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Abstract

This paper addresses the problem of determining dense

pixel correspondences between two images and its appli-

cation to geometric correspondence verification in image

retrieval. The main contribution is a geometric correspon-

dence verification approach for re-ranking a shortlist of

retrieved database images based on their dense pair-wise

matching with the query image at a pixel level. We de-

termine a set of cyclically consistent dense pixel matches

between the pair of images and evaluate local similarity

of matched pixels using neural network based image de-

scriptors. Final re-ranking is based on a novel similar-

ity function, which fuses the local similarity metric with a

global similarity metric and a geometric consistency mea-

sure computed for the matched pixels. For dense match-

ing our approach utilizes a modified version of a recently

proposed dense geometric correspondence network (DGC-

Net), which we also improve by optimizing the architec-

ture. The proposed model and similarity metric compare

favourably to the state-of-the-art image retrieval methods.

In addition, we apply our method to the problem of long-

term visual localization demonstrating promising results

and generalization across datasets.

1. Introduction

Image retrieval is a well studied problem in the field

of computer vision and robotics with applications in place

recognition [5, 12, 36], localization [20, 36, 41], au-

tonomous driving [24], and virtual reality [27] among many

others. Given a query image, the image retrieval pipeline re-

turns a ranked list of database images according to its mea-

sure of relevance to the query image. As raw pixels are

not a good representation, extensive research has gone into

finding discriminative and efficient image representations.

The seminal work of Sivic and Zisserman [39] proposed

Bag-of-Words based image representation using SIFT [21].

Later, more advanced and efficient representations were

proposed in the form of VLAD [17] descriptors and Fisher
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Figure 1: Qualitative results of the proposed method for the

task of image retrieval. The first row is a query taken at

night-time with a mobile phone camera and the last row is

a list of top-4 retrieved database images obtained by our

method. All 4 are correct matches.

vectors [31]. More recently, off-the-shelf [3, 18, 19] and

fine-tuned [1, 11, 28] convolutional neural network (CNN)

representations have demonstrated great success in image

retrieval. The models encode an input image to a global

vector representation which leads to efficient retrieval al-

lowing to use just a dot product as a similarity measure to

obtain relevant database images. Once fine-tuned on auxil-

iary datasets with similar distribution as the target one, those

methods have achieved state-of-the-art image retrieval per-

formance [1, 11, 28]. However, the main limitation of such

fine-tuned CNN representations are their generalization ca-

pabilities which is crucial in the context of city-scale lo-

calization where the database images can be quite similar

in structure and appearance. Moreover, variations in illu-

mination (e.g. night time queries) or occlusion can signifi-

cantly affect the encoded global representations degrading

retrieval performance due to lack of spatial information.

In this paper we leverage the advances of spatial geom-

2521



etry to obtain better ranking of the database images. To

this end, we revisit the geometric verification problem in the

context of image retrieval. That is, given an initial ranked

list, L of database images returned by a CNN model (e.g.

NetVLAD), we seek to re-rank a shortlist L′ ∈ L of im-

ages by using dense pixel correspondences [26] which are

verified by the proposed similarity functions. Previously,

DGC-Net [26] has been successfully applied only to posi-

tive image pairs i.e. pairs with overlapping field of view. In

this work we extend its applicability to verify positive and

negative image pairs in the framework of geometric verifi-

cation. That is, we demonstrate how dense pixel correspon-

dence methods such as DGC-Net can be used to improve

image retrieval by geometric verification.

In summary, the contributions of this work are threefold.

First, we improve the baseline DGC-Net by constraining the

matching layer to be locally and globally consistent. Sec-

ond, we replace multiple decoders of the original DGC-Net

architecture by the proposed universal decoder, which can

be shared for feature maps in different layers of the feature

pyramid of DGC-Net. Third, we formulate two similarity

functions, which first rank the shortlisted database images

based on structural similarity and then re-rank them using

appearance based similarity.

2. Related work

This work is closely related to image retrieval and image

matching tasks. We provide a brief overview of existing

approaches below.

