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Abstract

An ongoing major challenge in computer vision is the

task of person re-identification, where the goal is to match

individuals across different, non-overlapping camera views.

While recent success has been achieved via supervised

learning using deep neural networks, such methods have

limited widespread adoption due to the need for large-scale,

customized data annotation. As such, there has been a re-

cent focus on unsupervised learning approaches to mitigate

the data annotation issue; however, current approaches in

literature have limited performance compared to supervised

learning approaches as well as limited applicability for

adoption in new environments. In this paper, we address the

aforementioned challenges faced in person re-identification

for real-world, practical scenarios by introducing a novel,

unsupervised domain adaptation approach for person re-

identification. This is accomplished through the introduc-

tion of: i) k-reciprocal tracklet Clustering for Unsupervised

Domain Adaptation (ktCUDA) (for pseudo-label genera-

tion on target domain), and ii) Synthesized Heterogeneous

RE-id Domain (SHRED) composed of large-scale hetero-

geneous independent source environments (for improving

robustness and adaptability to a wide diversity of target

environments). Experimental results across four different

image and video benchmark datasets show that the pro-

posed ktCUDA and SHRED approach achieves an average

improvement of +5.7 mAP in re-identification performance

when compared to existing state-of-the-art methods, as well

as demonstrate better adaptability to different types of envi-

ronments.

1. Introduction

Person re-identification (re-ID) attempts to match an

individual from one camera view across other, non-

overlapping camera views [15]. The most successful meth-

ods [45, 50, 21] leverage deep learning via a supervised

learning approach. Such supervised learning driven ap-

Figure 1. Iterative adaptation to unlabelled target domain using the

proposed ktCUDA approach. Result on test set after each iteration

of adaptation on the unlabelled training set. Starting with direct

knowledge transfer from the proposed SHRED source domain on

the first row. Query on the left and the top-5 search result with

green for correct match and blue for incorrect match. Image from

Market-1501 [52] (left) and DukeMTMC-reID [16] (right).

proaches assume the availability of a large, manually-

labelled dataset of individuals across multiple cameras in

the deployment environment (referred as the target domain).

This assumption inherently limits the widespread adoption

of person re-ID because of the cost and logistics needed for

manually annotating data from the target domain, which is

not practical in many real-world scenarios.

To overcome the reliance on a large, manually-labelled

dataset from the target domain, two approaches have been

proposed in recent literature: a pure unsupervised ap-

proach [27], and the more popular unsupervised domain

adaptation approach [2, 61, 11, 31, 49]. Both approaches

rely on an unlabelled dataset from the target domain which

is easily obtained by running tracking on the target domain.

Furthermore, the unsupervised domain adaptation approach

assumes the availability of a manually-labelled dataset from

an independent source domain [11, 31, 49], whereas the

pure unsupervised approach does not require a manually-

labelled source domain dataset.

Without an independent source domain, the pure unsu-

pervised approaches cannot function at all in a new target

domain until they have learned the new environment. From
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a practical point of view, this is undesirable as the system is

not able to function at all upon deployment. The unsuper-

vised domain adaption methods on the other hand are pre-

trained on an independent source domain and can function

upon deployment by directly transferring models learned on

the source domain (we refer to this as direct transfer). Start-

ing from the direct transfer results, the system simply gets

better as it adapts to the target domain (Fig. 1). The abil-

ity for immediate usage upon deployment makes such an

unsupervised domain transfer approach very attractive from

a practical point of view, but only if direct transfer perfor-

mance is good and unsupervised domain adaptation can fur-

ther improve the performance of the system.

There are two key limitations to existing unsupervised

domain adaptation approaches [2, 61, 11, 31, 49]. The first

limitation is that the domain adaptation component of ex-

isting approaches either: i) only considers environmental

style transfer between source and target domains [2, 61] and

do not explicitly learn suitable features and distance metric

for the target domain, or ii) directly transfer distance metric

(typically Euclidean distance) [11, 31, 49] learned on the

source domain to target domain for obtaining pseudo-labels

on the target domain. Pseudo-labels are then used to learn

suitable features and distance metric on the target domain.

However, direct transfer of distance metric is not optimal

due to differences in the source domain environment and

target domain environment.

