while not

knowing all possible anomaly modes. Yamaguchi et al. re-

ported several typical anomaly patterns for a screening test

for dementia [48, 49]. However, even in such cases, we

should not simply train a classifier that discriminates nor-

mal and anomaly classes because the response from truly

“unseen” anomaly samples will be intrinsically unexpected.

Hence, we propose a semi-supervised discriminative atten-

tion based anomaly detection method to utilize the few la-

beled samples to improve the visual saliency model.
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Our major contribution are:

1. We introduce the concept of utilizing discriminator’s

class activation map (CAM) for constructing a self-

supervised method for suppressing spurious signals

from image background for robust anomaly detection.

We also extend it for semi-supervised learning case

with some known anomaly samples.

2. We empirically demonstrate that discriminator atten-

tion in adversarial learning evolves over three stages

which forms the basis of our method.

3. Experimental validations show that we outperform the

state-of-the-art methods on four different datasets in-

cluding domains with real-world settings have small

training samples with complex noise distribution.

2. Related Work

2.1. Anomaly detection

Anomaly detection is also known in prior works as “nov-

elty detection”, “outlier detection”, and “out-of-distribution

detection”. In an earlier work [42], the support-vector ma-

chine [11] framework was used to predict a positive score

for samples drawn from the normal subspace and a negative

score from the anomaly subspace. This study also provided

a theoretical justification for generalization error bounds.

Following the above kernel-based methods, auto-encoders

were used for non-linear feature extraction from data [40].

This method outperformed linear principal component anal-

ysis (PCA) and kernel PCA [22].

Recently, deep learning has been extensively incorpo-

rated into anomaly detection methods because of notable

improvements in deep learning’s ability to assist other tasks

such as image classification [18, 25]. Hendrycks et al. pro-

vide a baseline in outlier detection using CNNs that use

probability from softmax distributions for normal and out-

lier images [19]. A common approach consists of learn-

ing a generative model on normal images and finding the

error between the reconstructed image and input. Auto-

encoder, VAE [24], and GAN [15] are the most popular

methods for learning the distribution of a certain class.

Simple reconstruction-error-based anomaly detection with

a VAE was introduced by An et al. [2]. Chen et al. intro-

duced noise in auto-encoder structure and showed improved

performance in outlier detection [10].

Recent anomaly detection studies are using generative

adversarial methods for generating reconstructed images.

Schlegl et al. proposed a GAN-based anomaly detection

method, called AnoGAN, for optical coherence tomography

images of the retina [41]. In their work, the ‘normal’ class

manifold is implicitly learned by GAN. For unseen test im-

ages, the distance between the original image and its projec-

tion on the learned non-linear manifold is used to obtain the

anomaly score. Their method has an optimization step dur-

ing test phase to get an image that is similar to the original.

Therefore, AnoGAN has problems of having many local

minima in optimization and is computationally expensive.

Zenati et al. improved the speed of the above architecture by

introducing a learned encoder for latent space re-projection

instead of optimization [51]. Akcay et al. proposed an en-

coder architecture along with the generator for explicitly

learning the distance function between the target and the

anomaly class [1]. Recently, Sabokrou et al. introduced a

new detection method using generator- and discriminator-

based adversarial learning along with another network that

helps the discriminator to learn the distribution of the nor-

mal class [38]. More recently, Baur et al. proposed an-

other anomaly detection method [3] called AnoVAEGAN,

which introduces VAEGAN [26] as the generative model.

They applied AnoVAEGAN to detection in brain MR im-

ages. This method does not require the optimization steps,

which helps to prevent it from dropping the local minimum.

However, they only report one simple domain example with

one condition, and this study did not introduce an attention

mechanism.

The application of anomaly detection methods [6, 7, 47]

are well reported in some literatures, especially the med-

ical domain. Hauskrecht et al. proposed an alerting sys-

tem that monitors a patient by using an anomaly detec-

tion method [16]. Prastawa et al. proposed a framework

for using detection to automatically segment brain tumors

in MR images [35]. Applications in other fields include

anomaly detection in crowded scenes [28,37] and defect de-

tection [5, 32]. In addition, Sultani et al. proposed anomaly

detection in videos [44]. Further, Brown et al. and Wu et

al. proposed introducing a recurrent neural-network-based

attention for anomaly detection [4, 46]. However, previous

methods [2,3,41], related to the our method, did not propose

explicit measures for handling noise and distractions in im-

ages. In this paper, we propose using visual saliency from

adversarial training to focus on discriminative attributes.

