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Abstract

Visual content has become the primary source of infor-

mation, as evident in the billions of images and videos,

shared and uploaded on the Internet every single day. This

has led to an increase in alterations in images and videos to

make them more informative and eye-catching for the view-

ers worldwide. Some of these alterations are simple, like

copy-move, and are easily detectable, while other sophis-

ticated alterations like reenactment based DeepFakes are

hard to detect. Reenactment alterations allow the source

to change the target expressions and create photo-realistic

images and videos. While the technology can be potentially

used for several applications, the malicious usage of auto-

matic reenactment has a very large social implication. It is

therefore important to develop detection techniques to dis-

tinguish real images and videos with the altered ones. This

research proposes a learning-based algorithm for detect-

ing reenactment based alterations. The proposed algorithm

uses a multi-stream network that learns regional artifacts

and provides a robust performance at various compression

levels. We also propose a loss function for the balanced

learning of the streams for the proposed network. The per-

formance is evaluated on the publicly available FaceForen-

sics dataset. The results show state-of-the-art classification

accuracy of 99.96%, 99.10%, and 91.20% for no, easy, and

hard compression factors, respectively.

1. Introduction

Approximately 95 million photos and videos are up-

loaded daily on Instagram [1]. YouTube receives 300 hours

of video uploads every minute, with about 5 billion views

every single day [2]. These visual contents, on one hand,

act as a medium to interact with individuals, share opin-

∗This study has been performed when the authors were at IIIT-Delhi.

Figure 1. Effect of Reenactment by Face2Face [24], the source

actor (left), the target actor(right), reenactment of the target actor

based upon source actor (bottom).

ions and thoughts, and reach out to the public. On the other

hand, it also serves as a source of information and entertain-

ment. This two-way exchange makes videos and images an

effective form of communication between the creators and

the viewers. These images and videos are not always posted

in the original form but, more often than not, are altered to

make them more eye-pleasing for the viewer [7]. It is pri-

marily done by the use of filters available to the creator or

by editing software such as Photoshop. These include al-

terations such as splicing and copy-move. However, some

recent opes are more advanced and sophisticated, and lie

under the category of “DeepFakes”. Deepfakes, as the name

suggests, are often the result of video synthesis commonly

done by the use of deep learning networks. Deepfakes in-

clude alterations of two kinds - identity swap and reenact-

ment.

Reenactment is defined as the acting out of a past event;

in other words, performing a past event or, with modifica-
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tions as required. Facial reenactment refers to the modifica-

tions brought to the target actions in the form of change of

movement of the head, lips, and facial expression. The tech-

niques allowing for reenactment have been devised with the

intent of improving the experience, specifically in the case

of movies with the dubbing of target actors [10, 22] and

teleconferencing [24, 25]. However, the malicious use of

such techniques cannot be ruled out. Specifically, reenact-

ment techniques are capable of synthesizing photo-realistic

videos and images that are hard to detect with the human

eye or even with existing forgery detection techniques. Data

compression also adds to the challenge of the detection task

as often, the media in circulation are highly compressed and

offer little knowledge of being altered.

Despite the increased awareness about fake news,

videos, and images still remain one of the most trustable

sources of information. Reenacted video, as seen in Figure

1, can be used to portray an individual saying things that

he/she has not said in the real life. Such videos circulated

to a billion uninformed audience via the Internet can lead

to chaos and confusion at a large scale. With very limited

prior work done in detection, there is an urgent need for

developing techniques that can be used for the detection of

such alterations.

This paper addresses the problem of detecting reenact-

ment in videos. Our contributions are two-fold; (i) we

propose a multistream deep learning network based on the

extraction of localized features for detection of reenacted

frames by Face2Face reenactment approach [24] in videos,

and (ii) we propose a loss function for balanced training of

streams in the proposed network. The paper has been or-

ganized as follows: Section 2 expands upon the generation

and detection of reenactment video through subsections 2.1

and 2.2, respectively. In section 3 we explain the pipeline,

including the deep learning architecture for successful de-

tection of Face2Face reenactment [24]. In section 4, we

provide the description of the dataset used for experiments,

and the results of the experiments are discussed in section

5.

