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Abstract

We introduce a simple yet effective fusion method of Li-

DAR and RGB data to segment LiDAR point clouds. Utiliz-

ing the dense native range representation of a LiDAR sen-

sor and the setup calibration, we establish point correspon-

dences between the two input modalities. Subsequently, we

are able to warp and fuse the features from one domain into

the other. Therefore, we can jointly exploit information from

both data sources within one single network. To show the

merit of our method, we extend SqueezeSeg, a point cloud

segmentation network, with an RGB feature branch and fuse

it into the original structure. Our extension called FuseSeg

leads to an improvement of up to 18% IoU on the KITTI

benchmark. In addition to the improved accuracy, we also

achieve real-time performance at 50 fps, five times as fast

as the recording speed of the KITTI LiDAR data.

1. Introduction

Being able to segment objects from point clouds is cru-

cial for driver assistant systems, autonomous cars and other

robotic perception tasks. Autonomous driving requires mul-

tiple sensors to capture all relevant information of the envi-

ronment. Different types of sensors compensate the indi-

vidual disadvantages and ensure robust perception in chal-

lenging environments. However, fusing and leveraging all

this multi-modal data is a non-trivial task.

The task of 3D perception for autonomous vehicles is

usually tackled with a combination of RGB cameras and Li-

DAR sensors (i.e. laser range scanners). Recently, numer-

ous architectures with diverse and often complex designs

for sensor fusion have been published. However, due to

the complexity of this task many methods either use only

single-modal input, e.g. [17, 37, 38] or use the benefits of

multi-modalities only after single-modal proposal genera-

tion, e.g. [5, 25, 31]. Thus, not all available information is

leveraged jointly. Objects poorly visible in one single sen-

sor are prone to be missed.

To address this problem, we propose a simple and effec-

tive fusion method utilizing a dense native representation

of laser range scanner data, such that all available informa-

tion can be processed jointly by common convolutional neu-

ral network (CNN) architectures. The key idea is to warp

expressive RGB features into this LiDAR representation,

leveraging correspondences which can be established with-

out any exhaustive search. In this work we focus on the task

of point cloud segmentation to show the effectiveness and

benefits of our fusion method.

In particular, we extend SqueezeSeg [37] with an addi-

tional branch based on MobileNetV2 [30] to leverage RGB

information as well. However, naı̈vely warping the RGB

image into range space and applying an ImageNet CNN for

early fusion, e.g. [11] or intermediate fusion, e.g. [13], ham-

pers the transfer learning benefits of CNNs, as the input im-

age is visually distorted.

To overcome this issue, we propose to apply the Ima-

geNet CNN on the original undistorted RGB image to bet-

ter leverage the benefits of CNNs. Next, we warp the CNN

features into the range space to get a dense and powerful

representation. Thereby, we leverage the RGB/LiDAR cali-

bration to establish control points for a polyharmonic spline

interpolation [8]. We improve SqueezeSeg’s segmentation

results by a large margin without the use of any synthetic

data (in contrast to [37, 38]).

We still perform at 50 fps on a NVIDIA GTX 1080Ti

GPU, more than twice as fast as common LiDAR sensors

dedicated for autonomous cars (typically operating at 20

Hz) and five times as fast as the LiDAR sensor used during

the recording of the KITTI benchmark suite (10 Hz). Fur-

thermore, we show that our approach performs better than

state-of-the-art RGB semantic segmentation approaches.

2. Related Work

To better set our work in context, we will first consider

recent approaches for 3D point clouds processing (Sec-

tion 2.1) and then methods optimized for pseudo-3D/2.5D

representations (Section 2.2). Finally, we will discuss

works most related to ours, in particular about the fusion

of depth and RGB information (Section 2.3).
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Figure 1: Schematic overview of our FuseSeg architecture. By exploiting the RGB/LiDAR calibration to establish point

correspondences, we fuse feature representations from the RGB and the range image. We utilize the known correspondences

to warp the RGB features such that they fit into the range image network. Our range image branch is a slightly modified

SqueezeSeg [37] and we use a MobileNetV2 [30] as image branch during our experiments.

2.1. 3D Point Cloud Processing

Standard CNNs require dense input representations on

uniform grids. Thus, vanilla CNNs can not be used directly

on point clouds as they are sparse in 3D space. To overcome

this issue, various approaches have been proposed recently.