Image retrieval methods can be broadly categorized into

two categories: local descriptors [7, 15, 16, 22, 39] and

global representations [1, 11, 28]. The approaches of the

first category are based on either hand-engineered features

such as SIFT [21] or learnt CNNs descriptors on the task of

local image patch matching [25, 43]. Similarly, global rep-

resentations methods can be further categorized into tradi-

tional hand-designed descriptors such as VLAD [17], Fisher

Vectors [31], Bag-of-Words [39] and CNN based methods

[1, 3, 11, 28]. Babenko et al. [3] demonstrate that the per-

formance of off-the-shelf CNN models pre-trained on Ima-

geNet [8] fall behind traditional local descriptors. However,

when trained on an auxiliary dataset, the performance im-

proves over such hand-engineered descriptors [1, 11, 28].

In addition to the standard retrieval approaches, there are

several methods that attempt to explain the similarity be-

tween the query and top ranked database images using a

geometric model [6, 23, 41]. The geometric model is esti-

mated by fitting a simple transformation model (e.g. planar

homography) to the correspondence set obtained using lo-

cal descriptors such as SIFT, or off-the-shelf CNN descrip-

tors [41]. In this work, we also use pre-trained CNN de-

scriptors. However, in contrast to [41] which uses exhaus-

tive nearest-neighbor search in descriptor space, we model

the similarity using a learnt convolutional decoder. More-

over, [41] only uses coarse correspondence estimate, while

our similarity decoder allows fine high resolution pixel level

correspondence estimation. This is particularly important in

city scale localization due to subtle differences in an over-

all similar architectural style observed in this scenario (c.f .

Fig. 7).

Image matching. This task relates to the optical flow es-

timation problem. Recently proposed optical flow meth-

ods [14, 40] utilize a local correlation layer that performs

spatially constrained matching in a coarse-to-fine manner.

DGC-Net [26] extends this process of learning iterative re-

finement of pixel correspondences using a global correla-

tion layer to handle wide viewpoint changes in the task of

instance matching. Such a global correlation layer for in-

stance matching has been used to estimate geometric trans-

formations [29]. Melekhov et al. [26] demonstrate that such

a method falls behind dense correspondence approaches

due to the constrained range of transformations estimated

by [29]. Recently, Rocco et al. [30] propose locally and

globally constrained matching network on top of the global

correlation layer which leads to improvement in instance

and semantic matching. However, such a global correlation

layer can only provide coarse correspondence estimates.

3. Method overview

Our contributions are related to the two last stages of the

following three-stage image retrieval pipeline: 1) Given a

query image, we retrieve a shortlist of relevant database im-

ages using a fast and scalable retrieval method based on rep-

resenting images with a descriptor vector; 2) We perform

dense pixel matching between the query and each short-

listed database image in a pairwise manner using a corre-

spondence estimation network; 3) We determine a set of

cyclically consistent dense pixel matches for each image

pair and use them to compute a similarity metric, which

provides the final re-ranking of the shortlist.

The particular architecture of the aforementioned re-

trieval pipeline used in this work is illustrated in Fig. 2. That

is, we use NetVLAD [1] for the first stage, our own modi-

fied version of DGC-Net [26] for the second stage, and the

proposed approach with a novel similarity metric for the

third stage. Here NetVLAD is used for retrieval, but also

other global image level descriptors could be used instead.

Our contributions related to stages 2) and 3) above are

described in the following sections. The geometric verifica-

tion method is presented in Section 4 and our modifications

to the DGC-Net architecture are described in Section 5.

4. Geometric verification

Dense pixel correspondences produced by [26] do not

take into account the underlying model explaining the 3D

structure of the scene by the image pair. RANSAC [10]
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Figure 2: Overview of the proposed pipeline. Given a query image, we first rank the database images based on global

similarity (e.g. using NetVLAD). In the next stage dense pixel correspondences are computed between the query and top N
ranked database images. These correspondences are then verified by the proposed similarity functions utilizing geometry and

CNN based image descriptors to re-rank database images according to the input query. See Sec. 4 and 5 for more details.

has been a popular method of choice to find the set of in-

liers from the whole correspondence set. However, dense

pixel correspondences predicted by CNNs [26] are locally

smooth due to the shared convolutional filters at different

layers. As a result, RANSAC usually finds a large set of

inliers even for non-matching image pairs. We propose two

methods to eliminate these limitations in the following sec-

tions. That is, given an initial ranked shortlist L of database

images based on global representation similarity with the

query image, we re-rank a new shortlist L′ ⊆ L through a

series of geometric verification steps (Sec. 4.1 and 4.2).