2.2. Attention from class activation maps

There are several techniques that try to explain the de-

cisions of CNNs by looking at the gradient flow in the

networks. Zhou et al. proposed class activation map-

ping (CAM) to visualize the region of interest (ROI)

and performed object localization without training on any

bounding box annotation [52]. This method tries to deter-

mine which feature maps are more important for a particu-

lar class by computing global average pooling (GAP) of the

last convolution layer. A linear combination of the gradient

with respect to a target class is then computed as the acti-

vation map for that class. However, this requires re-training

of the base model for the classification task. Therefore, Sel-

varaju et al. proposed Grad-CAM, which does not require
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such re-training [43]. This method back-propagates gradi-

ents for a particular class by rectifying the gradients using

ReLU activation to look at the pixels that have a positive

effect on the class decision. An extension to this work was

recently proposed as well [8].

3. Proposed Method

Our method for anomaly detection consists of a VAE-

based generator network G and discriminator network D.

The generator network has a variational bottleneck, and its

task is to reconstruct the image given as input. The dis-

criminator network tries to learn a classifier between the

real and reconstructed image. The goal is to learn a man-

ifold of the normal class using the generative process. If

the networks are trained well, the distance between recon-

structed and input images will be small for normal input

and high for anomaly input. However, the reconstruction

process might produce some unwanted artifacts, especially

in the presence of noise and distractions in the input image.

Even if the training images also have a large amount images

with such noise, the generative model generally does not

learn the un-structured distributions. Our proposed method

uses attention information from the discriminator network

for self-attention to focus on the most salient feature to pre-

vent the effect of noise. The details of each component are

given in the following sections.

3.1. Training

Previous approaches to anomaly detection predomi-

nantly use an encoder-decoder model [1–3, 10, 39, 41] for

learning the distribution of the normal class. The previous

methods are using adversarial training for improved class-

distribution learning. Although AnoGAN [41] has good de-

tection results, it suffers from the problem of having local

minimums based on the initial value during optimization in

the test phase. AnoVAEGAN [3] can solve this problem

by removing the optimization in the test phase; however,

only one example is reported and it did not use attention.

Since AnoVAEGAN is a baseline method for our proposed

method, we explain the training of the VAE-based genera-

tive model in this section.

To implement the generator network, we use CNNs for

both encoder-decoder networks to map samples from the

normal image to itself. Thus, the generator network’s prin-

ciple task is to maintain an identity mapping for the distribu-

tion of the normal class. When the test image is an anomaly

sample, the generator removes the salient features from the

anomaly distributions by mapping them to the closest pro-

jection in the normal space.

Following the work of Kingma et al. [24], we injected

noise in the latent space from a unit Gaussian distribution.

Given an input sample x, we obtain the latent distribu-

tion parameters from the encoder as zµ, zσ = Genc(x),

and the reconstructed image is created from the decoder as

x̂ = Gdec(zµ + N (0, I) ∗ zσ). For generative modeling

using VAE, we minimize the log likelihood of the model,

−
∑

i log pθ(xi). The VAE approximates the true latent

distribution p(z|xi) with variational approximation and a

proxy distribution qφ(z|xi). The parameters for this distri-

bution are learned to match a prior distribution p(z), which

we consider as unit normal N (0, I). This loss is given as,

Lprior = DKL(qφ(z|xi)|p(z)), (1)

where DKL(.|.) is the Kullback-Leibler (KL) divergence

between two distributions. Traditionally, the above Lprior

and the l2 between the input and reconstructed image (as-

suming Gaussian decoder distribution) are jointly mini-

mized to train the network. However, the reconstruction

quality of simple VAEs tends to be blurry and unrealistic

in nature [13], which might affect the reconstructed image

by giving it a high anomaly score even in the case of nor-

mal class inputs. Therefore, we use adversarial training that

minimizes the Jensen-Shannon divergence [15] between the

generated and true distributions to produce sharper images.

We designed the discriminator as a CNN whose task is

to determine whether or not an input image belongs to the

real images of the normal class distribution. The output is

a probability distribution p(yc = 1|x) signifying the likeli-

hood of the input image to be from the normal class. We

train the discriminator in two possible settings: (1) self-

supervised setting which is a case without prior anomaly

data, and (2) semi-supervised setting which is a case with a

few known anomaly samples.

