
Attention-based Fusion for Multi-source Human Image Generation
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Abstract

We present a generalization of the person-image genera-

tion task, in which a human image is generated conditioned

on a target pose and a set X of source appearance images.

In this way, we can exploit multiple, possibly complemen-

tary images of the same person which are usually available

at training and at testing time. The solution we propose

is mainly based on a local attention mechanism which se-

lects relevant information from different source image re-

gions, avoiding the necessity to build specific generators for

each specific cardinality of X . The empirical evaluation of

our method shows the practical interest of addressing the

person-image generation problem in a multi-source setting.

1. Introduction

The person image generation task, as proposed by Ma et

al. [19], consists in generating “person images in arbitrary

poses, based on an image of that person and a novel pose”.

This task has recently attracted a lot of interest in the com-

munity because of different potential applications, such as

computer-graphics based manipulations [37] or data aug-

mentation for training person re-identification [45, 16] or

human pose estimation [5] systems. Previous work on this

field [19, 15, 43, 29, 26, 3, 25] assume that the generation

task is conditioned on two variables: the appearance image

of a person (we call this variable the source image) and a

target pose, automatically extracted from a different image

of the same person using a Human Pose Estimator (HPE).

Using person-specific abundant data the quality of the

generated images can be potentially improved. For in-

stance, a training dataset specific to each target person can

be recorded [6]. Another solution is to build a full-3D

model of the target person [17]. However, these approaches

lack of flexibility and need an expensive data-collection.

In this work we propose a different direction which re-

lies on a few, variable number of source images (e.g., from 2

to 10). We call the corresponding task multi-source human

image generation. As far as we know, no previous work has

Figure 1: Multi-source Human Image Generation: an image

of a person in a novel pose is generated from a set of images

of the same person.

investigated this direction yet. The reason for which we be-

lieve this generalization of the person-image generation task

is interesting is that multiple source images, when available,

can provide richer appearance information. This data redun-

dancy can possibly be exploited by the generator in order to

compensate for partial occlusions, self-occlusions or noise

in the source images. More formally, we define our multi-

source human image generation task as follows. We assume

that a set of M (M ≥ 1) source images X = {xi}i=1..M

is given and that these images depict the same person with

the same overall appearance (e.g., the same clothes, haircut,

etc.). Besides, a unique target body pose pτ is provided,

typically extracted from a target image not contained inX .

The multi-source human image generation task consists in

generating a new image x̂ with an appearance similar to the

general appearance pattern represented inX but in the pose

pτ (see Fig. 1). Note that M is not a-priori fixed, and we be-

lieve this task characteristics are important for practical ap-

plications, in which the same dataset can contain multiple-

source images of the same person but with unknown and

variable cardinalities.

Most of previous methods on single-source human im-

age generation [26, 29, 15, 19, 37, 43, 9, 25, 16] are based

on variants of the U-Net architecture generator proposed by

Isola et al. [13]. A common, general idea in these methods

is that the conditioning information (e.g., the source image

and/or the target pose) is transformed into the desired syn-
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thetic image using the U-Net skip connections, which shut-

tle information between those layers in the encoder and in

the decoder having a corresponding resolution (see Sec. 3).

However, when the cardinality M of the source images is

not fixed a priori, as in our proposed task, a “plain” U-Net

architecture cannot be used, being the number of input neu-

rons a-priori fixed. For this reason, we propose to modify

the U-Net generator introducing an attention mechanism.

Attention is widely used to represent a variable-length input

into a deep network [2, 39, 36, 35, 10, 34] and, without loss

of generality, it can be thought of as a mechanism in which

multiple-input representations are averaged (i.e., summed)

using some saliency criterion emphasizing the importance

of specific representations with respect to the others. In this

paper we propose to use attention in order to let the gener-

ator decide which specific image locations of each source

image are the most trustable and informative at different

convolutional layer resolutions. Specifically, we keep the

standard encoder-decoder general partition typical of the U-

Net (see Sec. 3) but we propose three novelties1. First, we

introduce an attention-based decoder (A) which fuses the

feature representations of each source. Second, we encode

the target pose and each source image with an encoder (E)

which processes each source image xi independently of the

others and E locally deforms each xi performing a target-

pose driven geometric “normalization” of xi. Once normal-

ized, the source images can be compared to each other in

A, assigning location and source-specific saliency weights

which are used for fusion. Finally, we use a multi-source

adversarial loss LM−GAN that employs a single discrimi-

nator to handle any arbitrary number of source images.