4.1. Cyclically consistent geometry

We propose a similarity cost function, S that combines

RANSAC based geometric model estimation with cyclic

consistency. Given a dense pixel correspondence map, O ∈
R

H×W×2, RANSAC outputs a set of inliers, I ⊆ O w.r.t.

to a transformation model (e.g. planar homography). We

then estimate the subset of inliers that are cyclically consis-

tent, C ⊆ I using forward and backward correspondence

maps predicted by our network (i.e. OA and OB). The

cyclically consistent matches are those matches for which

the combined mapping OA◦OB is close to an identity map-

ping. For geometrically dissimilar images, cyclic consis-

tency constraint further constrains the number of inliers as

the assumption here is that transformation model obtained

by RANSAC may be inconsistent in forward and backward

directions. We define this similarity function as follows

S =
|C|

|I|
· exp

(

−
β

|C|

)

, (1)

where β is a constant. As |C|/|I| is a ratio, the exponential

term is added to down-weight the similarity cost for image

pairs which have less cyclically consistent correspondences

in the inlier set. As β must be greater than |C|, we set it to

240x240 which is the maximum value of |C| as our dense

correspondence network (Sec. 5) operates on fixed size im-

ages of resolution 240x240. The similarity is computed in

both directions, SA, SB and the final similarity is the max-

imum of the two values, S = max(SA, SB). The shortlist

L is re-ranked using S resulting in the new shortlist L̂.

4.2. Global and local similarity

Using the geometry based similarity function S to re-

rank the shortlist typically improves retrieval accuracy, but

the retrieved list may still contain outliers as the global and

local appearance similarity is not directly taken into account

while computing S. Hence, the top-ranked database images

in the geometrically verified shortlist L̂ are passed through

a second similarity function based on global and local de-

scriptor similarity. The second similarity function is de-

tailed below and more costly to evaluate, as it requires dense

image feature extraction on high resolution images (e.g.

640x480 or higher) to obtain high resolution feature maps.

On the other hand the dense correspondence estimation in

Eq. 1 is performed on lower resolution images (240x240)

and hence is significantly faster to compute. Therefore we

have a two-stage re-ranking, where the second re-ranking is

done only for a subset of top-ranked images from the first

stage.

To obtain global dissimilarity G we use normalized

global descriptors from a pre-trained network NetVLAD

[1]. The network was originally trained to learn powerful

representations for image retrieval. The Euclidean distance

between the global representations is defined as the global

dissimilarity value G. To compute local similarity, we ex-

tract hypercolumn [13] features from different NetVLAD

layers (see Supplementary), L2 normalize and concatenate

them along channel dimension. The final features are again

L2 normalized resulting in feature maps, F̃A, F̃B , where

F̃ ∈ R
H×W×Z , and (H,W ), Z are the image resolution

and the final descriptor length. The local descriptor similar-

ity SL is then obtained as:

SL =
∑

a

(fa
A · fa

B)m
a (2)

where · denotes inner product, fa
A ∈ wF̃A and fa

B ∈ F̃B

are the hypercolumn NetVLAD features at location a in the
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Figure 3: Overview of the dense pixel correspondence network. Pre-trained VGG-16 network is used to create a multiscale

feature pyramid P of the input image pair. Correlation and neighborhood consensus layers use features from the top level

of P to establish coarse pixel correspondences which are then refined by the proposed unified correspondence map decoder

(UCMD). In contrast to DGC-Net [26] with multiple decoders, UCMD can be applied to each level of the multi-scale feature

pyramid seamlessly leading to smaller memory footprint.

warped source F̃A and target feature map F̃B , and ma ∈ M ,

where M is the mask containing 1s at cyclically consistent

pixels. Thus, Eq. 2 computes the cosine similarity between

normalized warped source and target hypercolumn descrip-

tors at cyclically consistent pixel locations.