2. Related Work

Attacking visual content using a deep learning approach

and their defense is an important area of research [4, 11, 12,

13, 17]. The face reenactment literature can be categorized

into two broad categories: (i) the generation techniques im-

plying the methods that pave the way for reenactment ma-

nipulation on videos or in some cases images and (ii) detec-

tion techniques aimed at detecting such forgeries in videos

and images.

2.1. Generation Techniques

For the past decade, there has been significant work on

transforming target video either from the input audio or

Figure 2. Effect of reenactment on the target sequence by (a) Kim

et al. [15], (b) Wu et al. [26], (c) Thies et al. [25], and (d) Suwa-

janakorn et al. [22].

video). These have been aimed at different applications

ranging from expression transfer from one video footage

to another [23, 24], lip-syncing of the target from input au-

dio [10, 22], and mimicking the movement of the source

to target [25]. The effect of these works can be considered

as reenactment manipulations, as the resultant movement of

the target is modified in the process or has been reenacted

upon with. Figure 2 depicts the effect of generation tech-

niques upon the target actors.

Suwajanakorn et al. [22] proposed an approach towards

the generation of a photo-realistic video from a target video

of President Obama and lip-syncing to the input audio.

The authors suggest a simplistic Recurrent Neural Network-

based approach to synthesize the mouth shape of the target-

ing the input audio. Synthesis is primarily performed on

lower face regions including mouth, cheek, chin, and nose.

Garrido et al. [10] have presented a system based upon the

capture of the 3D face model of both dubbing and target

actors and then using audio analysis on the dubbing actors

for creating a photo-realistic 3D mouth model to be applied

upon the target actors.

Thies et al. [23] have presented a method for real-time

transfer of expression from one actor to another in a tar-

get sequence. Using RGB-D data as input, the proposed

method keeps the non-face region unchanged while trans-

ferring the expressions. The authors presented a novel ap-

proach to represent facial identity and expression in a lin-

ear parametric model. The expressions are synthesized by

changing the blend shape parameters of the target frames

by the source. Thies et al. [24], eliminated the need for

depth videos in [23], thus allowing the transfer of expres-

sion to generic RGB videos (e.g. YouTube videos). Kim

et al. [15] presented a novel method of allowing full reani-

mation of portrait videos by the actor, including head pose,
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Figure 3. Proposed pipeline, RGB frames are sampled from RGB videos. ROI extraction is done on frames by face detection followed by

local region extraction which acts as an input to the proposed classification network.

facial expression, eye motion, and in some cases, even the

identity. The method employs the use of a face reconstruc-

tion approach to get a parametric representation of the face

and illumination of each video frame. This representation

is fed into a Render-to-video network based on the Condi-

tional Generative Adversarial Network to generate the out-

put frames. Wu et al. [26] proposed reenactment through

the transfer of facial features to a boundary latent space and

then adapting the target boundary according to the source

with the use of a transformer. Thies et al. [25] extended the

concept reenactment to transfer of movement of the torso

and head to the target video with the use of parametric mod-

els of the head, eye, and torso. These are later used to

project the captured motion from the source to target in a

photo-realistic fashion.

2.2. Detection Algorithms

Work towards DeepFake detection has been sparse, due

to the relatively new nature of the manipulation. However,

the sheer degree of realism in the videos created by reen-

actment should have attracted more detection work in the

field.

Afchar et al. [3] proposed two shallow architectures in an

attempt to capture the mesoscopic properties of images or

frames. The first architecture Meso-4 comprises of four lay-

ers of convolution and pooling followed by a single-layered

dense network. The other architecture MesoInception-4

performed modification on Meso-4 by replacing the first

two convolution layers by a modified inception module.

The authors also explored image aggregation on the pro-

posed network in an attempt to better classify videos. Agar-

wal et al. [5] suggested learning the head and facial move-

ment of specific people of interest and then differentiating

the movement in the DeepFake video of the same individ-

ual.

Face tampering detection techniques have been observed

to be useful in the detection of manipulations by Face2Face.

