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Abstract

A simple prior free factorization algorithm [9] is quite

often cited work in the field of Non-Rigid Structure from

Motion (NRSfM). The benefit of this work lies in its simplic-

ity of implementation, strong theoretical justification to the

motion and structure estimation, and its invincible original-

ity. Despite this, the prevailing view is, that it performs ex-

ceedingly inferior to other methods on several benchmark

datasets [14, 1]. However, our subtle investigation pro-

vides some empirical statistics which made us think against

such views. The statistical results we obtained supersedes

Dai et al.[9] originally reported results on the benchmark

datasets by a significant margin under some elementary

changes in their core algorithmic idea [9]. Now, these re-

sults not only exposes some unrevealed areas for research

in NRSfM but also give rise to new mathematical challenges

for NRSfM researchers. We argue that by properly utiliz-

ing the well-established assumptions about a non-rigidly

deforming shape i.e, it deforms smoothly over frames [27]

and it spans a low-rank space, the simple prior-free idea

can provide results which is comparable to the best avail-

able algorithms. In this paper, we explore some of the hid-

den intricacies missed by Dai et. al. work [9] and how

some elementary measures and modifications can enhance

its performance, as high as approx. 18% on the benchmark

dataset. The improved performance is justified and empiri-

cally verified by extensive experiments on several datasets.

We believe our work has both practical and theoretical im-

portance for the development of better NRSfM algorithms.

1. Introduction

Notation: The notation used in this paper is similar to

Dai et al. work [9] unless otherwise stated.

Non-rigid Structure from Motion (NRSfM) is a well-

known problem in geometric computer vision [5, 1, 9, 20,

18]. The goal of this problem is to reconstruct 3D struc-

ture of a deforming object using multiple frames. One of

the most popular way to solve NRSfM is the matrix fac-

torization approach. The matrix factorization approach to

(a) Paper Sequence (b) 3D Reconstruction

(c) Tearing Sequence

Ground-Truth

Ours

(d) 3D Reconstruction

Figure 1: The method recovers 3D dimensional structure of the

deforming object over multiple frames. Our elementary but power-

ful changes provides a substantial improvement in the reconstruc-

tion accuracy than the previous results reported for “prior-free"

approach. The example images are taken from the recently re-

leased NRSfM Challenge Dataset [14]. Our reconstruction results

are nearly as good as the best performing algorithm without using

very complex and involved mathematical optimization [19].

solve this problem dates back to 2000 [5] with no satisfac-

tory solution in place until 2012. In the year 2012, Dai et al.

[8] proposed a ground-breaking approach to solve NRSfM.

This method for solving NRSfM is now considered as a

classical work in NRSfM [9]. In that paper, the camera mo-

tion is estimated by imposing the null space constraint and

the rank-3 positive semi-definite matrix cone constraint on

the Gram matrix (Qk). Further, nuclear norm minimization

of the reshuffled shape matrix (S♯) was introduced to prof-

fer stronger rank bound on the shape matrix for non-rigid

shape estimation. The striking part of their work is that it

not only challenged the myth of the inherent basis ambigu-

ity in NRSfM [33] but also supplied a practical “prior-free"

algorithm to solve NRSfM. Nonetheless, over years, it was

observed that their remarkable theory performs poorly on

benchmark datasets [22, 14]. In this paper, our goal is to

make “prior-free idea” work well on real world scenarios.
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Theoretically, the elementary idea of Dai et al. [9] con-

veniently encapsulates all the basic intuitions which are re-

quired to solve a general NRSfM problem. One may imme-

diately argue on its performance when the deforming shape

is composed of a union of low-rank subspace[19, 17, 36, 16,

15]. However, in this paper, we restrict our discussion to the

classical representation of a NRSfM problem [5], without

paying much attention to, how clustering benefits 3D re-

construction of the non-rigid object and other such notions

of compact data representation. The reason for this choice

is that the improvement in the performance of a classical

baseline shall benefit the methods built on top of it.

The main purpose of this work is to uncover some of the

unexplored mathematical intricacies in the prior free factor-

ization approach to NRSfM, and improve on the idea sup-

plied by Dai et al. [9]. Our exposition leads to the pos-

sible reasons for its inferior performance on the benchmark

datasets [1, 14, 31]. It is shown in this paper that the rotation

estimate using Dai et al. work [9] is not unique under the

same model complexity prior (K/rank), and they overlooked

to utilize full correction matrix space [4]. Our investigation

unveil the possibility of procuring motion that satisfies the

well-known assumption of smooth non-rigid deformation of

the object [27]. A simple search for the proper column-

triplet (triads [4]) for the correction matrix (Gk) based on

the smoothness of camera motion can indeed help improve

the accuracy of the algorithm. Further, we argue that the

weighted nuclear norm minimization of the shape matrix

(S♯) is a far better choice than its global trace norm mini-

mization. Lastly, due to our extensive analysis, we are able

to posit some unsolved issues in NRSfM under “prior-free”

idea which needs attention for further progress in this field.