The second limitation of existing unsupervised domain

adaptation approaches is that they rely heavily on a limited

real-world source domain. Typically, a single independent

environment is used as a source domain [27, 42, 38, 13, 60]

which doesn’t capture enough variations in environments

needed for domain adaptation. Some methods have at-

tempted to augment the source domain with thousands of

synthetic data with varying illuminations [2], but other en-

vironmental variations outside of illumination are not cap-

tured. Finally, there are few works [49, 2, 34] that com-

bine few different datasets in the source domain to obtain

some variability. However, their performance before and

after adaptation is generally noticeably lower as compared

to the latest unsupervised person re-ID techniques [27].

In this work, we address the two aforementioned limita-

tions of the current domain adaptation methods. First, we

explore how to better leverage distance metrics that have

been learned on the source domain to the target domain.

Recently, k-reciprocal re-ranking [58] has become a pop-

ular post-processing step for all supervised re-ID methods,

where the k-reciprocal nearest neighbours are ranked higher

than neighbours that minimize a distance metric and result

in better performance. It was shown in [58] to boost per-

formance by ∼ 10% on the mean average precision (mAP).

Motivated by the effectiveness of such an approach within

the realm of supervised re-ID, we propose a k-reciprocal

tracklet Clustering method for Unsupervised Domain Adap-

tation (ktCUDA), where k-reciprocal neighbours are used to

assign pseudo-labels to the target domain.

Second, we investigate the construction of a source do-

main that captures large environmental variations i.e., large

number of identities and environmental conditions to ensure

the best results for direct transfer of source domain to tar-

get domain. To this end, we constructed the Synthesized

Heterogeneous RE-id Domain (SHRED), the largest source

domain used in domain adaptation person re-ID literature.

We show that the proposed SHRED performs very well for

the direct transfer scenario. When combined with the pro-

posed ktCUDA, we show that state-of-the-art performance

can be achieved for unsupervised domain transfer on several

test datasets.

The main contributions of this paper are:

• ktCUDA, a novel k-reciprocal tracklet clustering algo-

rithm for obtaining unsupervised pseudo-labels on the

target domain.

• SHRED, a synthesized large-scale heterogeneous

source domain that captures a wide set of environmen-

tal variations.

• A comprehensive analysis using both image and video

datasets to show the performance of the proposed

ktCUDA and SHRED, with full experimental results

for direct transfer of knowledge from source domain

to target domain as well as experimental results after

domain adaptation.

2. Related Works

Unsupervised domain adaptation can take the form of

environmental style (such as illumination) transfer between

source and target domains [2, 61, 60] or iterative cluster-

ing and training based on distance metric transfer (typically

Euclidean distance) [11, 31, 49] between source and target

domain. Our approach is an iterative clustering approach

similar to [11, 31, 49]. However, unlike [11, 49], which uses

distance metric directly for clustering, we use k-reciprocal

neighbours. The concept of using k-reciprocal neighbours

in clustering for domain adaptation has been used in [31].

But in [31], k-reciprocal neighbours are used to threshold

potential cluster candidates then Euclidean distance is used

during clustering. On the contrary, the proposed ktCUDA

approach leverages k-reciprocal neighbour distance to per-

form spectral clustering without the reliance on distance

metric during clustering.

3. Methodology

A common approach to unsupervised domain adaptation

for person re-ID is to predict pseudo-labels for the unla-

belled target domain using a deep convolutional neural net-

work (DCNN) trained on the source domain and then fine-
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Figure 2. Overview of the proposed k-reciprocal tracklet Clustering for Unsupervised Domain Adaptation (ktCUDA) in person re-ID.

Given the proposed Synthesized Heterogeneous RE-id Domain (SHRED) as source domain, a ResNet-50 model with fully connected and

embedding layers (DCNN) is trained with triplet loss. Once trained, the weights are used to initialize an iterative training on an unlabelled

target domain. (a) DCNN is used to embed target domain tracklets to an embedding space. (b) Tracklet embeddings are used to form a

directed graph, with each node representing a tracklet and each weighted connection representing how much the two tracklets belong to

the same cluster. (c) The directed graph is then thresholded based on weight to form clusters. (d) Tracklet images in each cluster formed in

(c) are used to fine-tune the DCNN. This process (a)–(d) is repeated for I iterations.

tune the DCNN for the target domain using the pseudo-

labels [11, 49]. Typically, pseudo-labels are obtained by

clustering [11, 49] using distance metrics on the samples in

the target domain. Two problems with existing clustering

based approaches [11, 49] are:

• The heavy reliance on distance metrics [11, 31] in

the target domain using an embedding learned for the

source domain. This results in poor clusters due to en-

vironmental differences between source and target do-

mains making distance metrics unreliable between the

domains.