Zhou et al. [28] introduced a two-stream network, with one

stream based on patch triplet stream with 5514D steganal-

ysis features and other upon GoogleNet followed by score

fusion of the two streams. Raghavendra et al. [18] have

used feature level fusion by extracting features from fine-

tuned VGG19 and AlexNet and are concatenated as input to

Probabilistic Collaborative Representation Classifier. Bayer

et al. [6] have proposed a generic tampering detection algo-

rithm, which is a shallow network of eight layers with a

constrained CNN to suppress image content and adaptive

learning of manipulation features. XceptionNet [8], which

is based upon depth-wise separable convolution layers has

also been shown to perform well for the detection task [19].

3. Proposed Detection Algorithm

In this research, we have proposed a deep learning-based

architecture for detecting reenacted frames generated us-

ing the Face2Face reenactment technique [24]. The pro-

posed method uses RGB frames in conjunction with a multi-

stream network for improved extraction of localized facial
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artifacts and noise patterns introduced by the reenactment

procedure. We also propose a loss function to facilitate bal-

anced training of the proposed multi-stream network. The

network captures local facial artifacts by the use of ded-

icated streams that learn their respective regional artifacts.

A full-face stream then determines the dependency between

the regions. By combined learning of regional and full-face

artifacts, the proposed network can classify highly com-

pressed frames with a relatively small drop in the perfor-

mance as compared to the existing methods.

3.1. Preprocessing

Figure 3 shows the schematic representation of the pro-

posed pipeline. The frames are extracted from the RGB

video as per the experimental protocol defined in Section

4; this is followed by face detection by the S3FD approach

[27]. In the case where multiple faces are detected in a sin-

gle frame, face mask annotations provided by the dataset are

used to identify the target face. Mask annotations are used

in case S3FD fails to detect the faces in the frame. This

can be seen as a region of interest extraction step, which is

also streamlined by strict square cropping centered around

the face to suppress the background information as much

as possible. For each face, the local region is extracted by

dividing the frame into a 2 × 2 grid. This segregates the

fundamental facial features into four regions, which is then

followed by re-sizing each of the four local images and the

full-face to 224× 224.

3.2. Network Architecture

As shown in Figure 3, the proposed multi-stream net-

work consists of five parallel ResNet-18 models [14] - four

are dedicated to learning the local, regional artifacts and one

for the overall effect of the reenactment upon the face. For

each of the ResNet-18 models, the classification layer has

been mapped to two outputs by a fully connected layer. The

outputs from these five parallel ResNet-18 are concatenated

to form a 10-dimensional vector which is passed upon to

learn the weighted fusion of the scores for the binary clas-

sification task.

The fundamental intuition is to make the network learn

those features or artifacts that get suppressed when learning

the model with only the full-face image. Training a model

explicitly on a specific region of the image forces the net-

work to learn those low-level spatial features that are not

learned by the initial model, trained upon the full-face as

shown in Figure 6, and can be used to improve the perfor-

mance for the classification task specifically for highly com-

pressed frames. It has been done keeping in mind the prac-

ticality of the problem. Since most of the time, manipulated

videos or images that are circulated are in a highly com-

pressed format, the drop in performance due to compression

should ideally be as low as possible. Also, the prior knowl-

edge that Face2Face manipulations affect the whole facial

region adds to the improvement of the performance of the

proposed network, as discussed in Section 5. A combina-

tion of such four regional models with the model trained on

full image paves the way for a setup similar to Spatial Pyra-

mid [16] structure. The two-level spatial pyramid has been

taken, keeping in mind the need to maintain the balance be-

tween the model complexity and the information gain by the

spatial features extracted by the model. The final fully con-

nected layer learns the weighted mapping of scores of the

four models trained upon the local regions and one model

trained upon the full image.

3.3. Loss Function

Let the input image be represented as X , and the cor-

responding output be Y for the binary classification task

i.e., classifying if the input X has been manipulated or not.

Each input X = {X1, X2, X3, X4, X5} is a set of five im-

ages of size 224×224 where X1 represents the cropped full

facial image and X2, X3, X4, X5 represent the four locally

extracted images for each frame and Y a binary value with

0 denoting original and 1 denoting altered frames. The fol-

lowing loss function is minimized during the training pro-

cess.

Ltotal = LR1

︸︷︷︸

Full Face Loss

+

Local Regional Loss
︷ ︸︸ ︷

5∑

n=2

LRi
+λ× Lfusion
︸ ︷︷ ︸

Fusion Loss

(1)

where Ltotal is the effective loss and LRi
represents the

cross-entropy loss as per Equation 2.