3.1.1 Self-supervised setting

This is a standard problem setting for anomaly detection, in

which we have access to only the normal class, and anomaly

samples are not seen during training. We train the generator

and discriminator with the following loss function,

LGAN = Ex∼pdata
log[D(x)]

+ Ezµ,zσ∼pz
log[1−D(Gdec(zµ, zσ))]

+ Ex∼pdata
log[1−D(Gdec(Genc(x)))],

(2)

where the D is the discriminator network. The first loss en-

courages the discriminator to classify the real data as posi-

tive (normal) samples, and the other two loss terms classify

the images reconstructed from those sampled from latent

space and input images as negative (anomaly) samples.

Joint VAE-and-discriminator training is performed by

minimizing the two losses and maximizing the one loss to-

gether in a minimax way,

min
Genc,Gdec

max
D

( LGAN + Lprior + Limage ) , (3)

where Limage is the distance between the original and re-

constructed images.
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Figure 3: Training of the model. If some samples from a

few anomaly modes are known a priori, they are used as

negative samples for the discriminator.

3.1.2 Semi-supervised setting

Here, we assume that, when anomaly condition consists

of multiple classes/modes, the system knows one anomaly

class during training; or when an anomaly exists in one

class, the system knows a small number of samples. We

incorporate this known data into our discriminator training

framework as shown in Fig. 3. The anomaly data is treated

as negative samples in the discriminator along with the re-

constructed images from the generator. The adversarial loss

in this case is modified as follows,

Lano
GAN = LGAN + Ex∼pano

(log[1−D(x)]), (4)

where the pano is the known anomaly distribution.

3.2. Anomaly detection with attention

Although the above generative model is trained for nor-

mal class distributions, in cases where real-world noise ap-

pears in the test images, the reconstructed image might sig-

nificantly vary from the normal samples. Anomaly detec-

tion by humans is very efficient in such cases; we can learn

to ignore irrelevant disturbances by focusing on the salient

objects in the scene. We propose the attention mechanism

for self-supervised setting which has no prior anomaly sam-

ples. Here, we explain an assumption for evolution of dis-

criminative attention. Also, we assume a small number of

anomaly samples during training will enable faster focusing

on the detailed parts. We explain about the semi-supervised

setting which is with a few anomaly samples.

3.2.1 Self-supervised setting

To obtain the attention information, we apply a Grad-

CAM [43] method to the discriminator network for extract-

ing a highlight map of the important regions as a class ac-

tivation map without any modification to the network and

training on boundary box information. Our idea is to use

the discriminator’s attention information to identify salient

features in the given images. Only using normal image sam-

ples for training a GAN makes the discriminator learns dis-

epoch

Figure 4: Class activation maps for discriminator with in-

creasing epochs. The top images show maps for MNIST

with noise (normal class is ‘0’); the bottom images show

maps for the pigeon gesture. The maps gradually focus on

detailed aspects, such as digit region or hand position.

tinctive features between normal and reconstructed images

while the generator tries to generate “normal”-like images.

Hence, we believe that the evolution of discriminator’s at-

tention would follow these stages:

1. In the early training phase, the discriminator would fo-

cus on almost the entire area of the images due to lim-

ited learning.

2. After the generator can produce convincing foreground

structure, the discriminator would try to use features

from the background for discriminating the real and

fake samples. However, since the background predom-

inantly consists of non-discriminative features, the dis-

criminator would eventually focus on the foreground

for attempting discriminative classification.

3. In the last stage, the discriminator will gradually focus

on detailed areas of the foreground region which can

be used for fine-grained classification.

We validated our hypothesis about the discriminator’s at-

tention evolution by experiments as shown in Fig. 4. The

fact that discriminator’s final activation map is focused

on the foreground region enables us to use it for robust

anomaly detection in this paper.

The anomaly detection is processed, determining “nor-

mal” or “anomaly” by a threshold and anomaly score in

each test image. In this paper, since we will evaluate the

ROC curve, we will not discuss setting the threshold as an

exact number. The anomaly score is computed by multi-

plying the class activation map and the error from the im-

age reconstructed by the generator and the given test image.