They have been applied to various tasks, e.g. classifica-

tion, 3D object detection and (part-)segmentation. These

approaches can be divided into two groups, i.e. direct and

grid-/graph-based methods.

Direct Methods are deep architectures which are applied to

the point cloud directly. One of the pioneering works in this

group is PointNet by Qi et al. [26]. They learn multi-layer

perceptrons and linear transformations to map each point

individually to an expressive feature space. Subsequently,

a max pooling operation generates an order-independent

global feature vector, which is utilized for classification and

segmentation.

PointNet lacks the ability to encode local structures with

varying density. The subsequent extension PointNet++ [27]

tackles this problem by introducing a hierarchical process-

ing strategy. Multiple works [39, 19, 34] introduce a gener-

alization of the classical convolution to irregular point sets.

Same as PointNet++, they use a k-nearest neighbor search

to overcome the lack of a strictly defined neighborhood.

These methods are able to process a small and fixed

amount of points (up to a few thousand). To deal with larger

point clouds, various strategies like tiling or farthest point

sampling (FPS) must be applied to reduce the amount of

processed points. Due to the varying sparsity of LiDAR

point clouds, these strategies are usually not very useful

when directly applied to single sweeps, as often several

samples at nearby salient regions are needed, e.g. to re-

cover an object’s outline, instead of few wide-spread sam-

ples. For example, the native choice of FPS are far distant

points, which is, given a LiDAR point cloud, not valuable

for any downstream task.

Grid-/Graph-based Methods apply established CNNs,

transforming the point cloud into grid-based [29, 22, 33] or

graph-like [36, 32] representations. The varying sparsity

is the major issue here. Most of the covered space is

empty and this would lead to a huge overhead by naı̈vely

convolving over a regular 3D grid. To enable efficient

convolutions, data structures like octrees [29], voxels [22]

or high-dimensional lattices [33] are utilized. These works

use sophisticated strategies to avoid redundant computa-

tions. However, the required data preprocessing can be

time consuming and computationally expensive, especially

for larger point clouds.

To represent and process large scale point clouds Lan-

drieu and Simonovsky [16] introduce superpoint graphs

(SPGs). They transfer the idea of superpixels [2] to point

clouds and propose a geometric pre-partitioning of the data

into simple primitives. The resulting superpoints are mod-

eled together with derived features within the SPG and pro-

cessed with [32].

2.2. Pseudo­3D

All considered approaches so far are designed to process

sceneries, where objects are fully described in 3D space (i.e.
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both the front and back of an object are reconstructed by

the point cloud). However, a single LiDAR sweep just mea-

sures depth originating from the sensor center. Thus, it gen-

erates a 2.5D representation, where only the surface parts

of an object facing the LiDAR are visible. While the point

cloud is sparse, in 3D and when projected onto the RGB

image plane, a dense representation can be obtained by con-

sidering the native properties of the sensor (see Section 3.1

for details).

As common LiDARs have a nearly constant horizontal

angle resolution, dense representations can be obtained

via cylindrical projection [18, 5, 24] or spherical pro-

jection [37, 35, 38]. However, in practice the vertical

resolution is not constant. For example, the Velodyne

HDL-64E laser scanner (used by the KITTI benchmark)

sweeps 64 beams with approximately two different angular

distances. The top set of 32 beams has a higher angular

distance between subsequent beams than the bottom set.

Other LiDARs (e.g. Velodyne VLP-32C) sample denser

near the horizon to improve long-range detections.

Our work is based on SqueezeSeg [37] by Wu et al., an

adaptation of SqueezeNet [14] for LiDAR point cloud seg-

mentation. It uses a spherical projection to obtain a dense

representation of the LiDAR point cloud and encodes 3D

coordinates, range and reflectance intensity into the chan-

nels of the input image. In [37], they synthesize large

amounts of point cloud data utilizing Grand Theft Auto V

(GTA-V), a famous video game, to increase its performance

on KITTI’s car class. This synthetic data, however, does

not sufficiently represent the other classes realistically, be-

cause the underlying geometry has been excessively sim-

plified within the game. For example, the torso, head and

limbs of pedestrians within GTA-V are crudely modeled as

cylinders. In our work we do not rely on massively gener-

ated synthetic data and still achieve state-of-the-art results

in real time.