LRi
= −

1∑

c=0

Yc log fc(Xi) (2)

between the scores f(Xi) of ResNeti model and true out-

put Yc. Lfusion denotes the cross-entropy loss between the

output of the final linear layer of the proposed model and

the true output Y . The weight of Lfusion is parameterized

by λ. It is to be noted that during the calculation of vari-

ous cross-entropy losses, the output of each model is first

normalized using softmax in the range [0, 1].

The loss function has been designed to avoid the model

from getting biased towards a particular ResNet model.

Back-propagation of just Lfusion as Ltotal was found to

be making the network biased towards ResNet1 model,

thereby reducing the performance of the network. By incor-

porating the loss of each of the parallel ResNet into the loss

function, we prevent the network from being biased towards

ResNet1. Consequently, it improves the performance of

the overall multi-stream network.
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Figure 4. Illustrating the effect of compression on video frames.

3.4. Implementation Details

The proposed network has been implemented with

Python3.5 Pytorch deep learning framework. Optimization

is performed using ADAM optimizer with default parame-

ters (β1 = 0.9 & β2 = 0.999) with a batch size of 32. The

initial learning rate is kept at 10−4 and is divided by 10 af-

ter every 10 epochs. The ResNet-18 models are pre-trained

on the ImageNet dataset [9] and then retrained on the face

reenactment dataset. The value of the loss parameter λ as 1

yields the optimal results.

4. Dataset

In this research, we have proposed a novel algorithm for

detecting alterations that occur due to reenactment in RGB

frames. For testing the performance of the proposed al-

gorithm, we have used the FaceForensics Source-to-Target

reenactment dataset [19]. The dataset is the only pub-

licly available reenactment dataset for this task (FaceForen-

sics++ [20] also contains the same videos as in FaceForen-

sics for reenactment detection task). The dataset consists of

1004 unique videos from YouTube. Each video sequence

is at least 300 frames long at 30 fps. The videos have

been modified using the Face2Face approach [24] to pro-

duce reenactment manipulations. Therefore, for each video,

the dataset contains the original video, reenacted video, and

face mask against which the reenactment has been done.

The dataset has been divided into train, test, and valida-

tion split as per Table 1. For training and testing, we have

followed the protocols mentioned in [19], where 10 frames

have been randomly sampled from each video, i.e., from

1004 original and altered videos. Thus, for each unique

Table 1. FaceForensics Dataset Composition

Set Number of Videos

Train 704

Validation 150

Test 150

video, 20 frames have been sampled, 10 from original, and

10 from altered.

All the experiments have been performed on the dataset

under three H.264 compression schemes with quantiza-

tion parameter 0 for no-compression (no-c), 23 for easy-

compression (easy-c), and 40 for hard-compression (hard-

c). Compression has been performed to imitate the effect

of compression of videos on various social media platforms

such as Facebook and WhatsApp. The effects of compres-

sion can be seen in Figure 4.

5. Results and Observations

The proposed algorithm has been compared and con-

trasted with the respective state-of-the-art counterparts for

the given dataset across various compression schemes. We

have also analyzed multiple components of the proposed al-

gorithm and its effect on the detection performance. The

results are compared against the shallow network architec-

ture such as MesoNet [3] and Bayer et al. [6], state-of-the-

art transfer learning architecture XceptionNet [8] and face

tampering detection algorithms like Zhou et al. [28] and

Raghvendra et al. [18]. Baseline performance reported in

[19] has been directly inferred for comparison.

Table 2 summarizes the accuracy of various reenactment
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Table 2. Accuracy (%) of different algorithms on the FaceForen-

sics dataset with different compression factors.

Methods no-c easy-c hard-c

MesoNet, Afchar et al. [3] 96.80 93.40 83.20

Bayer et al. [6] 99.53 86.10 73.63

Zhou et al. [28] 99.93 96.00 86.83

Raghvendra et al. [18] 97.70 93.50 82.13

XceptionNet [8] 99.93 98.13 87.81

Proposed Approach 99.96 99.10 91.20

Table 3. Classification performance (%) of ResNet and VGG mod-

els on the FaceForensics dataset.