While multiplying the attention, we add the normalization

process for attention values, which is for normalizing the

area size of attention. Also, we found combining the at-

tention maps generated from not only given input x but
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Figure 5: Class activation maps from different discrimina-

tors. From left: input, map from DG , and map from Dano.

The map from Dano can generate better attentions.

also from the generated image x̂ has better results. This

is because the generated image (normal class) might have

a wider range than the input image (e.g., the normal class

is “0”, and the test input is “1”). In addition, we subtract

the probability of the normal distribution from the discrim-

inator, which is an output of D. Hence, the anomaly score

calculation of our proposed method is,

c = CAMD(x) + CAMD(x̂),

score =
‖c ∗ (x− x̂)‖2

2

‖c‖2
2

− βD(x),
(5)

where CAMD(x) = ReLU(
∑

k α
k
xA

k) is a class activation

map from the discriminator network for a given image x,

x̂ = Gdec(Genc(x)) is the reconstructed image, and β is a

parameter that weighs the discriminator score.

3.2.2 Semi-supervised setting

In this scenario, we found that training an ensemble of dis-

criminators on the generated images and given anomaly

samples separately produces a better result for merging than

training one discriminator due to the differences for each

training goal. We combine the class activation maps from

two discriminators: DG trained with generated images, and

Dano trained with a few anomaly samples. Figure 5 shows

the attention outputs for each discriminator. Hence,

c = CAMDG
(x) + CAMDG

(x̂)

+ CAMDano
(x) + CAMDano

(x̂),

score =
‖c ∗ (x− x̂)‖2

2

‖c‖2
2

− β(DG(x) +Dano(x)).

(6)

(a) MNIST with noise
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Figure 6: Sample images for datasets

4. Experiments

4.1. Datasets

In this paper, we evaluated the proposed method on four

datasets from different domains. For all datasets, we assume

real-world environment settings for noise and the number of

training images. We use high-variance and real-world noise,

the normal class is just one mode, and the anomaly class

contains several modes (e.g., 9 modes). This means, the

training uses only one mode; however, the evaluation uses

all modes from normal and anomaly classes. Further, each

mode contains a small number of images because obtaining

real images is generally difficult. Some sample images for

all datasets are shown in Fig. 6.

- MNIST with noise

We modified the original MNIST [27] dataset by ran-

domly placing digits in an 84 × 84 image with arbitrary

digit size. Furthermore, we added noise N (0, σ2), where σ

is also sampled from N (30, 302) for each image.

- Hand gesture

We evaluated on a public hand gesture dataset [30, 45]

to extend following real hand-gesture anomaly detection. It

consists of depth images with 10 hand pose from 14 per-

sons. It only provides 10 images for each gesture and each

person. Note that we cropped and resized the images to be

84× 84 images.

- Pigeon gesture

This is for a medical screening test of dementia. We cap-

tured 84 × 84 depth images of a “pigeon”-pose screening

test [48] from 18 people. While capturing the images, we

2177



MNIST normal digit
average

Pigeon Venus

with noise 0 1 2 3 4 5 6 7 8 9 [48] [50]

AnoVAE [2] .63±.2 .83±.1 .54±.1 .57±.1 .62±.1 .67±.0 .61±.1 .69±.1 .55±.1 .70±.0 .640±.12 .643±.04 .800±.08

AnoGAN [41] .45±.0 .75±.0 .48±.0 .49±.0 .58±.0 .51±.0 .51±.0 .59±.0 .47±.0 .56±.0 .540±.09 .489±.01 .842±.05

AnoVAEGAN [3] .71±.0 .86±.0 .60±.0 .65±.0 .68±.0 .66±.0 .70±.0 .73±.0 .64±.0 .70±.0 .692±.07 .682±.03 .881±.04

Ours (D only) .55±.1 .70±.1 .54±.0 .52±.0 .53±.1 .51±.0 .57±.0 .59±.0 .57±.0 .56±.0 .563±.06 .597±.05 .555±.10

Ours (CAM only) .74±.0 .92±.0 .62±.0 .68±.0 .69±.0 .69±.0 .73±.0 .78±.0 .66±.0 .74±.0 .725±.08 .766±.05 .892±.04

Ours (CAM+D) .74±.0 .92±.0 .62±.0 .68±.0 .68±.0 .69±.0 .73±.0 .77±.1 .67±.0 .74±.0 .725±.08 .766±.05 .892±.04

Table 1: AUROC value for MNIST with noise, pigeon gesture dataset for [48], and Venus image dataset [50]. For MNIST,

the results for each column have different normal class conditions, e.g., the left most result has only “0” as the normal class,

while other digits are treated as anomalies. During training, only the normal class is given. The values are the average results

for five different random seeds; each seed generates a different image set. Bold results are the best for each condition.