In this paper, it is not claimed that we achieve state-of-

the-art results on the benchmark datasets using our new ap-

proach. However, we empirically show that we can get very

close to the best performing approaches and the difference

is not very great, without the employment of complex and

involved mathematical optimization [19, 22]. In this paper,

we also argue that the inferior performance of “prior-free"

method may not be due the proposed theoretical idea but be-

cause they overlooked some of the mathematical construc-

tion in their own formulation, and missed on properly uti-

lizing the well-known assumptions about non-rigidly mov-

ing object i.e., smooth deformation [27] and low-rank shape

[9]. Hence, the conclusion, understanding, and use of sim-

ple “prior-free” algorithm to NRSfM is not complete and

precise. Through this work, we try to amend and nullify the

prevailing perception about the “prior-free" approach, and

how it can be used to its maximum potential. We feel that

our paper touches some critical points which are essential

to establish a theoretical closure to some of the elementary

problems within the factorization approach to NRSfM.

Contribution: Firstly, our work postulates some rectifica-

tion to the usage of “Intersection Method" [9] to compute

camera motion. With the suitable example, we establish

that the generalization made on the rotation matrix estima-

tion by Dai et al. work [9] is not convincing and therefore,

the knowledge about the strength of “Intersection theorem”

is not completely exploited. Secondly, we provide an ana-

lytic solution to estimate suitable rotation using Intersection

theorem and conjecture some challenges associated with

it. Lastly, we propose a weighted nuclear norm minimiza-

tion problem to estimate non-rigid 3D shape. Our approach

shows a substantial improvement in the 3D reconstruction

accuracy (nearly 18%). Moreover, we observed perfor-

mance improvement in the case of noisy and missing tra-

jectories §4.2 (under minor adjustment) using our method.

In this work, our attempt is to make the baseline method1

more accurate, both in terms of understanding and perfor-

mance, subject to the mathematical simplicity. To achieve

this, we attempt to avoid the usage of complex mathematical

notions such as union of independent subspace, dependent

subspace representation [36, 19, 21], procrustean normal

distribution [22], kernelization [10] etc. Hence, it is simple

to understand the theoretical and practical justification of

our method. We show that by applying simple but powerful

logical and mathematical modifications to the prior free idea

[9], we can get close to or even perform better at times than

the best available algorithms on the benchmark datasets.

2. Representation and Motion Estimation

1. Classical Representation: Tomasi and Kanade fac-

torization method to structure-from-motion under ortho-

graphic camera projection appropriately summarizes the be-

havior of the 3D points over frames [30]. The relation be-

tween 3D shape, motion and its projection over frames was

defined as

W = RS (1)

where, W ∈ R
2F×P is the measurement matrix formed by

stacking all the image coordinates (x = [u, v]T) for ‘P’

points along ‘F’ rows i.e., total number of frames. R =
blockdiagonal(R1, R2, .., RF) ∈ R

2F×3F denotes the or-

thographic camera rotation matrix with each Ri ∈ R
2×3 as

per frame rotation. S ∈ R
3F×P represent the shape matrix

with each row triplet as a 3D shape. This representation was

later extended by Bregler et al. [5] to recover non-rigid 3D

shapes. More concretely,

W =





x11 . . .x1P

. . .

xF1 . . .xFP



 =





R1S1
..

RFSF



 =





c11R1 . . . c1KR1
. . .

cF1RF . . . cFKRF









B1
..

BK





⇒ W = R(C⊗ I3)B = ΠB
(2)

1By baseline, we mean the methods that solve NRSfM using its classi-

cal representation W = RS that have withstood the test of time [30, 5].
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The matrix ‘B’ and ‘C’ are composed of shape bases and

shape coefficients respectively, with ‘K’ as the number of

shape bases. ‘⊗’ denotes the kronecker product and ‘I3’ is

a 3 × 3 identity matrix. It is evident from the above for-

mulation that the rank of W ≤ 3K and also rank(S) ≤ 3K.

However, S is not a general rank 3K matrix but own a spe-

cial structure due to C⊗ I3 factor [9].