• The use of a source domain with low environmental

variability [27, 42, 49] or the reliance on synthetic en-

vironmental variability [2] result in a poor initial em-

bedding for clustering.

We discuss our ktCUDA approach to overcome the

strong reliance on distance metrics in Section 3.1, and our

SHRED approach to obtain the best source domain in Sec-

tion 3.2.

3.1. Iterative Domain Adaptation

Motivated to overcome the limitation of strong reliance

on distance metrics in existing approaches [11, 49], we in-

troduce a novel k-reciprocal tracklet Clustering for Unsu-

pervised Domain Adaptation (ktCUDA). It has been shown

in previous literature that leveraging k-reciprocal nearest

neighbours to re-rank person re-ID search results, instead

of the raw distances ranking, can result in a ∼ 10% boost

in performance [58, 57, 26]. Based on this observation,

the proposed ktCUDA approach leverages the k value in k-

reciprocal nearest neighbours as the cost for joining track-

lets into one cluster. This results in more accurate and ro-

bust clusters than using the raw distance between the two

tracklets for the same reasons that re-ranking results in bet-

ter person re-ID performance.

Our ktCUDA approach is illustrated in Fig. 2. We itera-

tively fine-tune a DCNN on the unlabelled target domain by

automatically obtaining labels using ktCUDA. More specif-

ically, the following strategy was taken:

1. Transform the target domain tracklets to the embed-

2647



ding space using the DCNN (Fig. 2(a))

2. Cluster the tracklets using our k-reciprocal tracklet

clustering approach (Fig. 2(b-c))

3. Use the clusters as the unsupervised labels for the

tracklets and fine-tune our DCNN (Fig. 2(d))

4. Repeat steps 1 to 3 for I iterations

3.1.1 k-Reciprocal Tracklet Clustering

A tracklet is a short sequence of a tracked person in the

video. Following findings of [51], we represent the track-

let by the average embedding vector of the person bounding

box on each frame of the tracklet. When we refer to a track-

let, we will be referring to the average embedding vector.

The embedding is obtained by a DCNN; in our case, it is

the same model as used in [18] – a ResNet-50 model with

two additional fully connected layers as illustrated in Fig. 2.

The unlabelled target domain

S = {S1, . . . , Sc, . . . , SN}

is the set of all tracklet Sc from N cameras in the target

domain and

Sc = {sc
1
, . . . , sct , . . . , s

c
n}

is the set of n tracklet from camera c and sct is the tth tracklet

from camera c.

Given S, the goal is to find clusters (i.e. subsets of S)

that represent a unique individual across multiple camera

views. Two tracklets sct and s
j
i with a small Euclidean dis-

tance ||sct−s
j
i || will tend to be the same person if the DCNN

was trained on the target domain using triplet loss. In this

case, the DCNN was not trained on the target domain.

A stronger argument is that if sct and s
j
i are k-reciprocal

neighbours of each other (for a small k value) then the two

tracklets will represent the same unique person [36]. Lever-

aging the idea of k-reciprocal nearest neighbours, we define

a directed graph G where the weighted edges E represent

k-reciprocal distance, the cost of assigning two tracklets to

the same cluster. Clusters can then be formed on G to select

tracklets representing a unique person.

Graph Construction – We define the k1−nearest neigh-

bours (i.e. the top-k1 list) of sct as the closest tracklets in

the target domain S excluding tracklets from camera c (i.e.

cross-camera closest tracklets using Euclidean distance):

top(k1, s
c
t) ∈ S \ Sc (1)

Using (1), we construct a directed graph G = {V, E}
where vertices (V) of the directed graph are representa-

tive of all the tracklets in the target domain: sct ∈ S (i.e.

V = S). Directed graph edges e(sct , s
j
i ) ∈ E are created

from vertex sct to all s
j
i ∈ top(k1, s

c
t). That is, we have

k1 directed edges starting from node sct to its k1−nearest

neighbours (Fig. 2(a) illustrates a graph where k1 = 1).

Each edge e(sct , s
j
i ) is given a weight, which we define as

k-reciprocal distance:

e(sct , s
j
i ) = k = argmin

k
sct ∈ top(k, sji ). (2)

In other words, we define e(sct , s
j
i ), the distance between

sct and s
j
i , as the minimum k at which sct and s

j
i are

k−reciprocal neighbours of each other. For example if s
j
i

is the 1−nearest neighbour of sct and sct is the 5−nearest

neighbour of s
j
i then e(sct , s

j
i ) = 5.