Hand normal hand gesture
average

gesture [30] 1 2 3 4 5 6 7 8 9 10

AnoVAE [2] .79±.01 .69±.02 .69±.03 .72±.01 .69±.01 .64±.02 .66±.02 .66±.02 .64±.02 .62±.03 .682±.05

AnoGAN [41] .66±.07 .62±.03 .62±.05 .55±.05 .59±.03 .58±.02 .63±.04 .57±.06 .50±.05 .54±.03 .587±.06

AnoVAEGAN [3] .84±.06 .82±.03 .81±.02 .81±.05 .79±.05 .81±.04 .86±.03 .82±.02 .69±.03 .79±.03 .804±.06

Ours (D only) .78±.06 .78±.05 .75±.03 .77±.08 .75±.04 .75±.04 .78±.03 .81±.04 .67±.06 .80±.04 .763±.06

Ours (CAM only) .85±.06 .84±.03 .82±.03 .81±.05 .79±.06 .80±.05 .87±.02 .80±.02 .70±.06 .81±.02 .809±.06

Ours (CAM+D) .87±.05 .87±.03 .84±.04 .84±.03 .82±.05 .83±.03 .89±.02 .85±.02 .74±.07 .86±.01 .841±.05

Table 2: AUROC value for hand gesture dataset [30]. The results for each column have different normal class conditions.

The values are the average results for five different random seeds; each seed generates a different image set.

asked participants to randomize their hand position and an-

gle, the closed or open state of their fingers, their sitting

positions, and the angle of their posture. We randomly

sampled 10 images for each pose and each person, i.e. it

is same difficult conditions with the previous dataset. For

this dataset, only the “b”-pose is the normal class, and “c”,

“d”, and “e” are candidates for the known anomaly class

because Yamaguchi et al. reported these as typical patterns

for the subjects [48].

- Venus images

We used a public Venus image dataset [21, 50] to detect

stationary structures. Detecting stationary features automat-

ically is helpful for Venus researches [14]. Yamazaki et al.

provide images from several wavelengths, and we chose ul-

traviolet 283 nm images. We did a pre-process similar to

Fukuhara et al. [14]. We sampled 500 normal patches and

225 stationary patches as anomaly samples. We selected

5 large stationary structures as candidates for the known

anomaly.

4.2. Quantitative evaluation

We perform quantitative evaluation with all the above

datasets using the AUROC curve.

4.2.1 Self-supervised setting

We use the discriminator’s attention information to focus

on relevant areas in the image. We compare our results with

the reconstruction-based methods of VAE [2] (AnoVAE),

GAN [41] (AnoGAN), and VAEGAN [3] (AnoVAEGAN).

The network structure for all networks is inspired from the

VAEGAN [26] paper. The Genc has three convolutional lay-

ers with down-sampling, leaky ReLU, and batch normal-

ization [20]. The dimension of the latent variable is 128.

The Gdec has five convolutional layers with up-sampling,

leaky ReLU (the final is tanh), and batch normalization. The

D has five convolutional layers with down-sampling, leaky

ReLU (the final is sigmoid), and batch normalization. We

use RMSProp optimizer (the learning ratio is 0.0003) for

all networks. We prepare two baseline methods for com-

parison: one uses only the output of the discriminator (D
only), and the other uses only the focused error (CAM

only). The β in Eq. (5) is 0.2 for MNIST and pigeon, 5
for hand gesture, and 0.05 for Venus (we tried some values

{0.05, 0.1, 0.2, 1, 5}).