2. Null Space Representation of the Orthonormality

Constraint: An initial step in the factorization approach

to NRSfM is to perform a rank 3K decomposition of the

measurement matrix W via singular value decomposition

(svd) i.e. W = Π̂B̂. This is then followed by the estima-

tion of Euclidean corrective matrix ‘G’ to solve rotation and

3D structure. The main reason for such a procedure is due

to the fact that the singular value decomposition of ‘W’ ma-

trix is not unique as any non-singular matrix G ∈ R
3K×3K in

between the two matrices Π̂ and B̂ can form a valid factor-

ization. Mathematically,

W ≡ Π̂B̂ = (Π̂G)(G−1B̂) = ΠB (3)

Now, once we are able to solve G correctly, then rotation

and shape can be estimated using the above relations [5]. To

solve G, orthonormality constraints are imposed i.e. RiR
T
i =

I2. Representing the ith double row of Π̂ as Π̂2i−1:2i ∈
R

2×3K and Gk ∈ R
3K×3 as the kth column triplet of G, then

using Eq:(2) and Eq:(3) we can write

Π̂2i−1:2iGk = cikRi, ∀ i = {1, 2, .., F}, k = {1, 2, .., K}
(4)

Multiplying both sides by RTi from right side gives

Π̂2i−1:2iGkG
T
kΠ̂

T
2i−1:2i = c2ikI2

This leads to two linear equation constraint

Π̂2i−1QkΠ̂
T
2i−1 = Π̂2iQkΠ̂

T
2i, Π̂2i−1QkΠ̂

T
2i = 0

(5)

where, Qk ∈ R
3K×3K = GkG

T
k. Using the algebraic relation

vec(AXBT) = (B ⊗ A)vec(X), Dai et al. transformed these

constraints (Eq:5) to a null space representation as follows:

[

Π̂2i−1 ⊗ Π̂2i−1 − Π̂2i ⊗ Π̂2i

Π̂2i−1 ⊗ Π̂2i

]

vec(Qk) = Avec(Qk) = 0

(6)

Using the above form and previous work in NRSfM [33],

Dai et al. proposed the intersection theorem and supplied a

SDP solution to estimate the Qk matrix and the Euclidean

corrective matrix Gk using svd().

Theorem 1 Intersection Theorem: Under non-generate

and noise-free conditions, any correct solution of Qk must

lie in the intersection of the (2K2 − K) dimensional null-

space of A and a rank 3 positive semi-definite matrix cone

i.e. Qk must belong to

Gϵ	ℝ
3K×3K

G1 G) G3 GK

1: 3 4: 6 7: 9 3K− 2: 3K

Considered by Dai et.al.

(a)

Figure 2: (a) The column triplet (1:3) of euclidean corrective ma-

trix (Gk) used by Dai et al. work [9] shown in red shade. It is

stated with the notion that there is no loss of generality to choose

G1. However, choosing other column triplet may result in better

rotation and shape estimate as shown in Figure 4(a) and 4(b)

{Avec(Qk)} ∩ {Qk � 0} ∩ {rank(Qk) = 3} (7)

Dai et al. solution to rotation: They proposed that once

the Qk is solved, rather than solving for full Euclidean cor-

rective matrix G ∈ R
3K×3K, use svd() to extract rank 3 Gk.

The solved Gk ∈ R
3K×3 can then be use to find R (Eq:4)

up to sign (cik). The method quote “we adopt a simpler

approach that directly computes the camera motion R from

single column-triplet Gk without need to fill in a big and full

G matrix”. Naturally, this single column-triplet is chosen to

be the first column-triplet (G1) of the Gmatrix (see Fig:2(a)).

Now, such strategy give rise to few legitimate concerns

(a) When each column triplet {Gi}
K
i=1 qualifies for a suit-

able correction matrix, then why G1 has a high pref-

erence? Are we loosing useful information by such

unwarranted preference?

(b) Will each {Gi}
K
i=1 provide the same solution to the ro-

tation matrix?

(c) Generally, most real world deformations are smooth in

nature [27]. Whether such solution to rotation is good

enough for the smooth deformation assumption?

Dai et al. overlooked all these intrinsic issues to solve rota-

tion using their proposed intersection theorem.

Plausible Rectification: Our experiments show that Dai et

al. [9] solution to rotation estimation actually aborted the

useful information present in the G ∈ R
3K×3K. Each of the

‘K’ column triplets in G (i.e. Gk) gives a possible rotation

matrix which is different from each other (see Fig:(3)). Our

empirical evaluations on several datasets show that the first

column triplet is not always the best choice to estimate ro-

tation. Hence, the details provided by Dai et al. work [9] is

incomplete and there is a loss of generality with such pro-

cedure to estimate rotation under the well-known assump-

tion of smooth deformation [27]. Fig:(4(a)) and Fig:(4(b))

provides few statistical results with comparison for both ro-

tation and shape error estimate respectively. For clarity, we

also provide the column triplet index that gives the better

results for the corresponding data sequence and therefore,

provides few counter-examples to such generalization.