Graph Clustering – Given the graph G we form a new

graph G′ by cutting edge connections using threshold K:

e(sct , s
j
i ) =

{

e(sct , s
j
i ) if e(sct , s

j
i ) ≤ K

∅ if e(sct , s
j
i ) > K

(3)

where e(sct , s
j
i ) = ∅ means the connection between sct and

s
j
i has been removed (Fig. 2(b) illustrates the graph G and

Fig. 2(c) illustrates the corresponding sparse graph G′).

Due to these removal of connections, graph G′ is a

sparsely connected graph with a set of connected subgraphs

g′ ⊂ G′. We define the cardinality of the connected sub-

graph g′ as:

|g′| = number of vertices in g′ (4)

From the sparse graph G′ we create a valid cluster set

C as the set of connected subgraphs with number of nodes

(a.k.a tracklets) greater than T :

C = {g′i=0,...,m} ∀ g′i ∈ G′ (5)

|g′i| > T − 0.4

3.1.2 DCNN Fine-Tuning

All images in the tracklets of a single cluster (i.e. subgraph

g′) from the cluster set (5) are used as a unique class for

the DCNN fine-tuning (Fig. 2(d)). During fine-tuning, all

the layers of DCNN are re-trained with unsupervised clus-

ter data using batch hard triplet loss as per [18]. For re-

training, the weights from the previous iteration of domain

adaptation are used as initialization.

3.2. Large­scale Heterogeneous Environment Syn­
thesis

While the iterative process described in Section 3.1 al-

lows us to adapt a DCNN to a target domain, we still need

initial DCNN weights to start with. Typically, an initial

DCNN is trained on an independent source domain. The

source domain can either be a single independent dataset

[27, 42, 38, 13, 60], a synthetic dataset [2], or a combina-

tion of few independent datasets [49, 2, 34].
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Table 1. Composition of proposed SHRED source domain variants

Dataset
SHRED

1

SHRED

2

SHRED

3
# IDs # Images # Cameras

3DPeS [3] X X X 164 951 8

Airport [22] X X X 1381 8660 6

CUHK02 [28] X X X 1816 7264 10

CUHK03 [30] X X 1467 14097 10

DukeMTMC-reID [56] X X 1404 32948 8

End-to-End [44] X X X 11934 34574 N/A

GRID [32] X X X 250 500 8

iLIDS-VID [41] X X X 300 42459 2

MSMT17 [42] X X X 3060 126142 15

VIPeR [17] X X X 632 1264 2

Market-1501* [52] X X 1501 32668 6

SHRED 1 is used to test on Market-1501, MARS and PRID datasets (22,408 IDs)

SHRED 2 is used to test on DukeMTMC-reID dataset (22,505 IDs)

SHRED 3 is used to test on CUHK03 dataset (22,442 IDS)

An important consideration to keep in mind when con-

sidering adaptation from source domain to target domain is

that we need embedding learned on the source domain to

be as invariant as possible to environmental conditions such

as lighting, background, etc. As such using a single inde-

pendent environment [27, 42, 38, 13, 60] in the source do-

main is not ideal because network thus obtained will be too

specific to the source domain. The use of synthetic source

domain [2] can achieve invariance but only to the variables

introduced in the generation of the synthetic data. Ideally,

we would want the source domain to be created with data

from many different actual environments as possible. With

the nearly 30 different source domains that has been used

since 2007 for person re-ID research [1], it is possible to

construct a source domain that has a wide variety of envi-

ronmental variations.

Motivated to capture a wide of a set of environmen-

tal variations as possible, we construct a Synthesized Het-

erogeneous RE-id Domain (SHRED) from existing re-ID

source domains under the following constraints:

• We avoid the use of source domains that have overlaps

to ensure no one individual takes on two identities in

the source domain. Some examples of source domains

with overlap include CUHK02 [28]– CUHK01 [29],

DukeMTMC-reID [56]– DukeMTMC4ReID [16] and

Market-1501 [52]– MARS [51].

• We avoid any gait domains such as [54] in our SHRED

source domain because they are staged in a studio en-

vironment with uniform background.

• We avoid source domains with less than or equal to

200 identities because they will be dwarfed by the

larger source domains. Such small source domains in-

clude: Shinpuhkan [23], RAiD [8], V47 [40], HDA

Person [12], WARD [35], CAVIAR4ReID [7], MPR

Drone [25], RPIfield [53], PKU-Reid [33], QMUL

iLIDS [55], SAIVT-SoftBio [4], ETH 1,2,3 [37].