The final similarity function between an image pair is a

function of global dissimilarity and local similarities, G and

SL :

SF = log10 (SL · S) · 10−G (3)

Here, local similarity score SL is weighted by the similarity

score S. We use SF to re-rank the top-ranked images in L̂
to get the final shortlist L′ for a given query. The log term

is added as a normalization to balance the local and global

scores. Although there are many possible ways to combine

the local and global scores, we perform an extensive eval-

uation (see Supplementary) and show that the current form

of these equations (1 and 3) achieves the best performance.

5. Pixel correspondence estimation

To obtain dense matching between two images we use

a CNN network based on the architecture of DGC-net pro-

posed by [26]. In this section, we provide two modifications

to DGC-Net leading to more compact but effective model.

5.1. Unified correspondence map decoder

In general, DGC-Net consists of a series of convolu-

tional layers and activation functions as an encoder E with

M layers. An input image pair IA, IB ∈ R
H×W×3 is fed

into the encoder independently to obtain a multi-resolution

feature pyramid, P = {(F l
A, F

l
B)|l = 1, 2, ...M}. Here

F l ∈ R
Hl×Wl×Nl is the feature map at the output of layer l

of the encoder. The encoded feature maps at the top level of

P , (FM
A , FM

B ) are passed through a global correlation layer,

that computes exhaustive pairwise features cosine similar-

ity. The output of correlation layer is then passed through

a decoder D1 that estimates the initial correspondence map

CB0
(in=Nʹ, out=M)

N

W

H

0 1 K

Nʹ

conv. block (CB)
(in, out, ks, s, p, d)bn

conv

ReLU ks - kernel size; s - stride
p - padding; d - dilation

Average (along K)

conv. block (cb1)
conv. block (cb1)

CB1, CB2, CB3

conv
(in=R, out=2)

FB

FA
w

CB0
(in=Nʹ, out=M)

CB0
(in=Nʹ, out=M)

Figure 4: Overview of the unified correspondence map de-

coder (UCMD) Dc. The feature maps of the target FB and

the warped source wFA images have been split into k ten-

sors and then concatenated along the channel dimension.

Further, each tensor is complemented by the correspon-

dence map estimates H × W × 2 (expelled from the fig-

ure for clarity) and then fed into a convolutional block CB0
with N ′ inputs and shared weights. The output feature maps

of CB0 are then averaged and processed by the remaining

layers of the decoder to produce refined pixel correspon-

dence estimates.

O1 at the same resolution as FM . O1 is then iteratively

refined by a series of decoders D = {D2, D3, ...DM} to

obtain the final correspondence grid OM at the same reso-

lution as input images. Each decoder, Dj ∈ D takes in as

input Xj = {Oj−1,
wFM−j+1

A , FM−j+1

B }, where Oj−1 is

the upsampled correspondence map estimated by the previ-

ous decoder Dj−1, wFM−j+1

A and FM−j+1

B are the warped

source and target feature maps at l = M − j + 1. How-

ever, since feature maps at level l of P have various number

of channels, each decoder Dl has different structure which

leads to increased memory costs.

In this work, we propose a unified correspondence map

decoder Dc (UCMD) illustrated in Fig. 4. The unified de-

coder behaves like a recursive refinement function that op-
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erates on feature maps across different layers l of P . More

specifically, we divide the concatenated input feature maps

in Xj into kj non-overlapping components as shown in

Fig. 4. We then propagate each of the kj concatenated com-

ponents Xt
j , t = 1, ..kj through the first convolutional layer

(CB0) of our decoder, Dc. The resulting kj feature maps

at the output of CB0 are subsequently averaged and passed

through the remaining layers to obtain refined correspon-

dence estimates Oj .