Network no-c easy-c hard-c

VGG16 [21] 99.50 96.90 85.20

ResNet-18 [14] 99.93 97.70 88.20

ResNet-50 [14] 99.93 97.40 86.40

ResNet-152 [14] 99.89 97.60 85.70

Proposed Approach 99.96 99.10 91.20

detection algorithms on the FaceForensics dataset across the

three compression modes. The classification accuracy has

been calculated as the average of class-wise classification

accuracies. The proposed model yields the best classifica-

tion performance on the test set, it has a mean classifica-

tion accuracy of 90.40% with a standard deviation of 0.30%.

The results and analysis are discussed below.

• With an increase in the degree of compression, there

is a significant drop in the performance of all of the

methods, as shown in Table 2. However, the decline

in performance is high for shallow networks, such as

MesoNet [3] with four convolutional layers and a clas-

sification layer, and universal manipulation algorithm

like [6] with eight convolutional layers. In contrast, the

drop in performance is comparatively lower for deep

networks such as XceptionNet [8] and two-stream net-

work [28] with GoogleNet classification stream and

steganalysis features as the second stream.

• Most of the detection methods give high performance

on images with no compression or easy compression.

However, the performance significantly reduces in the

case of images with hard compression. This may have

been caused because no-compression Face2Face ma-

nipulation tends to show edges around the corners of

the chin and near the nostrils. Thus, allowing networks

to quickly learn the difference between the original and

the altered images. However, with compression, these

details tend to vanish, and it becomes more and more

challenging to learn the difference between the two

classes. Figure 5 also showcases the effect of com-

pression upon the proposed network.

Figure 5. ROC Curves of the proposed network for different com-

pression modes.

Table 4. Score fusion results (%) for hard-c compression.

Classifiers Fusion Accuracy

Regional Classifiers SVM 85.80

Regional Classifiers Proposed 88.26

All Classifiers SVM 89.13

All Classifiers Neural Net 89.80

All Classifiers Proposed 91.20

• As can be seen from Table 3, increasing the layers

do not specifically improve the classification perfor-

mance. The models give consistent, comparable per-

formance in case of no or easy compression, but a sig-

nificant drop in performance is observed in the case of

a network with a high number of layers with frames

compressed with high quantization factors. This may

be due to the inability of ResNet-50 and ResNet-152 to

learn its large number of model parameters optimally

as compared to ResNet-18 when there is a significant

loss of information in the input, which is the resultant

effect of severe compression.

• Table 4 showcases the performance of streams under

various fusion techniques and also the effectiveness of

the proposed loss function. It is observed that the fu-

sion of output scores of independently trained region-

based ResNet models by Linear-SVM, performs com-

parably to ResNet-50 and ResNet-152. Thus, present-

ing quantitative evidence of discriminative features

available in these regions. The fusion of scores of all

ResNet models gives a significant boost to the classi-

fication performance. It is also to be noted that a lin-

ear combination of scores emulated by a single-layered

neural network slightly outperforms the support vector

machine based score fusion. End-to-end training of the

proposed architecture with binary cross-entropy func-

tion gives a classification score similar to the score fu-
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Figure 6. Class activation maps for local and full face ResNet for the Proposed Network.

Table 5. Classification performance (%) of the proposed network

on cross-compression. The rows and columns depict the compres-

sion mode of train and test set respectively.

Network Trained On
Network Tested On

no-c easy-c hard-c

No-Compression 99.96 58.26 52.66

Easy-Compression 99.56 99.10 55.43

Hard-Compression 96.73 95.76 91.20

sion by a neural network. However, end-to-end train-

ing by the proposed loss function further improves the

performance of both networks, i.e., with only regional

classifiers and the proposed architecture.

• Table 5 summarizes the performance of the proposed

architecture on cross-compression dataset. The net-

work is thereby trained upon frames of one compres-

sion mode and then tested against frames compressed

by different compression modes. It is observed that the

performance of models trained upon low compression

drops significantly for the input of higher compression.

However, the models trained upon highly compressed

frames generalize better across the low compressed in-

puts.

• We analyze the class activation maps, as shown in Fig-

ure 6 for the regional and full-face classifiers across the

compression schemes.