• For each selected source domain, we combine data

from training, validation and testing to ensure we have

the largest possible variation in the source domain.

• For each source domain, we eliminate any individuals

who doesn’t appear in more than one camera as we

want to ensure that the embedding learned from the

source domain is for cross-camera comparison.

Based on the above constraints we are left with 12 source

domains: 3DPeS [3], iLIDS-VID [41], VIPeR [17], PRID

2011 [19], GRID [32], CUHK03 [30], Market-1501 [52],

DukeMTMC-reID [56], CUHK02 [28], MSMT17 [42],

Airport [22], and End-to-End Deep Learning for Person

Search [44]. Of the 12 source domains, Market-1501 is a

common source domain used for testing and it also overlaps

with MARS video source domain which is another common

source domain used for testing. As such, we leave Market-

1501 out of the proposed SHRED to allow for testing on

a large video and image datasets. Finally, PRID 2011 was

excluded from our SHRED source domain because it only

has 200 individuals appearing in multiple camera views.

The resulting SHRED 1 source domain contains a het-

erogeneous mix of 10 different domains, with the details of

the domain makeup shown in Table 1. As stated in our se-

lection constraints, the number of images used will be less

than that originally reported for the respective domains be-

cause distractor identities or identities that don’t appear in

multiple cameras are removed in pre-processing.

Note that our proposed SHRED source domain contains

DukeMTMC-reID and CUHK03. When we report results

for DukeMTMC-reID, we remove it from our source do-

main and replace it with Market-1501 (i.e. SHRED 2 from

Table 1). Similarly, when reporting results for CUHK03,

we remove it and replace it with Market-1501 (i.e. SHRED

3 from Table 1).

4. Experiment Setup

The efficacy of leveraging the proposed ktCUDA and

SHRED is investigated through a series of experiments

across different image and video benchmark datasets. The

experimental setup in this paper is described below.

Datasets – We leverage three image datasets – Market-

1501, CUHK03 and DukeMTMC-reID – to evaluate the

proposed domain adaptation approach in a single-shot re-

trieval setting. In addition, we also use two video datasets –

MARS and PRID – to evaluate the proposed approach in a

multi-shot setting. When testing on Market-1501, MARS,

and PRID, the source domain consists of SHRED 1 (Ta-

ble 1). When testing on CUHK03, the source domain con-

sists of SHRED 3 (Table 1). When testing on DukeMTMC-

reID, the source domain consists of SHRED 2 (Table 1).

1List of images in SHRED 1, 2, 3 as well as the DCNN weights trained

on SHRED 1, 2, and 3 will be released.
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Table 2. Direct transfer (SHRED) and unsupervised domain adaptation (SHRED+ktCUDA) performance on benchmark re-ID datasets

compared to published methods. 1st/2nd/3rd best results are in red/blue/cyan. Multisource domain method in magenta.

Methods

Market

-1501
[52] MARS[51] CUHK03[30]

Duke

MTMC-reID
[56] PRID[19] Avg.