The number of inputs of CB0 is N ′ = 2Q+ 2, where Q
specifies the number of channels in feature maps wFA, FB

which are concatenated along the channel dimension. The

additional 2 channels comprise of the upsampled coarser

pixel correspondence map estimate from the previous layer

of P . Therefore, kl is given by Nl/Q where Nl is the di-

mensionality of the feature maps at the current layer l.

Inference. During the testing phase, apart from evaluating

the trained network directly we additionally follow a sec-

ond strategy. We infer the pixel correspondences by feed-

forwarding each Xt
j through the complete decoder Dc re-

sulting in k correspondence map estimates Ok. The process

is applied to each level of the feature pyramid P . The mean

E(Ok) is used as the final pixel correspondence map esti-

mate. This formulation was not used during training as it

did not lead to convergence.

5.2. Match consistency

The global correlation layer only measures the similari-

ties in one direction i.e. from target to source image. How-

ever, many related works in the optical flow have shown that

cyclic consistency allows the network to achieve better per-

formance. In [30], a similar kind of global correlation layer

was applied with cyclic consistency and neighborhood con-

sensus to learn optimal feature correspondence. The idea

is that matches should be consistent both locally and cycli-

cally. That is nearby matches should be locally consistent

and also the matches should be consistent in both forward

and backward direction. Thereby, we integrated the Neigh-

borhood Consensus Network (NCNet) [30] in our network.

In contrast to original DGC-Net, the output of the correla-

tion layer is now passed through NCNet with learnable pa-

rameters before being feed-forwarded through the decoders

DM and Dc to obtain dense pixel correspondences O. We

refer to this network as DGC-NC-UCMD-Net.

6. Experiments

We discuss the experimental settings and evaluate the

proposed method on two closely related tasks, i.e. estab-

lishing dense pixel correspondences between images (im-

age matching) and retrieval-based localization.

Method
Viewpoint ID

I II III IV V

FlowNet2 [14] 5.99 15.55 17.09 22.13 30.68

PWC-Net [40] 4.43 11.44 15.47 20.17 28.30

Rocco [29] 9.59 18.55 21.15 27.83 35.19

DGC-Net [26] 1.55 5.53 8.98 11.66 16.70

DGC-NC-UCMD-Net 1.90 5.02 9.08 10.18 13.24

DGC-NC-UCMD-Net (avg. est.) 1.51 4.46 8.66 9.59 12.62

DGC-NC-Net 1.24 4.25 8.21 9.71 13.35

Table 1: AEPE metric for different viewpoint IDs of the

HPatches dataset (lower is better).

6.1. Image matching

For this task we compare our approach with DGC-

Net [26], which can handle strong geometric transforma-

tions between two views. We use training and validation

splits proposed by [26] to compare both approaches fairly.

More specifically, diverse synthetic transformations (affine,

TPS, and homography) have been applied to Tokyo Time

Machine dataset [1] to generate 20k training samples. Sim-

ilarly to [26], the proposed network has been trained by

minimizing L1 distance between the ground-truth and es-

timated correspondence map Oi at each level of the feature

pyramid P (c.f . Fig. 3). Details of the training procedure

are given in supplementary.

We evaluate our method on HPatches dataset [4] and re-

port the average endpoint error (AEPE) of the predicted

pixel correspondence map. HPatches dataset consists of

several sequences of real images with varying photometric

changes. Each image sequence represents a reference im-

age and 5 corresponding source images taken under a dif-

ferent viewpoint with the estimated ground-truth homogra-

phy H. As predicting a dense pixel correspondence map

is closely related to optical flow estimation, we provide

AEPE for strong optical flow (OF) baseline methods, i.e.

FlowNet2 [14] and PWC-Net [40] respectively.