2. Related work

Most of the image generation approaches are based ei-

ther on Variational Autoencoders (VAEs) [14] or on Gener-

ative Adversarial Networks (GANs) [11]. GANs have been

extended to conditional GANs [31], where the image gener-

ation depends on some input variable. For instance, in [13],

an input image x is “translated” into a different representa-

tion y using a U-Net generator.

The person generation task (Sec. 1) is a specific case of

a conditioned generation process, where the conditioning

variables are the source and the target images. Most of the

previous works use conditional GANs and a U-Net architec-

ture. For instance, Ma et al. [19] propose a two-step training

procedure: pose generation and texture refinement, both ob-

tained using a U-Net architecture. Recently, this work has

been extended in [20] by learning disentangled representa-

tions of the pose, the foreground and the background. Fol-

1Code available at https://github.com/Stephlat/

Multi-source-Human-Image-Generation.

lowing [19], several methods for pose-guided image gener-

ation have been recently proposed [15, 43, 26, 29, 3, 25].

All these approaches are based on the U-Net. However,

the original U-Net, having a fixed-number of input images,

cannot be directly used for the multi-source image gener-

ation as defined in Sec. 1. Siarohin et al. [29] modify the

U-Net using deformable skip connections which align the

input image features with the target pose. In this work we

use an encoder similar to their proposal in order to align the

source images with the target pose, but we introduce a pose

stream which compares the similarity between the source

and the target pose. Moreover, similarly to the aforemen-

tioned works, also [29] is single-source and uses a “stan-

dard” U-Net decoder [13].

Other works on image-generation rely on a strong super-

vision during training or testing. For instance, [21, 41] use

a dense-pose estimator [12] trained using image-to-surface

correspondences [12]. Dong et al. [8] use an externally

trained model for image segmentation in order to improve

the generation process. Zanfir et al. [42] estimate the hu-

man 3D-pose using meshes and identify the mesh regions

that can be transferred directly from the input image mesh

to the target mesh. However, these methods cannot be di-

rectly compared with most of the other works, including

ours, which rely only on a sparse keypoint detection. Hard

data-collection constraints are used also in [6], where a per-

son and a background specific model are learned for video

generation. This approach requires that the target person

moves for several minutes covering all the possible poses

and that a new model is trained specifically for each target

person. Similarly, Liu et al. [17] compute the 3D human

model by combining several minutes of video. In contrast

with these works, our approach is based on fusing only a

few source images in random poses and in variable number,

which we believe is important because it makes it possible

to exploit existing datasets where multiple images are avail-

able for the same person. Moreover, our network does not

need to be trained for each specific person.

Sun et al. [32] propose a multi-source image generation

approach whose goal is to generate a new image accord-

ing to a target-camera position. Note that this task is dif-

ferent from what we address in this paper (Sec. 1), since

a human pose describes an articulated object by means of

a set of joint locations, while a camera position describes

a viewpoint change but does not deal with source-to-target

object deformations. Specifically, Sun et al. [32] repre-

sent the camera pose with either a discrete label (e.g., left,

right,etc.) or a 6DoF vector and then they generate a pixel-

flow which estimates the “movement” of each source-image

pixel. Multiple images are integrated using a Conv-LSTM

[24] and confidence maps. Most of the reported results con-

cern 3D synthetic rigid objects, while few real scenes are
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also used but only with limited viewpoint changes.

3. Attention-based U-Net

3.1. Overview

We first introduce some notation and provide a general

overview of the proposed method. Referring to the multi-

source human image generation task defined in Sec. 1, we

assume a training set X = {Xn}n=1..N is given, being each

sample Xn = (Xn, x
τ
n), whereXn = {xi

n}i=1..Mn
is a set

of Mn source images of the same person sharing a common

appearance and xτ
n is the target image. Every sample image

has the same size H ×W . Note that the source-set size Mn

is variable and depends on the person identity n. Given an

image x depicting a person, we represent the body-pose as

a set of 2D keypoints P (x) = (p1, ...,pK), where each pk

is the pixel location of a body joint in x. The body pose

can be estimated from an image using an external HPE. The

target pose is denoted by pτn = P (xτ
n).