2.3. RGB/3D Fusion

When depth information is densely available and prop-

erly registered with RGB imagery, it is an obvious choice to

improve results on different vision tasks. Gupta et al. [11]

propose three handcrafted auxiliary channels derived from

depth to improve segmentation compared to a single depth

channel. Hazirbas et al. [13] use a separate network branch

for depth to improve results compared to an equivalent sin-

gle branch architectures with additional input channels. Re-

cently, Zeng et al. [40] use two network branches to esti-

mate surface normals. Similar to these approaches we fuse

the respective features at multiple layers as well. However,

since depth is not densely available given a LiDAR point

cloud, element-wise operations like summation are not suf-

ficient. We introduce a progressive fusion scheme, based

on polyharmonic spline interpolation [8] to overcome this

issue efficiently.

Recently, various works utilize both RGB and LiDAR

data, mostly for the task of 3D object detection. For exam-

ple, the Multi-View 3D network (MV3D) [5] by Chen et al.

maps the LiDAR point cloud to a bird’s eye view (BEV)

to generate object proposals. Given these proposals, fea-

tures from the BEV, a cylindrical LiDAR projection and

an RGB image branch are fused to classify an object and

regress its bounding box. In Frustum PointNets [25], Qi

et al. use Faster R-CNN [28] to create 2D proposals from

RGB imagery. The result is propagated to 3D space and

refined. Except for the object class, there is no further in-

formation exchange between the RGB and the 3D detec-

tion head. Both works rely on proposals from a single data

modality and thus, are prone to loose objects, because they

are not using all available information from the beginning

on. Ku et al. [15] propose Aggregate View Object Detection

(AVOD), a network based on RGB and BEV features. How-

ever, they evaluate a predefined set of 3D anchor boxes and

thus, are limited by their predefined choice.

Liang et al. [21] propose a feature warping from an RGB

CNN branch to a LiDAR BEV. To this end, they need to

perform a k-nearest neighbor search in the point cloud for

each pixel in the BEV image. However, with the distance

to the sensor the point cloud becomes increasingly sparse.

In [20] they mitigate this issue utilizing an auxiliary depth

completion task.

However, in contrast to these works, we use two native

and dense representations which can be processed by stan-

dard CNNs without any further preprocessing. Thereby, we

are able to densely warp and fuse the features and leverage

all information jointly as early as possible.

3. FuseSeg

In this section we describe the proposed feature warp-

ing module and how we extend SqueezeSeg in order to uti-

lize RGB information. In particular, rather than warping

the RGB image into the range space, we apply an Ima-

geNet CNN directly on the undistorted input images. Con-

sequently, we can leverage the benefits of transfer learning

better, as objects are not distorted in the original RGB input.

We then fuse RGB features extracted at multiple layers of

the ImageNet CNN (MobileNetV2) into the segmentation

architecture.

In order to align the RGB features with the range fea-

tures for segmentation, we warp them by leveraging the

correspondences available due to the calibrated setup. Sub-

sequently, the warped RGB features are concatenated with

features from the range image to perform segmentation.

Figure 1 schematically illustrates our network architec-

ture and the feature warping. For efficiency, we subsample

point correspondences (control points) within the different
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input images. In the following, we discuss the discretization

of the LiDAR point cloud (Section 3.1), the foundation of

our architecture SqueezeSeg (Section 3.2) and the warping

procedure (Section 3.3) in more detail.

3.1. LiDAR Geometry

A common LiDAR sensor dedicated for autonomous

driving purposes sends out multiple vertically distributed

beams and determines the distance to the first hit object by

measuring the time-of-flight until the reflection is detected.

A 360◦ recording is usually obtained by a steady rotation of

the laser transmitter itself or a respective deviation e.g., via

mirrors.

SqueezeSeg processes the resulting point cloud on a

spherical grid by discretizing the azimuth φ and zenith θ
of each 3D point (x, y, z) by

φ =arcsin
y

√

x2 + y2
, φ̃ = ⌊φ/∆φ⌋, (1)

θ =arcsin
z

√

x2 + y2 + z2
, θ̃ = ⌊θ/∆θ⌋, (2)

where ∆φ and ∆θ denote the discretization resolution and

(φ̃, θ̃) the coordinates on the spherical grid, respectively.