– Class activation maps corresponding to full-face

trained ResNet, i.e., ResNet1 indicate that the

nose and mouth regions provide the fundamental

differentiation between the original and altered

frames. This is because during the process of

reenactment, the realistic portrait of movement

of mouth and nearby regions are hardest to cre-

ate as the transfer of static features are easy to

perform as compared to dynamic features. Also,

the lower facial regions are more prone to move-

ment as compared to any other facial regions in a

video sequence.

– The drop in performance of the proposed multi-

stream network with respect to compression fac-

tors can easily be inferred from the activation

maps. The higher the compression factor, the

smaller is the activated region of the network

trained for the classification task.

– Unlike the forehead regions, which are not prone

to high movement, the full-face ResNet fails to

detect the artifacts generated due to the move-

ment in the eye region. This shows the need of

local classifiers dedicated for alteration detection

near the eye region by ResNet2 and ResNet3.

– Face2Face approach incorporates blendshape de-

tection followed by parametric transfer of facial

expression, thus leading to the creation of edge

artifacts near the face boundary due to the er-

ror in face tracking and effective transfer of ex-

pression. These errors are again neglected by the

full-face ResNet specifically in case if compres-

sion is applied upon the input video. ResNet4
and ResNet5, thus help in providing another in-

dicative measure of falsification by exploiting the

face tracking limitations of the Face2Face ap-

proach.

• Table 6 summarizes the classification accuracy of the

classifiers for the individual as well as the combination
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Table 6. Classification accuracy (%) of regional classifiers for

frames with hard-compression.

Stream Accuracy

Individual

Face (X1) 88.20

Left Eye (X2) 78.95

Left Cheek (X4) 79.15

Right Eye (X3) 77.45

Right Cheek (X5) 74.20

Combination

Regional 88.26

Face + Left Eye 88.60

Face + Left Cheek 89.30

Face + Right Eye 88.83

Face + Right Cheek 88.40

of streams in the proposed model. It is observed that

the left-sided features perform better than the right-

sided features, specifically in the case of the cheek

region. It is also observed that the eye region gives

a more consistent classification performance than the

cheek region. This can be inferred from the class ac-

tivation maps as the regional classifiers are able to ex-

tract more prominent features in the eye region than

the cheek region across all the compression schemes.

The regional classifiers combined have performance

comparable to the full-face classifier. Also, the con-

tribution of each stream in combination with the full-

face classifier is proportional to the classification per-

formance of each regional classifier.

• We analyzed the effect of parameter λ upon the

classification performance. The proposed network

yields a classification accuracy of 89.00%, 91.20% and

87.50% for λ= 0.001, 1, and 100, respectively. A very

small value of λ is equivalent to training the streams

independently and then fusing the scores whereas a

high value of λ depicts an end to end training with

standalone cross-entropy loss at the output layer of

the network. The best classification performance was

achieved by λ = 1, i.e., the weight of fusion was equal

to the weight of individual streams.

• Figures 7 and 8 show some instances where the pro-

posed network is not able to correctly classify the ma-

jority of the frames of the input subjected to hard com-

pression.

6. Conclusion and Future Work

In this research, we have addressed reenactment based

DeepFake detection in videos. The proposed detection al-

gorithm outperforms state-of-the-art methods on the Face-

Forensics dataset and shows the smallest reduction in clas-

sification performance when the input video frame is sub-

jected to adverse compression. In the proposed algorithm,

Figure 7. Frames misclassified as Altered due to compression.

Figure 8. Frames misclassified as Original due to compression.

we aim to find local noise patterns and artifacts that are left

behind when altered with Face2Face reenactment. This al-

lows the network to model itself upon various noise patterns

learned by various regional classifiers, further aided by the

full-face classifier. We also propose an end to end train-

ing loss function to allow for balanced training of regional

classifiers as compared to the full-face classifier. Such type

of loss function can find use in cases where the fusion of

classifiers with different rates of convergence is needed. In

order to develop a generalized detection approach, it is im-

portant to understand the DeepFake generation mechanism

and try to leverage the limitations of various modules used

in the generation of reenacted videos. The proposed model

contains five parallel streams, thus leading to high computa-

tional complexity. In the future, we plan to reduce the model

complexity by using an attention mechanism that learns the

dependency between the image regions and features maps

in a more computationally effective manner.
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