R1 mAP R1 mAP R1 mAP R1 mAP R1 R5 R20 R1 mAP*

AML[47] 44.7 18.4 - - 31.4 - - - - - - - -

PTGAN [42] 38.6 - - - 24.8 - 27.4 - - - - - -

PUL [11] 44.7 20.1 - - - - 30.4 16.4 - - - - -

SPGAN+LMP [10] 58.1 26.9 - - - - 46.4 26.2 - - - - -

TJ-AIDL [39] 58.2 26.5 - - - - 44.3 23.0 - - - - -

HHL [60] 62.2 31.4 - - - - 46.9 27.2 - - - - -

TFusion [60] 60.8 - - - - - - - - - - - -

UnKISS [24] - - 22.3 10.6 - - - - 58.1 81.9 96.0 - -

SMP [31] - - 23.9 10.5 - - - - - 80.9 95.6 99.4 - -

DGM+MLAPG [46] - - 24.6 11.8 - - - - 73.1 92.5 99.0 - -

DGM+IDE [46] - - 36.8 21.3 - - - - 56.4 81.3 96.4 - -

RACE [48] - - 43.2 24.5 - - - - 50.6 79.4 91.8 - -

DAL [6] - - 46.8 21.4 - - - - 85.3 97.0 99.6 - -

TAUDL [27] 63.7 41.2 43.8 29.1 44.7 31.2 61.7 43.5 49.4 78.7 98.9 52.7 36.3

JSTL[43] 44.7 18.4 - - 33.2 - - - - - - - -

CAMEL [49] 54.5 26.3 - - 39.4 - - - - - - - -

SyRI [2] 65.7 - - - - - - - 43.0 - - - -

SHRED 53.9 32.4 53.3 33.6 28.5 26.1 40.9 24.5 76.4 94.4 98.9 50.6 29.2

SHRED+ktCUDA 68.6 49.4 57.2 36.0 44.4 41.6 58.7 40.9 84.3 96.6 98.9 62.6 42.0

GCS [5](Sup.) 93.5 81.6 - - 88.8 97.2 84.9 69.5 - - - - -

HDLF [50](Sup.) - - 86.4 79.3 - - - - 95.7 99.1 - - -

* PRID is excluded from average mAP because mAP is not a standard used to evaluate PRID [19].

Table 3. Direct transfer (SHRED) and unsupervised domain adaptation (SHRED+ktCUDA) re-ranked (rr) [59] results.

Methods
Market-1501[52] MARS[51] CUHK03[30] DukeMTMC-reID[56]

R1rr mAPrr R1rr mAPrr R1rr mAPrr R1rr mAPrr

SHRED 57.4 43.7 MSMT1753.4 41.1 37.6 37.7 47.0 38.0

SHRED + ktCUDA 71.3 60.5 58.6 45.4 49.0 51.3 63.5 55.1

In [27, 31] for Market-1501, all images of an individual

per camera are treated as a single tracklet and for MARS,

a single tracklet per individual per camera is manually se-

lected. For our experiments, we use the sequence ID in

the Market-1501 dataset for tracklets, and for MARS we

make no manual selection. As such, we have a harder and

more realistic scenario of multiple tracklets of individuals

per camera.

For all datasets, we follow the same test gallery-query

split as in [27]. All evaluation are done using the evalua-

tion code provided with the datasets. For datasets without

evaluation code, Market-1501 evaluation code was used.

Implementation Detail – Three parameters of our k-

reciprocal tracklet Clustering for Unsupervised Domain

Adaptation (ktCUDA) algorithm are: i) the number of do-

main adaptation iteration I , ii) the k−reciprocal distance

threshold K (3), and iii) the subgraph cardinality threshold

T (5). For all our experiments, we do at-least I = 2 round

of adaptation and only go above if the performance in-

creases in the next round. We do early stopping only if num-

ber of cluster exceeds a soft upper bound on expected num-

ber unique individuals of 850. As the largest of the datasets

contain around 700-750 identities, we number larger than

that was chosen and hence 850 was picked. For deciding

the values for K and T , we chose the minimum number

of cameras and cardinality that makes the domain iteration

viable. Therefore, for datasets (Market-1501,MARS, and

DukeMTMC-reID) with camera networks larger than two

(that is an individual could potentially appear in more than 2

cameras), we set K = 2 and T = 2. For datasets (CUHK03

and PRID) with two camera network, we set K = 1 and

T = 1 because we can’t expect clusters larger than two

since only two cameras exist in the network.

Network Architecture – All experiments were performed

using the modified ResNet-50 network introduced in [18],

which has an additional 1024 dimensional fully connected

layer and a 128 dimensional embedding layer (see Fig. 2).

Training – Training on the source domain is initialized with

pre-trained ImageNet [9] weights. Domain adaptation is

initialized with weights trained on the source domain.

We keep the same training parameters provided by [18]

with the exception of the number of iteration. We vary this

based on our training data. For the source domain where

we have much larger number of data due to the combina-

tion of several dataset, we set the number of iterations to

50, 000. For domain adaptation we use 25, 000 iteration for

all datasets except PRID where we use 6, 000 iteration since

it has far fewer images.

5. Results and Discussion

To compare the proposed ktCUDA and SHRED, we use

the common Cumulative Matching Characteristic (CMC)

and mean Average Precision (mAP) metrics. We evalu-

ate against the state-of-the-art methods for domain adaption

(where unlabelled target domain is used for training) and

direct transfer (where target domain data is not used at all).
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Table 4. Comparison of SHRED direct transfer results with state-

of-the-art unsupervised direct transfer methods on Market-1501.