The resulting spherical image constitutes a dense repre-

sentation, which can be processed by a CNN. It incorpo-

rates five channels, the Cartesian point coordinates (x, y, z),

range r =
√

x2 + y2 + z2 and the LiDAR’s reflectance

intensity measurement. Unless stated otherwise, we adopt

this channel configuration.

However, in practice the vertical resolution ∆θ, which

is the angle between subsequent LiDAR beams is not con-

stant. Thus, we adapt the representation from [23] and uti-

lize the beam id to assign each point to its row θ̃ in the im-

age. The beam id can be easily retrieved from the LiDAR

sensor. This allows for an unambiguous vertical discretiza-

tion to obtain a dense native range representation, which

we use as the laser range image. This range representa-

tion is even easier to obtain than the spherical one (i.e. no

need for zenith projection) and reduces holes and coordinate

conflicts in the data. If (due to the horizontal discretization)

multiple 3D points fall onto to the same pixel in the range

image, we choose the one with azimuth position nearest to

the respective pixel center.

3.2. SqueezeSeg

We base our architecture on SqueezeSeg [37]. It is a

lightweight architecture based on SqueezeNet [14], specif-

ically designed to segment spherical images. It adapts

the FireModule layers from [14] and introduces related

FireDeconvs instead of using convolutions and transposed-

convolutions in order to reduce computational effort.

Similar to [3], SqueezeSeg uses a conditional random

field (CRF) in order to refine the segmentation results es-

pecially at the object borders. The CRF penalizes assign-

ing different labels to similar points in terms of angular and

Cartesian coordinates. In other words, points with nearby

coordinates in the range image as well as in 3D space are

dedicated to get the same label.

Finally, it minimizes a pixel-wise cross-entropy loss. To

mitigate the impact of the class imbalance, cyclists and

pedestrians are stronger weighted. Furthermore, outliers,

due to failed laser measurements, are masked out during

loss computation.

3.3. Multi­modal Feature Fusion

In order to merge RGB features from a CNN layer with

those from the laser range image, we propose to use the

known calibration of LiDAR and RGB camera. We illus-

trate this process in Figure 2. For each valid pixel in the

range image, the corresponding 3D position of the laser

point is available. Given the 3 × 4 projection matrix P,

we can project the 3D coordinates onto the image via

x = PX, (3)

where X and x denote homogeneous 3D and pixel coor-

dinates [12], respectively. The projection matrix itself can

be easily derived from the RGB camera calibration and the

transformation form LiDAR to camera coordinate system.

Points visible in both, the RGB and range image denote

correspondences between the two representations. A naı̈ve

approach would be to use these correspondences to look up

every 3D point’s color within the RGB image and thereby

colorize the range image.

However, the comparably dense and valuable informa-

tion provided by the RGB image would be left unused.

Thus, we propose to fuse the intermediate feature repre-

sentations extracted from respective CNNs. We use well

studied architectures [30, 37] capable of providing useful

feature representations for both, the RGB and range image.

We extract and warp RGB features at multiple levels of the

network such that they align with their range counterparts.

We map the ImageNet features from the 7th, 14th and 19th

layer of MobileNetV2 to the layers Fire2, Fire4 and Fire7

of SqueezeSeg, respectively. We choose the layers before

a pooling operation in MobileNetV2 and warp into similar

sized SqueezeSeg layers whilst avoiding the ones which are

passed through the skip connections. As a consequence, we

exploit the RGB features with the highest representational

capabilities of the respective spatial resolution and save pa-

rameters within the decoder. Using different or less connec-

tion points leads to slightly inferior results.

Since we warp feature tensors at different network layers

(instead of raw input images), we cannot rely on a simple

lookup. This is due to the fact that we do not have explicit

correspondences between positions within the range feature
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Figure 2: Illustration of the warping process at a specific feature extraction layer (right). To align the RGB features (bottom)

with the range features (top), we first 1© compute the range image location corresponding to the current range feature (green

dots). Given the point correspondences (red) between the range and RGB image, 2© we use a first-order polyharmonic spline

interpolation for sub-pixel sampling of the correct RGB position (green cube). Then, 3© we compute the respective position

within the RGB feature space to obtain the feature correspondence 4©. Given that, 5© we are able to densely warp the

RGB features such that they spatially align with the range features. Concatenating them allows for jointly leveraging both

information cues for arbitrary 3D perception tasks. The gray pixels denote laser outliers (e.g. due to transparent surfaces).

tensor and their counterparts within the RGB feature ten-

sor. For proper feature warping, we need sub-pixel accu-

racy (see green line segments in Figure 2). Additionally,

we need to deal with laser measurement outliers (e.g. due

to transparent surfaces or far distant objects) which cause

missing range image-to-RGB correspondences.