We calculate AEPE over all image sequences belonging

to the same Viewpoint ID of the HPatches dataset and re-

port the results in Tab. 1. Here, DGC-NC-Net refers to the

original DGC-Net architecture complemented by NC layer

(Sec. 5.2) with a set of independent decoders at each level of

the spatial feature pyramid P . Compared to DGC-Net, this

model can achieve better performance reducing the overall

EPE by 20% for the most extreme viewpoint difference be-

tween the reference and source images (Viewpoint V). Ac-

cording to Tab. 1, DGC-NC-UCMD-Net with one universal

correspondence map decoder (Sec. 5.1) falls slightly behind

of DGC-NC-Net (by 12% in average across all Viewpoint

IDs) but it demonstrates advantages in terms of computation

and memory costs (c.f. Sec. 6.3 and Supplementary). How-

ever, DGC-NC-UCMD-Net performance can be improved

further if, at inference time, rather than averaging k feature

maps produced by the first convolutional block of UCMD
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Figure 5: PCK metric calculated for different Viewpoint IDs of the HPatches dataset. The proposed architectures (DGC-NC-

*) substantially outperform all strong baseline methods with a large margin.

(c.f . Fig. 4) we average predicted pixel correspondence es-

timates for each input k feature map. We refer this model

as DGC-NC-UCMD-Net (avg. est.).

In addition, we report a number of correctly matched

pixels between two images by calculating PCK (Percent-

age of Correct Keypoints) metric with different thresholds.

As shown in Fig. 5, the proposed DGC-NC-* models out-

perform DGC-Net by about 4% and correctly match around

62% pixels for the case where geometric transformations

are the most challenging (Viewpoint V).

6.2. Localization

We study the performance of our pipeline in the context

of image retrieval for image based city-scale localization.

For evaluating the performance of our pipeline, we con-

sider three localization datasets: Tokyo24/7 [42], Aachen

Day-Night [34], and extended CMU-Seasons [34]. For all

the datasets, we follow the same procedure outlined below.

For a given query we first obtain a ranked list of database

images, L based on Euclidean distance between their global

NetVLAD representations, G. The top 100 ranked database

images, L̂ ⊆ L are re-ranked according to their geometric

similarity score based on S. From these geometrically veri-

fied re-ranked database images, we pass the top 20, L′ ⊆ L̂
through the more expensive and stricter representation sim-

ilarity function, SF . Based on this final similarity, the final

re-ranking is done on L′.

Localization metrics. The performance on the Tokyo24/7

dataset is evaluated using Recall@N, which is the num-

ber of queries that are correctly localized given N nearest-

neighbor database images returned by the model. The query

is considered correctly localized if at least one of the rel-

evant database images is presented in the top N ranked

database images. In contrast, the localization performance

on Aachen Day-Night and extended CMU-Seasons is mea-

sured in terms of accuracy of the estimated query pose. The

accuracy is defined as the percentage of queries with their

estimated 6DOF pose lying within a pre-defined threshold

to the ground-truth pose.

Tokyo 24/7. We compare the proposed approach with sev-

eral strong baseline methods for place recognition. The

0 5 10 15 20 25
N - Number of top database candidates
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RootSIFT+VLAD+white
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Figure 6: Comparison of the proposed methods versus state-

of-the approaches for place recognition.

Methods
Recall

r@1 r@5 r@10

DenseVLAD [42] 67.1 74.2 76.1

NetVLAD-Pitts 61.27 73.02 78.73

NetVLAD-TokyoTM [1] 71.1 83.1 86.2

SIFT 73.33 80.0 84.4

Inloc [41] 62.54 67.62 70.48

Proposed (S) Pitts 71.43 82.54 85.08

Proposed (SF ) Pitts 77.14 84.44 86.67

Table 2: Localization performance on the Tokyo24/7

dataset (higher is better). Our proposed method outper-

forms Inloc and SIFT based geometric verification.

hand-crafted methods are represented by DenseVLAD [42]

which aggregates densely extracted SIFT descriptors [21].

As our re-ranking method aims to improve the initial rank-

ing by NetVLAD representations, we consider NetVLAD

as a baseline. In particular, we use a publicly available Py-

Torch implementation of NetVLAD trained on Pittsburgh

dataset (NetVLAD-Pitts). As a reference, NetVLAD-Pitts

obtains 85.2/94.8/97.0% compared to 84.1/94.6/95.5%
by NetVLAD [1] on Pitts-30k [1] validation set. In addition,

we also consider Inloc [41] which uses dense NetVLAD

descriptors in a geometric verification setting to obtain the

final shortlist of ranked database images.