1
st/2nd/3rd best results are in red/blue/cyan. Multisource domain

method in magenta.
Methods Source Domain R1 mAP

TFusion[20] GRID 20.7 -

TFusion[20] VIPeR 24.7 -

TFusion[20] CUHK01 29.4 -

PTGAN[42] CUHK03 27.8 -

HHL[60] CUHK03 42.2 20.3

PTGAN[42] DukeMTMC-reID 33.5 -

HHL[60] DukeMTMC-reID 44.6 20.6

T&P[38] DukeMTMC-reID 46.8 19.1

One-Shot[14] DukeMTMC-reID 50.6 23.7

TJAIDL[39] DukeMTMC-reID 57.1 26.2

SyRI[2]
CUHK03 +

DukeMTMC-reID
44.7 -

SyRI[2]
CUHK03 +

DukeMTMC-reID+SyRI
54.3 -

ktCUDA SHRED 53.9 32.4

Table 5. Domain adaptation (ktCUDA) and direct transfer

(SHRED) comparison for Market-1501. 1st/2nd/3rd best results are

in red/blue/cyan.Multisource domain method in magenta.

Methods
Source

Domain

Direct Transfer Domain Adapt.

R1 mAP R1 mAP

HHL[60] CUHK03 42.2 20.3 56.8 29.8

PTGAN[42] CUHK03 – – 27.8 –

ktCUDA CUHK03 33.5 15.5 57.5 35.2

PTGAN[42] DukeMTMC-reID 33.5 - 38.6 -

SPGAN+LMP[10] DukeMTMC-reID 43.1 17.0 58.1 26.9

HHL[60] DukeMTMC-reID 44.6 20.6 62.2 31.4

TJAIDL[39] DukeMTMC-reID 57.1 26.2 58.2 26.5

ktCUDA DukeMTMC-reID 40.3 17.6 56.0 32.6

TAUDL[27]* None - - 63.7 41.2

CAMEL 7set* 41.4 14.1 54.5 26.3

SyRI
CUHK03+

DukeMTMC-reID+SyRI
44.7 – 65.7 –

ktCUDA SHRED 53.9 32.4 68.6 49.4

7set*: VIPeR, CUHK01, CUHK03, PRID, 3DPeS, i-LIDS and Shinpuhkan.

5.1. Domain Adaptation

The result of the proposed k-reciprocal tracklet Clus-

tering for Unsupervised Domain Adaptation (ktCUDA) al-

gorithm can be found in Table 2 (indicated as SHRED +

ktCUDA) with comparison to existing state-of-the-art ap-

proaches. It can be clearly observed that the proposed

ktCUDA approach is the state-of-the art method for Market-

1501 (+8.2 mAP), MARS (+6.9 mAP) and CUHK03 (+10.4

mAP) datasets based on mAP amongst the tested meth-

ods. We also get competitive performance to state-of-the-art

methods on DukeMTMC-reID and PRID datasets.

In Table 2, we present the average rank-1 (R1) and mean

average precision (mAP) across all five test datasets as sum-

mary metrics. Based on the average performance, ktCUDA

is +9.9 R1 and +5.7 mAP better the current state-of-the-art.

Finally, the efficacy of ktCUDA is shown by the observa-

tion that it is the only method that is consistently ranked as

the best or competitive second best method on all five test

datasets.

For the sake of completeness, we also present the re-

ranked [59] results in Table 3.

Comparison to multi-source domain methods – While

the general performance of SHRED+ktCUDA is consis-

tently in the top two across all test sets it is worth look-

ing at its performance relative to other multi-source do-

main methods (highlighted in magenta in Table 2). Compar-

ing to CAMEL, SHRED+ktCUDA uses 10 datasets versus

CAMEL which uses 7 datasets and SHRED+ktCUDA out-

performs CAMEL method. However, SHRED+ktCUDA

has ∼ 250k images in the source domain compared to

CAMEL’s ∼ 45k images. Comparing to SyRI, which uses

more than 1.6 million synthetic images and ∼ 45k real

world images, SHRED+ktCUDA still out performs SyRI,

thus motivating the need for real-world diverse images over

synthetic images.

5.2. Direct Transfer (SHRED without ktCUDA)

It can be observed that the proposed SHRED source do-

main is quite effective across all test datasets as seen in Ta-

ble 2 (indicated as SHRED). In particular, the performance

on MARS dataset stands out. For MARS, our direct trans-

fer results are +4.5 mAP better than state-of-the-art domain

transfer methods, even when these methods use unlabelled

MARS data in the training.

A comparison of the proposed SHRED source domain

for direct transfer with domain transfer methods on the

Market-1501 dataset based on previously published results

in literature can be found in Table 4. As expected, we can

see the proposed SHRED source domain outperforms exist-

ing source domains on mAP by a large margin.

Considering synthetic dataset augmentation (SyRI [2])

results in Table 4, we observe that its Rank-1 result is

slightly higher than the proposed SHRED source domain.