To address these issues, we treat the range image-to-

RGB correspondences and their positions as control points

for a first-order polyharmonic spline interpolation [8]. Pass-

ing query positions x in the range image, we obtain the cor-

responding interpolated position f(x) in the RGB image

with

f(x) =

N
∑

i=1

wi ||x− ci||2 +V
T

[

1
x

]

, (4)

where ci are the N range pixel coordinates with valid cor-

responding positions f(ci) in the RGB image. By solv-

ing a linear system of equations, we obtain the interpolating

spline weights wi and V. Note that we need to do this

computation only once for each sample and we can reuse

the weights for all interleaved layers.

In order to retrieve correspondences for a specific spatial

resolution, we scale the pixel positions within the range fea-

tures such that they are aligned with the original input im-

age. Subsequently, we sample the corresponding position

in the RGB space using the calculated spline interpolation.

This yields the sub-pixel accurate position within the input

RGB image for each pixel in the range feature tensor. From

this, we can retrieve the corresponding position within the

RGB feature tensor as shown in Figure 2.

To derive the actual value at the non-discrete position in

RGB feature space, we bilinearly interpolate the four near-

est neighboring features. The part of the warped feature

tensor with correspondences outside the RGB image is set

to zero.

4. Experiments

We evaluate our method on KITTI [10, 9] and reuse the

train/val-split from [37]. We also follow their training pro-

tocol and adopt their parameters: We consider the three

main classes cars, pedestrians and cyclists and add an aux-

iliary class to model the background. KITTI provides labels

in the horizontal field of view of 90◦ only, thus we limit our

consideration to this area. Additionally, our range images

do have the same resolution of 512 × 64 and, unless other-

wise stated, the same input channels as in [37].

We augment the data by random horizontal flips and

slight deviations in saturation, contrast and brightness of

the RGB image. Based on a checkpoint trained with Li-

DAR features, we re-initialize the respective weights and

fine-tune the network. We implement our framework in

TensorFlow [1] and use a GeForce GTX 1080Ti GPU for

all runtime evaluations.

In the following, we evaluate the effect of our proposed
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(a) Cars and pedestrians.

(b) Cars and cyclist.

(b) Cars and cyclist.

Figure 3: Qualitative results of FuseSeg. We show the RGB input (left), the ground truth (top right) and the prediction of the

network (bottom right). We detect even small and partially occluded objects (a,b) as well as objects outside the RGB image

and unlabeled in the lower corners of the range image (a). Sometimes a cyclist is detected separately from the bicycle (c).

Method car ped cyc avg rt [ms]

FuseSeg 71.1 36.8 36.0 48.0 20

FuseSeg R-RGB 67.4 23.4 31.2 40.7 20

SqSeg w/o RGB † 67.2 20.2 24.1 37.2 9

SqSeg w/ RGB 63.7 18.8 22.8 35.1 13

PointSeg [35] * 67.4 19.2 32.7 39.8 -

SqSeg [37] * 64.6 21.8 25.1 37.2 13.5

SqSegV2 [38] * 73.2 27.8 33.6 44.9 -

Table 1: Point cloud segmentation performance (IoU in %)

and runtime (in milliseconds) on KITTI. To show the ef-

fectiveness of our feature fusion we compare with vanilla

SqueezeSeg with color as additional input channels. Re-

sults marked * are taken from the respective paper and †
mark our reproduced results. Scores and runtime for SqSeg

w/o RGB differ slightly from [37] as we retrain it for a fair

comparison on our GPU.

FuseSeg method on point cloud segmentation in compar-

ison with state-of-the-art methods (Section 4.1). Subse-

quently, we compare the architecture with RGB semantic

segmentation networks to validate our warping-based fea-

ture fusion (Section 4.2). Finally, we show that we can

reduce the number of control points and the accompanied

computational cost without negatively affecting the perfor-

mance (Section 4.3).

4.1. Feature Fusion

We show the merit of the fused image features by com-

paring it not only with SqueezeSeg, but also with state-of-

the-art point cloud segmentation methods. Table 1 shows

the results for all three relevant object classes and the re-

spective runtime, while Figure 3 shows some qualitative re-

sults. We report the best average intersection-over-union

over all three classes.