Our method is based on a conditional GAN approach,

where the generator G follows a general U-Net architec-

ture [13] composed of an encoder and a decoder. A U-Net

encoder is a sequence of convolutional and pooling layers,

which progressively decrease the spatial resolution of the

input representation. As a consequence, a specific activa-

tion in a given encoder layer has a receptive field progres-

sively increasing with the layer depth, so gradually encod-

ing “contextual” information. Vice versa, the decoder is

composed of up-convolution layers, and, importantly, each

decoder layer is connected to the corresponding layer in the

encoder by means of skip connections, that concatenate the

encoder-layer feature maps with the decoder-layer feature

maps [13]. Finally, Isola et al. [13] use a conditional dis-

criminator D in order to discriminate between real and fake

“image transformations”.

We modify the aforementioned framework in three main

aspects. First, we use Mn replicas of the same encoder E

in order to encode the Mn geometrically normalized source

images together with the target pose. Second, we propose

an attention-based decoder A that fuses the feature maps

provided by the encoders. Finally, we propose a multi-

source adversarial loss LM−GAN .

Fig. 2 shows the architecture of G. Given a set Xn of

Mn source images, E encodes each source image xi
n ∈Xn

together with the target pose. Similarly to the standard U-

Net, for a given source image xi
n, each encoder outputs R

feature maps ξir ∈ R
Hr×Wr×CE

r , r ∈ [1..R] for R different-

resolution blocks. Each ξir is aligned with the target pose

(Sec 3.3). This alignment acts as a geometric “normaliza-

tion” of each ξir with respect to pτn and makes it possible to

compare ξir with ξjr (i 6= j). Finally, each tensor ξir jointly

represents pose and appearance information at resolution r.

3.2. The Attention­based Decoder

A is composed of R blocks. Similarly to the standard

U-Net, the spatial resolution increases symmetrically with

respect to the blocks in E. Therefore, to highlight this sym-

metry, the decoder blocks are indexed from R to 1. In the

current r-th block, the image x̂ which is going to be gen-

erated is represented by a tensor φr. This representation

is progressively refined in the subsequent blocks using an

attention-based fusion of {ξir}i=1,...,Mn
. We call φr the la-

tent representation of x̂ at resolution r, andφr is recursively

defined starting from r = R till r = 1 as follows:

The initial latent representation φR is obtained by aver-

aging the output tensors of the last layer of E (Fig. 2):

φR =
1

Mn

Mn∑

i=1

ξiR (1)

Note that each spatial position in φR corresponds to a large

receptive field in the original image resolution which, if R

is sufficiently large, may include the whole initial image.

As a consequence, we can think of φR as encoding general

contextual information on (Xn, p
τ
n).

For each subsequent block r ∈ [R − 1, ..., 1], φr is

computed as follows. Given φr+1 ∈ R
Hr+1×Wr+1×CE

r+1 ,

we first perform a 2 × 2 up-sampling on φr+1 followed

by a convolution layer in order to obtain a tensor ψr ∈

R
Hr×Wr×CD

r . ψr is then fed to an attention mechanism

in order to estimate how the different tensors ξir should be

fused into a single final tensor Fr:

Fr =

Mn∑

i=1

Att(ψr, ξ
i
r)⊙ ξ

i
r, (2)

where ⊙ denotes the element-wise product and Att(·, ·) ∈
[0, 1]Hr×Wr×CE

r is the proposed attention module.