Table 1 and Table 2 show the AUROC values for all the

above datasets. For noisy MNIST and the hand gesture

dataset, we tried all combinations of normal class. Note that
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Noisy MNIST known anomaly digit
average

Pigeon [48], normal: b
average

Venus

normal digit: 0 1 3 5 7 9 c d e [50]

Ours (CAMG+DG) .74±.01 .74±.01 .74±.01 .74±.01 .74±.01 .738±.01 .77±.05 .77±.05 .77±.05 .766±.05 .892±.04

CNN regression .90±.01 .94±.01 .95±.01 .93±.01 .94±.00 .932±.02 .84±.03 .90±.01 .89±.01 .878±.03 .827±.07

Ours (CAMano) .78±.02 .77±.02 .75±.01 .77±.02 .77±.02 .768±.02 .74±.06 .81±.03 .80±.03 .784±.05 .888±.04

Ours (CAM+DG+Dano) .93±.01 .94±.01 .95±.01 .95±.00 .95±.01 .945±.01 .87±.05 .94±.01 .92±.01 .910±.04 .924±.04

Table 3: AUROC value for noisy MNIST, pigeon gesture for [48], and Venus dataset [50]. In this table, one of the anomaly

classes is known during training. Each column shows different anomaly class conditions. For the Venus dataset, there is only

one known anomaly candidate. The value is an average of five random seeds.

Hand gesture [30] known anomaly hand gesture
average

normal: 1 2 3 4 5 6 7 8 9 10

Ours (CAMG+DG) .87±.05 .87±.05 .87±.05 .87±.05 .87±.05 .87±.05 .87±.05 .87±.05 .87±.05 .869±.05

CNN regression .91±.02 .93±.02 .91±.03 .95±.02 .95±.02 .93±.02 .95±.01 .94±.03 .95±.01 .935±.02

Ours (CAMano) .84±.07 .85±.05 .85±.06 .85±.05 .85±.06 .85±.06 .85±.06 .85±.05 .86±.06 .849±.05

Ours (CAM+DG+Dano) .94±.03 .95±.01 .93±.02 .96±.01 .95±.01 .94±.02 .96±.01 .94±.02 .95±.01 .948±.02

Table 4: AUROC value for hand gesture dataset [30]. In this table, one of the anomaly classes is known during training. Each

column shows different anomaly class conditions. The value is an average of five seeds.

the normal class contains only one mode, and the evaluation

is done with normal and anomaly classes which consists of

many modes; hence, the number of evaluation images is

much larger than that of training images. The results show

that AnoVAE, AnoGAN, and AnoVAEGAN do not produce

high performance, while our proposed method (CAM+D)

has the highest performance in all different datasets. The

baseline method that uses only the discriminator value (D
only) sometimes provides poor performance. This is be-

cause the generated images do not converge to an image

similar to the anomaly samples in some conditions. How-

ever, for the hand gesture dataset, the output of the discrim-

inator helps to increase the accuracy. Note that the perfor-

mance of noisy MNIST has a lower value due to the high

variance value of the artificial noise. When we set a lower

σ, the AUROC is higher; the reason for high value is to pre-

vent the ceiling effect for the experiment. The calculation

time for prodocuing an attention map is around 10 millisec-

onds per image on Nvidia Titan X.

4.2.2 Semi-supervised setting

We investigate the performance for a case in which a single

anomaly mode is known beforehand. This means we give

only one mode for all evaluations; hence, we do some eval-

uations for each different known-anomaly condition on the

noisy MNIST, hand gesture, and pigeon gesture dataset. As

a baseline, we prepare a supervised regression-based CNN

method (CNN regression) that has four convolutional lay-

ers with down-sampling, leaky ReLU, and batch normal-

ization. We also prepare another baseline method that uses

only weighted error by combined class activation map with

known anomaly samples (CAMano).

Table 3 and Table 4 show the results. A few anomaly

samples helped to improve the performance by a consider-

able margin. Our final hybrid method (CAM+DG+Dano)

has the best score in all datasets.

5. Conclusion

We presented an anomaly detection method that uses a

masking method using discriminator’s class activation maps

for improving robustness against background noise. The

core idea behind such an application is based on the study

of discriminator’s CAM evolution in an adversarial learning

setting. Experimental evaluations showed that our method

outperforms other previous anomaly detection methods in

both self-supervised and semi-supervised case. As a lim-

itation of our method, in special scenarios where anomaly

signal lies in the background, our method would mask out

such signals thus failing to detect abnormality in the input.

However, such cases are rare since anomaly signals pre-

dominantly lie on the image foreground for most practical

purposes. Possible future extensions include jointly learn-

ing the activation maps with the generator and discriminator

training. There is also the potential for extending the con-

cept of discriminator attention to a reinforcement learning

setting, especially imitation learning methods that generate

rewards from videos [9, 23, 34] for improved reward func-

tion estimation.
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