To provide an additional baseline, we also pass the RGB

channels to SqueezeSeg (SqSeg w/ RGB). Thus, we colorize

its range representation. To this end, we project each point

onto the RGB image and sample the underlying pixel’s

color. Note that not the entire range image is colored, only

those 3D points which are visible in the RGB image.

The additional color channels even lower the perfor-

mance of SqueezeSeg. The reason for this drop is that

SqueezeSeg is optimized for runtime speed. Consequently

its representational power is not able to process all infor-

mation. Since we utilize a separate lightweight network to

process the RGB information, we introduce another base-

line (FuseSeg R-RGB): We warp the RGB image to its range

counterpart (see Figure 5 for an upscaled example) and pass

it to our RGB branch. Note that this baseline has the same

number of parameters as FuseSeg.

As we see in our experiments, using a pre-trained Im-

ageNet CNN/MobileNetV2 for extracting features in a
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Figure 4: Illustration of the evaluation process solely based on RGB. We infer a semantic mask from the RGB image 1© using

a segmentation network trained on KITTI and CityScapes [7]. Subsequently, we fused neighboring rider and bicycle regions

to cyclist in order to obtain a compatible annotation policy 2©. Given the calibrated setup and thus, the projection matrix (see

Eq. 3) we are able to lookup a class 3© for each point visible in the RGB image (black denotes background, white denotes

points with projections outside the RGB image and thus, no derived class). We evaluate the resulting range image 4© (only

on the non-white area) and compare it with our method. We show that leveraging depth information using our fusion method

significantly outperforms RGB based methods with comparable feature extraction backends, whilst being almost five times

faster (see Table 2).

warped range image already benefits segmentation per-

formance compared to using no ImageNet CNN for the

RGB information. Further, by using our proposed warp-

ing method to fuse on the feature level instead of the (RGB)

input level, we further significantly improve accuracy. The

main reason for this is that the warped RGB input represen-

tation is heavily distorted and thus impairs the performance

of ImageNet features. In contrast, with our approach the

ImageNet CNN operates on an undistorted RGB input on

which it better benefits from transfer learning.

FuseSeg improves segmentation, especially on the

smaller classes pedestrian and cyclist, by a large margin.

We increase the mean intersection-over-union (IoU) by 18%

respectively 13.2% compared to SqueezeSeg. We even out-

perform its successor SqueezeSegV2 [38] on average by

3.1%, which could be improved by our approach as well.

4.2. FuseSeg vs RGB Semantic Segmentation Ap­
proaches

In order to show the effectiveness of our warping-based

feature fusion, we compare our approach with seman-

tic segmentation approaches solely relying on RGB in-

formation. More specifically, we compare FuseSeg with

DeepLabv3+ [4] in combination with two feature extraction

backends, a MobileNetV2 [30] and a more powerful Xcep-

tion65 [6] feature extractor. We infer that outperforming

equivalent state-of-the-art architectures validated our fusion

approach. Figure 4 illustrates the process of deriving and

evaluating labeled point clouds from RGB segmentation

masks.

We fine-tune the pre-trained DeepLabv3+ models on

CityScapes and the KITTI semantic segmentation data and

Method car ped cyc avg rt [ms]

DLv3+ MNV2 66.9 33.8 30.2 43.6 95

DLv3+ Xception65 71.3 41.4 37.4 50.0 369

FuseSeg 73.7 39.7 41.2 52.1 20

Table 2: Segmentation performance (IoU in %) and run-

time (in milliseconds) on KITTI. FuseSeg compared with

RGB-based semantic segmentation network (DeepLabv3+)

trained on both, CityScapes [7] and the KITTI segmentation

benchmark. Given the registration, LiDAR points are pro-

jected onto the image and classified according to their posi-

tion in the segmentation mask. We outperform the respec-

tive MobileNetV2 (MNV2) DeepLabv3+ by a large margin

for all classes and even the much more powerful Xception65

backend on average. Thereby, our architecture is almost five

times as fast as the DeepLabv3+ MNV2 counterpart and

eighteen times as fast as the Xception65 pendant.

ensure that no image of our validation set is used for train-

ing. We trained until convergence and choose the check-

point with the best segmentation result on the KITTI vali-

dation set. To overcome the diverging annotation policies

of the two datasets, we fuse neighboring bicycle and rider

regions to cyclist.