In order to reduce the number of weights involved in

computing Eq. (2), we factorize Att(ψr, ξ
i
r) using a spatial-

attention g(ψr, ξ
i
r) ∈ [0, 1]Hr×Wr (which is channel in-

dependent) and a channel-attention vector f(ψr, ξ
i
r) ∈

[0, 1]C
E

r (which is spatial independent). Specifically, at

each spatial coordinate (h,w), g() compares the current

latent representation ψr[h,w] ∈ R
CD

r with ξir[h,w] ∈

R
CE

r and assigns a saliency weight to ξir[h,w] which rep-

resents how significant/trustable is ξir[h,w] with respect

to ψr[h,w]. The function g() is implemented by taking

the concatenation of ψr and ξir as input and then using a

1× 1× (CD
r +CE

r ) convolution layer. Similarly, f() is im-

plemented by means of global-average-pooling on the con-

catenation of ψr and ξir followed by two fully-connected
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(a) A schematic representation of the proposed attention decoder architecture (b) Zoom on the attention module

Figure 2: Illustration of the proposed Attention U-Net. For the sake of clarity, in this figure, we consider the case in which

we use only two conditioning images (Mn = 2). The colored rectangles represent the feature maps. The attention module

(dashed purple rectangles) in the figure (a) are detailed in figure (b). The dashed double arrows denote normalization across

attention maps, ⊙ denotes the element-wise product and ⊕ denotes the concatenation along the channel axis.

layers. We employ sigmoid activations on both g and f .

Combining together g() and f(), we obtain:

Ai
r[h,w, c] = g(ψr, ξ

i
r)[h,w] · f(ψr, ξ

i
r)[c]. (3)

Importantly, Ai
r is not spatially or channel normalized.

This because a normalization would enforce that, overall,

each source image is used in the same proportion. Con-

versely, without normalization, given, for instance, a non-

informative source xi
n (e.g., xi

n completely black), the at-

tention module can correspondingly produce a null saliency

tensor Ai
r. Nevertheless, the final attention tensor Att() in

Eq. (2) is normalized in order to assign a relative impor-

tance to each source:

Att(ψr, ξ
i
r)[h,w, c] =

Ai
r[h,w, c]∑Mn

j=1 A
j
r[h,w, c]

. (4)

Finally, the new latent representation at resolution r is ob-

tained by concatenating ψr with Fr:

φr = ψr ⊕ Fr, (5)

where ⊕ is the tensor concatenation along the channel axis.

3.3. The Pose­based Encoder

Rather than using a generic convolutional encoder as in

[13], we use a task-specific encoder specifically designed

to work synergistically with our proposed attention model.

Our pose-based encoder E is similar to the encoder pro-

posed in [26, 29] but it also contains a dedicated stream

which is used to compare the source and the target pose.

In more detail, E is composed of two streams (see Fig. 3).

The first stream, referred to as pose stream, is used to rep-

resent pose information and to compare each other the tar-

get pose with the pose of the person in the source image.

Figure 3: The Pose-based encoder. For simplicity, we show

only 4 blocks (R = 4). Each parallelepiped represents the

feature maps obtained after convolution and max-pooling.

The d circles denote deformations.

Specifically, the target pose pτ is represented using a ten-

sor Jτ composed of K heatmaps Jτ,k ∈ [0, 1]H×W . For

each joint pτ
k ∈ pτ , a heatmap Jτ,k is computed using a

Gaussian kernel centered in pk [26, 29]. Similarly, given

xi
n ∈ Xn, we extract the pose P (xi

n) using [5] and we

describe it using a tensor J i
n. The tensors Jτ

n and J i
n are

concatenated and input to the pose stream, which is com-

posed of a sequence of convolutional and pooling layers.

The purpose of the pose stream is twofold. First, it provides

the target pose to the decoder. Second, it encodes the simi-

larity between the i-th source pose and the target pose. This

similarity is of a crucial importance for our attention mech-

anism to work (Sec. 3.2) since a source image with a pose

similar to the target pose is likely more trustable in order to

transfer appearance information to the final generated im-

age. For instance, a leg in xi
n with a pose closer to pτn than

the corresponding leg in xj
n, should be most likely preferred

for encoding the leg appearance.
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The second stream, called source stream, takes as in-

put the concatenation of the RGB image xi
n and its pose

representation J i
n. J i

n is provided as input to the source

stream in order to guide the source-stream convolutional

layers in extracting relevant information which may de-

pend on the joint locations. The output of each convolu-

tional layer of the source stream is a tensor (green blocks

in Fig. 3). This tensor is then deformed according to the

difference between P (xi
n) and pτn (the d circles in Fig. 3).