The Recall@N for the baseline methods are presented in
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Methods

Condition, 5m, 10◦

Aachen Day-Night CMU-Seasons

day night urban suburban park

HF-Net [33] 94.2 76.5 97.9 92.7 80.4

D2-Net [9] 93.4 74.5 - - -

Active Search [35] 96.6 43.9 - - -

NetVLAD-Pitts 81.7 64.3 78.9 77.0 63.2

Proposed 84.7 68.4 89.1 77.1 63.3

Table 3: Localization performance on the Aachen and

CMU-Seasons datasets (higher is better). The best per-

formance among image retrieval based approaches is high-

lighted as italic.

Fig. 6. Our geometric verification based pipeline achieves

the state-of-the-art performance at Recall@1-10. The pro-

posed approach significantly outperforms NetVLAD-Pitts

and other baseline methods for all Recall@N thresholds

(c.f . Tab. 2). Moreover, it is noteworthy that our method

pushes the generalization performance of NetVLAD-Pitts

above the NetVLAD-TokyoTM which was trained on im-

ages with similar distribution as Tokyo24/7. We also com-

pared against traditional SIFT [2] based geometric verifi-

cation which achieved 73.33% for Recall@1. We used

COLMAP [37, 38] to extract SIFT features, followed by

fundamental matrix based geometric verification to com-

pute the inlier count.

Aachen Day-Night and Extended CMU-Seasons. Most

localization systems involve an image retrieval stage where

our proposed method can be directly applied. We did exper-

iments on Aachen (day/night) and CMU Seasons datasets to

show that our method retrieves more relevant database im-

ages compared to NetVLAD that leads to accurate query

camera pose estimation. For each query, 20 images from

the final shortlist produced by our method and NetVLAD

were fed into a baseline localization pipeline, which uses

a RANSAC PnP solver to register the query using 2D-3D

matches (produced by performing 2D matching between the

query and database images using our network and then uti-

lizing known semi-dense point cloud for database images)

and does hypothesis selection based on inlier count. We

report the proportion of correctly localized queries for the

threshold (5m, 10◦) in the following. Aachen day: 81.7%

(NetVLAD-Pitts), 84.7% (ours). Aachen night: 64.3%

(NetVLAD-Pitts), 68.4% (ours). CMU: 78.9% (NetVLAD-

Pitts), 89.1% (ours). Better accuracy in query camera pose

estimation given the same localization pipeline and im-

age matching method shows that our approach retrieves

higher quality database images compared to NetVLAD-

Pitts (c.f . Tab. 3). Our verification framework is generic

and can be plugged in to other localization systems, such as

HF-Net [33] and D2-Net [9].

Qualitative image retrieval results on Tokyo 24/7 and

Aachen Day-Night datasets are illustrated in Fig. 7.

Methods
Recall

r@1 r@5 r@10

Proposed (S) Pitts 71.43 82.54 85.08

Proposed (S) (MNetv2 enc.) Pitts 73.02 81.9 85.4

Proposed (SF ) Pitts 77.14 84.44 86.67

Proposed (SF ) (MNetv2 enc.) Pitts 76.51 83.17 84.13

Table 4: Ablation study. Localization performance on the

Tokyo24/7 dataset (MobileNetv2 decoder).

6.3. Ablation study

As the proposed UCMD decoder, Dc is defined as a

refinement function operating on the space of represen-

tation similarity, it should be invariant to the representa-

tions themselves. This allows us to replace the VGG-16

encoder with a much light weight encoder MobileNetv2

(MNetv2) [32] at test time without further re-training while

keeping the same decoder trained on the features produced

by VGG-16. This leads to a highly compact model. In

practice, localization problem is most relevant in the con-

text of mobile devices, thus the model compactness is cru-

cial also at test time. This led to comparable performance

on the challenging Tokyo24/7 dataset (c.f . Tab. 4) and re-

duced the total number of network parameters from 8M

(VGG16:∼7M, UCMD:∼0.9M) to 1M (MNetv2:∼0.07M,

UCMD:∼0.9M). In the latter case UCMD provides notable

memory savings compared to the original DGC-net ( 10M).