Theoretically and practically, this result is of significant
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Figure 3: The rotation samples on SO(3) using {Gk}
12

k=1 for Pick-

up sequence. Below each SO(3) manifold is the graph showing the

per frame change in the camera motion using Eq:(8) ‘δf’. A simple

observation establishes that all rotation matrix (R) are not the same.

‘δf’ graph analysis on this dataset show that the rotation estimate

provided by G7, G8, G9 has a smoother camera motion than other

Gk’s, with G9 being the smoothest. Any one out of these 3 Gk’s

supply better performance than G1. Note: Each Ri ∈ R
2×3 7→

Ri ∈ R
3×3 via cross product. (Best viewed on screen)

importance as it helps in inferring that the solution provided

by “Intersection Theorem" has a lot of useful information

left to be exploited completely and Dai et al. work ignored

this. Also, it gives rise to some challenges that finding the

best column triplet for Gk is not an easy task. With these

results, we conjecture few problems for further research

in NRSfM that are: (a) Can we find a best possible col-

umn triplet for the corrective matrix with a given rank prior

‘(K)’, or (b) At least can we put an upper bound on the value

k ⊂ K such that there exists no such ‘k’ for Gk which will

provide better rotation and structure estimate. The prob-

lem seems hard keeping in view that the prior rank (K) in

NRSfM factorization methods is an assumed approximation

and it changes for different datasets to achieve better results.

A solution: In 2005, Brand. M [4] argued to use full cor-

rection matrix to estimate motion which in a way utilizes

all the multiple estimates of column-triads of G. Recently,

Lee et al. [23] briefly mentions on the problems with mo-

tion estimates using [9]. In contrast, we use an analytical

observation based on the smoothness and regularity2 of the

camera motion trajectory to filter Gk ∈ R
3K×3 to infer better

‘R’. Let ψ(.) be a function that takes Gk as input and gives

2The term «regularity» is used in a loose sense (Mathematically).
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Figure 4: Counter examples on benchmark dataset [2]. (a) Rota-

tion error in comparison to BMM [9] on synthetic data. (b) 3D re-

construction error using global trace norm minimization of shape

matrix as used in BMM with rotation matrix estimate using other

column triplet in comparison to G(1:3). The column triplets of (G)

for which the method perform better on Drink, Pickup, Yoga and

Stretch are (1:3), (19:21), (1:3) and (19:21) respectively. Note that

we used the same rank prior value ‘K’ used in Dai et al. work [9].

‘R’ as output using Intersection theorem. We estimate dif-

ferent R ∈ R
2F×3F for all the column triplets {Gk}

K
k=1, then

compute smoothness of the camera motion for each Gk as:

Suppose, R = ψ(Gk), via Intersection method, then,

δf = ‖Rf − Rf+1‖
2
F ∀ f = 1, 2, ..., F− 1. [13] Sec.4.

(8)

By examining the smoothness of the camera motion for

each Gk, we select the suitable rotation matrix for structure

estimation (see Fig. 3). Our strategy to select smooth cam-

era motion over frames based on Eq:(8) consistently sup-

plied us with better performance than the previously pro-

posed approach. We acknowledge that this is not a pro-

found way to infer the best rotation, however, it does pro-

vide a possibility to deduce better rotation using “prior-

free" approach which respects the well-known assumption

of smooth deformation in NRSfM. Further, it helps endorse

our claim on the generalization of rotation estimate by [9].

You may use the variable ‘δf’ Eq:(8) as a smoothness term

in the final optimization (Eq:(11)) to further improve rota-

tion, however, to show the competence within the “prior-

free” idea [9], we stick to the classical two staged approach.

3. Structure Estimation

Once the rotation is estimated based on the smoothness

of the camera motion [27], the next step is to solve for 3D

structure. The block matrix method (BMM) by Dai et al.

[9] proposed the following optimization problem to esti-

mate the non-rigid low-rank shape.

minimize
S♯

‖S♯‖∗ subject to: W = RS, S♯ = g(S)

(9)

where, S♯ ∈ R
F×3P is a rearranged shape matrix with each

row corresponds to the shape for that frame. The trace norm

minimization on ‘S♯’ is enforced instead of ‘S’ to provide a

stronger rank bound on the shape matrix [9]. The second
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term in Eq:(9) enforces the re-projection error constraint.

The function g(.) maps S ∈ R
3F×P to S♯ ∈ R

F×3P.