We create segmentation masks for each RGB image by

passing it through the trained models and segment the 3D

points by projecting them onto the masks (see Eq. 3). All

classes except car, bicycle and pedestrian are considered

as background. Thus, we segment the point clouds without

using any depth information. For this comparison, we only

evaluate the part of the range image with color information

for all methods (Thus, the evaluation region differs from

Section 4.1).
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Figure 5: Illustration of warping artifacts due to the baseline between RGB camera and LiDAR sensor. In order to visualize

possible artifacts (here e.g. cyclist and van roof) we warp the RGB image to its range pendant (we upscale the control

points of the range image by a factor of two for visibility). The number and thus, position of control points influence these

distortions.

Table 2 shows the IoU on the respective classes and

the runtime of each method. While we clearly outperform

DeepLabv3+ in terms of runtime, we outperform the net-

work based on MobileNetV2 on all three classes. Note, that

this is the same backend as used in FuseSeg for RGB in-

formation. As a consequence, this demonstrates that depth

adds valuable information to the segmentation task and our

fusion approach is an effective and very efficient method to

utilize it.

We are even better than the powerful Xception65

DeepLabv3+ on average performance, despite using the

weaker backend. Our modular design allows the exchange

of the RGB backend in a plug-and-play manner, but one of

our research goals is real-time speed leading to the choice

of MobileNetV2.

4.3. Number of Control Points

# Ctrl Pts car ped cyc avg rt [ms]

4 69.9 33.0 33.9 45.6 19

24 70.4 36.2 36.7 47.7 19

48 71.1 36.8 36.0 48.0 20

96 70.7 36.0 33.8 46.8 20

192 71.0 35.3 35.2 47.2 22

384 70.7 36.6 36.0 47.7 26

Table 3: Segmentation Performance (IoU in %) and run-

time (in milliseconds) of FuseSeg on KITTI. We compared

different amounts of control points and report best average

IoU performance and runtime. While the computational ef-

fort of an inference step linearly increases with the amount

of control points, performance saturates.

In KITTI there are up to 19k point correspondences be-

tween an RGB image and range representation. However,

since computational cost of the interpolation increases with

the number of control points, a small number of control

points is desirable. To this end, to obtain a good coverage

in the target domain, we perform FPS on the coordinates in

the range image (in contrast to FPS on 3D coordinates) to

reduce the number of control points.

We compare different configurations aiming at a reliable

assessment. We vary the number of control points used by

our architecture and evaluate segmentation accuracy as well

as runtime. Table 3 shows the speed-vs-accuracy trade-off.

Interestingly, we only need a very small number of control

points, i.e. 24, to estimate a decent warping and achieve

state-of-the-art results. We see that there is no notable vari-

ation of the accuracy for the car class, which can be ex-

plained by their size.

However, for smaller objects, i.e. pedestrians and cy-

clist, we observe a notable sensitivity regarding the control

points and multiple spikes at certain point numbers. Due to

the baseline between camera and LiDAR and the resulting

parallax, a flawless warping is not always possible. This

distortion peaks at high depth differences, e.g. at the edges

of visible objects (see Figure 5). We hypothesize that a cer-

tain number of control points favors these distortions more

than others. More elaborate sampling methods, e.g. focus-

ing on depth discontinuities within the range image might

mitigate these sensitivities, but are out of the scope of this

paper.

5. Conclusion

We propose a simple and effective way to leverage RGB

features for LiDAR point cloud segmentation. Utilizing the

range representation of LiDAR point clouds allows us to

process them with known CNN strategies. Then, our ef-

ficient warping-based feature fusion enables us to use the

benefits of transfer learning on the dense and rich informa-

tion provided by RGB data jointly with features derived

from LiDAR data. Thereby, we still fulfill real-time re-

quirements, performing at 50 fps. This is twice as fast

as the recording speed of today’s LiDAR sensors. Thus,

our method can easily be utilized in autonomous cars and

robots.

Furthermore, the encoder of FuseSeg is applicable as

feature extractor for various 3D perception tasks. Finally,

our warping strategy in combination with the range repre-

sentation can be used to interleave features in both direc-

tions and thus, also improve RGB-based object detection

and semantic segmentation.
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