One feed-forward pass through the DGC-NC-UCMD-Net

with MNetv2 encoder requires 60ms compared to 80ms

with VGG16 encoder providing savings in computation

time.

7. Conclusion

We have presented novel methods for CNN based dense

pixel to pixel correspondence learning and its application

to geometric verification for image retrieval. In particular,

we have proposed a compact but effective CNN model for

dense pixel correspondence estimation using the universal

correspondence map decoder block. Due to the universal

nature of the decoder, we are able to obtain memory and

computational savings at evaluation time.

In addition, we have integrated the matching layer in our

model with neighborhood consensus [30] which further en-

hances the matching performance. This modified dense cor-

respondence model along with the proposed geometric sim-

ilarity functions are then applied to improve the initial rank-

ing of database images given by NetVLAD descriptor. We

have evaluated our approach on three challenging city-scale

localization datasets achieving state-of-the-art retrieval re-

sults.
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(b) Aachen Day-Night

Figure 7: Qualitative results produced by NetVLAD [1] (rows 2 and 5) and the proposed method (rows 3 and 6) on two

localization datasets: Tokyo24/7 and Aachen Day-Night. Each column corresponds to one test case: for each query (row

1 and 4) top-1 (Recall@1) nearest database image has been retrieved. The green and red strokes correspond to correct and

incorrect retrieved images, respectively. The proposed approach can handle different illumination conditions (day/night) and

significant viewpoint changes (the second column in Fig. 7b). More examples presented in the supplementary.
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and J. Sivic. Neighbourhood consensus networks. In Proc.

NeurIPS, 2018. 2, 5, 7

[31] J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek. Im-

age Classification with the Fisher Vector: Theory and Prac-

tice. IJCV, 105(3):222–245, 2013. 1, 2

[32] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and

L. Chen. Inverted residuals and linear bottlenecks: Mo-

bile networks for classification, detection and segmentation.

In Proceedings of the 2019 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, 2018. 7

[33] P.-E. Sarlin, C. Cadena, R. Siegwart, and M. Dymczyk. From

coarse to fine: Robust hierarchical localization at large scale.

2019. 7

[34] T. Sattler, W. Maddern, A. Torii, J. Sivic, T. Pajdla, M. Polle-

feys, and M. Okutomi. Benchmarking 6DOF Urban Visual

Localization in Changing Conditions. In Proc. CVPR, 2018.

6

[35] T. Sattler, A. Torii, J. Sivic, M. Pollefeys, H. Taira, M. Oku-

tomi, and T. Pajdla. In Proc. CVPR. 7

[36] T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image

retrieval for image-based localization revisited. In Proc.

BMVC. 1

2529



[37] J. L. Schönberger and J.-M. Frahm. Structure-from-motion

revisited. In Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 7

[38] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm.

Pixelwise view selection for unstructured multi-view stereo.

In European Conference on Computer Vision (ECCV), 2016.

7

[39] J. Sivic and A. Zisserman. Video google: a text retrieval

approach to object matching in videos. In Proc. ICCV, 2003.

1, 2

[40] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs

for optical flow using pyramid, warping, and cost volume. In

Proc. CVPR, 2018. 2, 5

[41] H. Taira, M. Okutomi, T. Sattler, M. Cimpoi, M. Pollefeys,

J. Sivic, T. Pajdla, and A. Torii. InLoc: Indoor Visual Local-

ization with Dense Matching and View Synthesis. In Proc.

CVPR, 2018. 1, 2, 6

[42] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pa-

jdla. 24/7 Place Recognition by View Synthesis. In Proc.

CVPR, 2015. 6

[43] S. Zagoruyko and N. Komodakis. Learning to Compare Im-

age Patches via Convolutional Neural Networks. In Proc.

CVPR, 2015. 2

2530