Dai et al. solution to shape: Following the work of Ma et

al. [26] on rank minimization problems, Dai et al. [9] pro-

posed a solution to the optimization in Eq:(9). The method

enforces low-rank constraint on ‘S♯’ matrix and provide

the solution by solving Eq:(9) via ADMM[3] using matrix

shrinkage operator Sλ(X) = Udiag(sλ(σ))V
T, where sλ(σ) =

σ̄ with σ̄i =
{

σi − λ if σi − λ > 0 and 0 otherwise
}

.

Plausible Rectification: Despite the trace norm minimiza-

tion provides a satisfactory solution to non-rigid structure

estimation, it has some serious issues. The proposed so-

lution to nuclear norm minimization problem (Eq:(9)) gives

equal priority to each singular values, as a result, the shrink-

age operator penalizes each singular value with the same

quantity (λ). To estimate 3D structure of a non-rigidly de-

forming object using matrix factorization approach, we use

a prior assumption that the shape lies in a low-rank sub-

space. Therefore, it’s not a better choice to penalize the

major component of the shape data and its very minor com-

ponent equally. Consequently, nuclear norm minimization

of the shape matrix struggles to appropriately conserve the

useful component of the non-rigidly deforming shape.

Truncated nuclear norm regularization can be a choice to

handle such issues, however, it depends on the binary deci-

sion, hence not versatile in nature [35]. To really cater the

behavior of the deformations based on its low-rank nature,

we propose to use weighted nuclear norm minimization ap-

proach to solve for non-rigid structure [28, 12]. In contrast

to the previous notation to the nuclear norm of the shape

matrix i.e. ‖S♯‖∗, we introduce a different notation for its

weighted nuclear norm

‖S♯‖Θ,∗ =
K

∑

j=1

Θjσj(S
♯) (10)

where σj(.) denotes the jth singular value of S♯. We

assume that the weights Θj’s are non-negative scalar i.e.

Θj ≥ 0 . Using this representation, we redefine the opti-

mization proposed in the Eq:(9) as follows:

minimize
S♯,S

µ‖S♯‖Θ,∗ +
1

2
‖W− RS‖2F

subject to: S♯ = g(S)

(11)

The motivation for such formulation is quite clear, how-

ever, the proposed optimization (Eq:11) is generally non-

convex, and is more difficult to solve than the nuclear norm

minimization. Fortunately, recent results [34, 25, 12] in

compressed sensing have shown that we can achieve an ef-

fective optimal solution to Eq:(11) in the case when 0 ≤
Θ1 ≤ Θ2 ≤ .... ≤ ΘK §3.1.

3.1. Optimization

This section provides the mathematical derivation to the op-

timization proposed in Eq:(11). Our solution use the follow-

ing theorems and proofs as stated and used in [34, 12, 7].

Theorem 2 For all Y ∈ R
m×n, denoted by Y = UΣVT, the

SVD of it. The solution to minimizeX‖Y − X‖2F + ‖X‖Θ,∗,

with non-negative weight vector Θ, its solution X̂ can be

written as X̂ = UB̂VT, where B̂ is the solution to the following

optimization problem

B̂ = argminB‖Σ− B‖2F + ‖B‖Θ,∗ (12)

Theorem 3 If the singular values σ1 ≥ .... ≥ σK and

the weights satisfy 0 ≤ Θ1 ≤ Θ2 ≤ .... ≤ ΘK

then the weighted nuclear norm minimization problem

minimizeX‖Y−X‖2F+‖X‖Θ,∗ has a globally optimal solution

X̂ = USΘ(Σ)V
T (13)

where Y = UΣVT is the SVD of Y, and SΘ(Σ) is the gener-

alized soft-thresholding operator with weight vector Θ

SΘ(Σ) = max(Σii −Θi, 0) (14)

The readers are encouraged to refer to [34, 12] work for

detailed derivations to the lemma’s leading to the proof of

the theorems. In conclusion, if the weights satisfies non-

descending order, not necessarily with the same value, the

weighted nuclear norm minimization problem is still con-

vex and optimal solution can be obtained using a soft-

thresholding operator with different weights [34, 12].

3.2. Solution

We propose our solution to the optimization problem de-

fined in Eq:(11) using alternating direction method of mul-

tipliers [3] (ADMM), a simple, fast but powerful algorithm

used to solve many non-convex problems in computer vi-

sion and mathematical optimization. The ADMM algorithm

decompose the original problem into several sub-problems,

where each of them is solved separately by introducing La-

grange multipliers and penalty parameters to estimate con-

vergence. Using the method of multipliers, the Augmented

Lagrangian form for Eq:(11) is written as follows:

Lρ(S
♯, S) = µ‖S♯‖Θ,∗ +

1

2
‖W− RS‖2F +

ρ

2
‖S♯ − g(S)‖2F+

< Y, S♯ − g(S) >
(15)

here Y ∈ R
F×3P is a Lagrange multiplier and ρ > 0 is the

penalty parameter. The solution to each variable is obtained

by solving the following subproblems over iterations (in-

dexed with the variable i):

(S♯)i+1 = argmin
S♯

Lρ

(

(S♯)i, S
)

(16)
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(S)i+1 = argmin
S

Lρ

(

S♯, (S)i
)

(17)

The Lagrange multiplier and the penalty parameter are up-

dated as follows:

Y = Y+ ρ(S♯ − g(S))

ρ = minimum(ρmax, λρ)
(18)

ρmax refers to the maximum value of ‘ρ’ and λ is an em-

pirical constant (λ > 1). The mathematical derivations to

each sub-problems are provided in the supplementary ma-

terial for reference. The closed form solution to the Eq:(17)

is obtained by taking the derivative of Eq:(15) w.r.t variable

‘S’ and equating it to zero i.e.,

S =
(ρI+ RTR

ρ

)−1(
(

g−1(S♯) +
g−1(Y)

ρ

)

+
RTW

ρ

)

(19)

Similarly, rewriting the Eq:(15) treating S♯ as variable.

= argmin
S♯

µ‖S♯‖Θ,∗ +
ρ

2
‖S♯ − g(S)‖2F+ < Y, S♯ − g(S) >

(20)

In contrast to the previous form, the solution to Eq:(20) is

not straight forward. To obtain a closed form solution to this

problem, lets define a soft-thresholding function Sτ (σ) =
sign(σ).max(|σ| − τ, 0). Also, let [U,Σ, V] be the singular

value decomposition of (g(S)− Y
ρ

), then the optimal solution

to Eq:(20) is given by:

S♯ = USΘµ
ρ
(Σ)V (21)

Here, Θ is the weight assigned to the different singular val-

ues in the non-descending order based on its significance to

the deformation data. For detail discussion on the initializa-

tion of weights kindly refer section §4.1.

4. Experiment and Discussion

To endorse our claim, we performed extensive experi-

ments on both real and synthetic benchmark datasets [1,

14, 31]. We compared the performance of our algorithm

against different state-of-the-art methods on these datasets

[11, 22, 19]. Additionally, we unveil the substantial per-

centage boost in the reconstruction accuracy as high as 18%

in comparison to the previous results reported for “sim-

ple prior-free" approach. For real-world applications to

NRSfM, noisy data and missing feature tracks over frames

are crucial, therefore, we also performed experiments to

tackle such issues. To make the comparisons on noisy and

missing data sequence, the experimental settings we used

are same and consistent with Lee et al. work [22]. Experi-

mental results on dense datasets and more rigorous cases of

missing trajectories are provided in the supplementary ma-

terial. Before we provide details on our performance analy-

sis, lets discuss the variable initialization.

4.1. Initialization

Our algorithm has few parameters and variables to ini-

tialize. For all our experiments on different datasets, we

initialize µ = 1, λ = 1.1, ρmax = 1e10, ρ = 1e−4,

Y = zeros(F, 3P) and the ‘K’ values are kept same as Dai et

al. method [9]. Practically, we considered the convergence

of our optimization, if the gap max‖(S♯ − g(S))‖∞ < 1e−8

or ρ > ρmax over iteration.

1. Structure initialization: Using the result of Liu et al.

[24] on the uniqueness of minimizer for the rank minimiza-

tion problem, we initialize the the 3D shape ‘S’ as ‘S’ =

pinv(R)W and S♯ = g(S). The pseudo-inverse solution to

shape matrix provides a good enough initialization to our

algorithm. Reader may refer to Dai et al. [9] and Valmadre

et al. [32] work for detailed discussion on pseudo inverse

solution to ‘S’ in NRSfM.

2. Weight (Θ) initialization: It is well-known in NRSfM

under factorization approach that the shape matrix lies in a

low-rank space. Generally, the largest singular value of the

shape matrix contains the most information about the non-

rigid shape, therefore, while optimizing for the shape ma-

trix, it’s illogical to treat each singular value equally. The

singular values with major component must be penalized

less and vice-versa. Using this inverse relation between sin-

gular values and its significance to the shape deformation

modeling, we assign the weight (Θ) to be inversely propo-

sitional to the singular values of the shape matrix.

Θj =
ξ

σj(S♯) + γ
=

ξ

σj(g(S)) + γ
(22)

where, ξ is a positive number and γ = 1e−6, a very small

positive number to avoid division by zero as some singular

values are likely to be zero (low rank). We initialized the

weights by substituting the pseudo-inverse initialization of

‘S♯’ i.e. using the relation S♯ = g(S) in the Eq:(22).