Unfortunately this analysis is not conclusive without mAP.

However, [2] also report Rank-1 result for single-shot re-

ID on PRID dataset as 15%. Our direct transfer for PRID

single-shot re-ID gets a rank-1 accuracy of 22%. Therefore,

while synthetic data augmentation is good for giving some

variability, real data from multiple sources is ultimately bet-

ter.

5.3. Domain adaptation boost

For the three best source domain direct transfer results

in Table 4, TJ-AIDL [39], SyRI [2] and the proposed

ktCUDA, we look at the improvement achieved by do-

main transfer over the direct transfer results in Table 5.

From Table 5 we observe, of the methods with best di-

rect transfer results, the proposed method has best domain

adaptation boost for mAP. Of particular importance is the

SyRI method which uses a much larger source domain

than SHRED+ktCUDA and has similar direct transfer ac-

curacy as SHRED+ktCUDA. From the same starting point,

SHRED+ktCUDA was able to achieve higher Rank-1 result

than SyRI showing that ktCUDA is very effective strategy

for domain adaption.
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Figure 3. Different types of clusters arising from the proposed

ktCUDA algorithm - (a) Good cluster (GC): A cluster containing

single individual who does not appear in any other clusters, (b)

Mixed cluster (MC): a cluster with two or more different individu-

als and (c) Divided clusters (DC): an individual is split across two

or more different clusters. Best viewed in color.

This shows that while a heterogeneous source domain is

very effective at giving a good initialization, the proposed

ktCUDA is also well-suited for adapting to a new domain.

We test our proposed ktCUDA approach with

DukeMTMC-reID as the source domain and Market-

1501 as the target domain as well in Table 5. This tests how

well ktCUDA works for domain adaptation without using

our proposed SHRED as the source domain. We can see

that the proposed ktCUDA approach outperforms existing

domain adaptation methods that use DukeMTMC-reID

as the source domain. Furthermore, when combined

with SHRED the proposed ktCUDA approach can get a

significant boost over existing state-of-the-art methods.

5.4. k­Reciprocal Tracklet Clusters

To further evaluate ktCUDA, we take a closer look at our

k-reciprocal tracklet clustering. We note that k-reciprocal

clustering results in three main types of clusters: Good

Clusters (GC) containing only a single individual who does

not appear in any other clusters, mixed clusters (MC) where

multiple different individuals are in a single cluster and di-

vided clusters (DC) where a single individual appears in

multiple clusters. An example of the three types of clus-

ters are shown in Fig. 3 (a)-(c). (Note there is also a third

error type which is a mix of MC and DC.)

Interestingly, of the two types of errors –mixed clus-

ters and divided clusters– we find that the presence of di-

vided clusters doesn’t negatively impact triplet loss fine-

tuning. If we plot the distance between divided clusters

(a.k.a. intra person) and distance between clusters with

Figure 4. Separation of clusters with same vs different individuals.

Distance between clusters with same individuals (divided clusters

Fig. 3) shown as Intra person and distance between clusters with

different individuals shown as Inter person. Plots shown before

triplet loss fine-tuning (left) and after fine-tuning (right). During

fine-tuning it can be seen that the Inter person clusters are pushed

further away than Intra person clusters.

different individuals (a.k.a. inter person) before and after

fine-tuning (Fig. 4), we see both distances increase but the

inter person distances increases more than intra person dis-

tance. Meaning even with the presence of divided clusters,

the triplet loss is able to separate different individuals be-

cause triplet loss is not directly forcing different individuals

closer. However, mixed clusters do present a problem as

that will force different individuals closer.

6. Conclusion

In this work, we presented new strategies for unsuper-

vised person re-ID using unlabelled data from a target do-

main. Our method addressed the two main limitations

of the current domain adaptation approaches: first, using

source domain distance metrics for pseudo-labelling in tar-

get domain and second, relying heavily on limited source

domain data. The two problems were addressed by the

proposed k-reciprocal tracklet Clustering for Unsupervised

Domain Adaptation (ktCUDA) method and the proposed

comprehensive Synthesized Heterogeneous RE-id Domain

(SHRED), respectively. Addressing these issues allowed

the presented ktCUDA method to become more scalable for

real-world applications. Extensive evaluation was done on

image and video person re-ID benchmark datasets to vali-

date the effectiveness of the proposed ktCUDA in outper-

forming other state-of-the art unsupervised domain adapta-

tion methods in person re-ID.
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