4.2. Performance Analysis

After a detailed discussion on the variable initialization

and optimization, we present our experimental evaluation.

We performed extensive experiments on both new and old

benchmark datasets [1, 31, 14]. We report the quantitative

result on the previous benchmark dataset using mean nor-

malized 3D reconstruction error formulation i.e.

es =
1

F

F
∑

i=1

‖Siest − SiGT‖F
‖SiGT‖F

(23)

where, S est, SGT are the estimated 3D shape and ground-

truth 3D shape respectively. To keep our statistics consistent

with the newly proposed NRSfM dataset, we used their er-

ror evaluation code to compute the robust root mean square

error (RMSE) metric as proposed in Taylor et al. work [29].
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Figure 5: Reconstruction results of our method on the NRSfM synthetic benchmark dataset [1, 2]. Ground-truth and reconstructed points

are shown in filled(red) and non-filled circles respectively. Note: We used same ‘K’ value as documented in [9] work for all the experiments.

Method PTA[1] CSF2[11] PND[22] BMM Ours

Drink 0.0287 0.0227 0.0037 0.0266 0.0119 (1.47%)

Pickup 0.1939 0.1791 0.0372 0.1731 0.0198 (15.3%)

Yoga 0.1243 0.1179 0.0140 0.1150 0.0129 (10.2%)

Stretch 0.1035 0.1136 0.0156 0.1034 0.0144 (8.90%)

Dance 0.2426 0.1877 0.1454 0.1864 0.1060 (8.04%)

Walking 0.3761 0.1938 0.0465 0.1298 0.0882 (4.16%)

Face 0.0489 0.0319 0.0165 0.0303 0.0179 (1.24%)

Shark 0.2933 0.1117 0.0135 0.2311 0.0551 (17.6%)

Table 1: Performance comparison in the shape recovery using our

new approach with some of the state-of-the-art methods in single

body NRSfM. The statistics clearly demonstrate our claim that we

can achieve a significant improvement in the reconstruction accu-

racy without using complex mathematical formulation. The per-

centage value in the last column (red) show the improvements over

the result documented by Dai et al. original work (BMM) [9].

For more details on NRSfM CVPR 2017 challenge dataset

evaluation metric, kindly refer to Jensen et al. work [14].

1. Benchmark datasets: Most of the methods proposed

in non-rigid structure from motion often use it to evaluate

the performance of the algorithm. Loosely speaking, this

dataset is composed of eight standard sequences namely

Drink, Pickup, Yoga, Stretch, Dance, Walking, Face and

Shark. The number of frames (F) to number of points (P)

i.e. (F, P) set for these datasets are (1102, 41), (357, 41),

(307, 41), (370, 41), (264, 75), (316, 40) and (240, 91) re-

spectively. Table (1) show the statistical comparison of our

approach in comparison to the other competing approaches

for single body NRSfM. Our evaluation results clearly show

a significant improvement in the reconstruction accuracy

in comparison to the previously reported results for “prior-

free” approach. Figure (5) show the qualitative reconstruc-

tion results w.r.t ground-truth on all of these sequences.

2. NRSfM challenge datasets: Jensen et al. recently re-

leased this dataset as a part of NRSfM competition held

Method ↓ / Data Articulated Ballon Paper Stretch Tearing

Multibody [19] 10.15 10.64 15.78 9.96 14.17

BMM [9] 24.54 12.91 22.37 18.71 18.87

Ours 12.02 11.79 16.21 12.05 16.08

Table 2: Performance comparison of our method in comparison to

the best performing algorithm (Multi-body) [19] on NRSfM chal-

lenge dataset [14]. The above statistics shows the average root-

mean-square error in millimeters for the single test image on the

orthogonal sequence available with the dataset. Our method shows

a clear improvement over the originally proposed BMM approach

and it’s accuracy got very close to the multi-body.

at CVPR 2017 [14]. This is a high quality challenging

dataset divided into five categories based on the deforma-

tion type, namely, Articulated, Balloon, Paper, Stretch and

Tearing. Each of these categories is again shot using six dif-

ferent camera paths namely circle, flyby, line, semi-circle,

tricky and zig-zag. This dataset is significantly larger and

diverse to really test the performance of a NRSfM algo-

rithm’s. However, the dataset provides only a single frame

ground-truth 3D for each of the five categories to test the

algorithm. To estimate the reliability of our approach, we

compared our performance against the best performing al-

gorithm on this dataset. Table (2) show the quantitative re-

sults of our method. The performance clearly demonstrates

the significant improvement in the accuracy using “prior-

free” idea under our modification. It also help infer that

without using complex mathematical notions, we can reach

performance accuracy close to the state-of-the-art. Figure

(6) show some qualitative results using our method.

3. Noisy data: The feature tracks captured from a real-

world motion capture system is noisy most of the time.

Therefore, to test the reliability and robustness of our new

approach, we performed experiments by re-synthesizing

57



(a) Articulated (b) Ballon (c) Stretch

-20

-100

-50

-10

X

0

50 400

Z

200

Y

0
-200

0

100
-400

10
Ground-Truth

Ours

(d) 3D Articulated

-100

-50
-100

-100

X

-50

0Z

0

Y

50

0

100

50100

Ground-Truth

Ours

(e) 3D Ballon

50

Z 0

100 200

50

0 100

X

-50

-100 0

Y

-50

-100

-200

Ground-Truth

Ours

(f) 3D Stretch

Figure 6: Reconstruction results of our method on the NRSfM

challenge dataset [14]. The results shown here are for the circular

camera path. Ground-truth 3D and reconstructed 3D points are

shown with filled and non-filled circles respectively.

the trajectories added with Gaussian noise. We introduced

the Gaussian noise with standard deviation set as σnoise =
r ∗ max{|W|}, where r is varied from 0.05-0.25 [22]. Fig-

ure (7(a)) shows the variation in the normalized average 3D

error for the stretch sequence using the performance of dif-

ferent algorithm recorded over 20 times. The plot clearly

shows the robustness of our algorithm in comparison to

other methods in the presence of large noise ratio’s.

4. Missing Data: In addition to the noisy data, the other

problem with 3D reconstruction from a real video sequence

is the missing trajectories over frames. We handle the miss-

ing trajectory quite robustly by incorporating a simple mod-

ification to the optimization proposed in Eq:(11). Let’s as-

sume W̃ ∈ R
2F×P is the incomplete measurement matrix and

M ∈ {0, 1} is the mask matrix which indicates the presence

or absence of the tracks over frames. Given W̃, M, we first

find a complete W matrix using the following optimization

minimize
W

‖M⊙ (W̃− W)‖2F, subject to: rank(W) ≤ 3K

(24)

The above optimization is a well studied optimization form.

To keep things simple, we used Cabral et al. work [6] to

estimate W. The motive is to first solve for complete ‘W’

to estimate camera motion using our rectified approach §2,

and then solve for shape using the following cost function:

minimize
S♯,S

µ‖S♯‖Θ,∗ +
1

2
‖M⊙ (W̃− RS)‖2F

subject to: S♯ = g(S)

(25)

Clearly, it’s just a minor adjustment to the proposed

method based on the kind of data available in different situ-

ations. To evaluate our performance, we randomly set 30%

of the data missing from the sequence same as Lee et al.

work [22] for comparison. Figure (7(b)) shows the perfor-

mance of our algorithm with missing data.
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Figure 7: (a) 3D reconstruction error comparison over noisy tra-

jectories. (b) Comparison of our method performance with other

competing methods with missing data in the measurement matrix.

Note: BMM was not formulated for missing data case, therefore,

its results are not present in the above figures.

Discussion: Why not add the motion regularization ‖Rt −
Rt−1‖F in the final optimization and solve for both mo-

tion and shape? It’s definitely a valid argument. Neverthe-

less, we wanted to show the competence in a “prior free”

way [9] which is to “solve for motion first using Intersec-

tion theorem and then solve for low-rank shape”, therefore,

we avoided to add it in the final optimization. We showed

that smooth solution [27] already exist within the solution

to intersection theorem. Comprehensive analysis of our al-

gorithm after adding motion regularization to solve the final

optimization is left as an extension to the present idea.

5. Conclusion

With weighted nuclear norm minimization of the shape

matrix and an analytic solution to the rotation matrix based

on the smoothness of the camera motion [27], we witnessed

that the prior-free idea performs almost as good as the best

available algorithm’s. Without exploiting the “prior-free”

idea [9] fully based on the well-known assumptions of

smooth deformation of the non-rigid object and its low-rank

shape, it may perform badly, which might be the reason

that researchers have had poor results using it, even for the

non-rigid objects that span a single linear subspace. Our

work revealed the possibility of making “prior-free” [9]

practically more accurate under the different conditions of

measurement matrix with elementary modifications, and

also conjecture some open problems. The accuracy of our

algorithm on the benchmark datasets empirically validates

that the “prior-free” theory is still a very powerful way

to solve NRSfM and therefore, the proposition before

the NRSfM researchers to consider is, it’s not the failure

of the concept behind the prior-free idea for its inferior

performance but, it’s possibly due to our inability to

correctly cater, and cleverly exploit the arc of information

and perspectives provided by it to solve NRSfM.
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