Specifically, we use body part-based affine deformations as

in [26, 29] to locally deform the source-stream feature maps

at each given layer and then concatenate the obtained ten-

sor with the corresponding-layer pose-stream tensor. In this

way we get a final tensor ξir for each of the R different

layers in E (1 ≤ r ≤ R). Each ξir is a representation

of (P (xi
n), x

i
n) aligned with pτn and it is obtained indepen-

dently of xj
n ∈Xn, j 6= i.

Given a set Xn of Mn source images, we apply Mn

replicas of the E encoder to each xi
n ∈ Xn producing the

set of output tensors En = {ξir}i=1,...,Mn,r=1,...R that are

input to the decoder described in Sec.3.2.

3.4. Training

We train the whole network in an end-to-end fashion

combining a reconstruction loss with an adversarial loss.

For the reconstruction loss, we use the nearest-neighbour

loss LNN (G) introduced in [26, 29] which exploits the

convolutional maps of an external network (VGG-19 [30],

trained on ImageNet [7]) at the original image resolution

in order to compare each location of the generated image x̂

with a local neighbourhood of the ground-truth image xτ .

This reconstruction loss is more robust to small spatial mis-

alignments between x̂ and xτ than other common losses as

the L1 loss.

On the other hand, in our multi-source problem, the em-

ployed adversarial loss has to handle a varying number of

sources. We use a single-source discriminator conditioned

on only one source image xi
n [13]. More precisely, we use

Mn discriminators D that share their parameters and in-

dependently process each xi
n. Each D takes as input the

concatenation of four tensors: x, Jτ
n , x

i
n, J

i
n, where x is ei-

ther the ground truth real image xτ
n or the generated image

x̂. Differently from other multi-source losses [40, 1, 22],

we employ a conditional discriminator in order to exploit

the information contained in the source image and the pose

heatmaps. The GAN loss for the ith source image is defined

as:

Li
GAN (G,D) = E(xi

n
,xτ

n
)∈X [logD(xτ

n, J
τ
n , x

i
n, J

i
n)]+

E(xi
n
,xτ

n
)∈X ,z∈Z [log(1−D(x̂, Jτ

n , x
i
n, J

i
n))],

(6)

where x̂ = G(z,Xn, p
τ
n) and, with a slight abuse of no-

tation, E(xi
n
,xτ

n
)∈X [·] means the expectation computed over

pairs of single-source and target image extracted at random

from the training set X . Using Eq. (6), the multi-source

adversarial loss (LM−GAN ) is defined as:

LM−GAN (G,D) = min
G

max
D

Mn∑

i=1

Li
GAN (G,D). (7)

Putting all together, the final training loss is given by:

G∗ = argmin
G

max
D

LM−GAN (G,D) + λLNN (G), (8)

where the λ weight is set to 0.01 in all our experiments.

4. Experiments

In this section we evaluate our method both qualita-

tively and quantitatively adopting the evaluation protocol

proposed by Ma et al. [19]. We train G and D for 60k iter-

ations, using the Adam optimizer (learning rate: 2 ∗ 10−4,

β1 = 0.5, β2 = 0.999). We use instance normalization [33]

as recommended in [13]. The networks used for E and D

have the same convolutional-layer dimensions and normal-

ization parameters used in [29]. Also the up-convolutional

layers of A have the same dimensions of the corresponding

decoder used in [29]. Finally, the number of the hidden-

layer neurons used to implement f() (Sec. 3.2) is
CD

r
+CE

r

4 .

For a fair comparison with single-source person generation

methods [19, 20, 9, 26, 29], we adopt the HPE proposed in

[5].

Even if there is no constraint on the cardinality of the

source images Mn, in order to simplify the implementa-

tion, we train and test our networks using different steps,

each step having Mn fixed for all Xn in X . Specifically,

we initially train E, A and D with Mn = 2. Then, we

fine-tune the model with the desired Mn value, except for

single-source experiments where Mn = 1 (see Sec. 4.4).

4.1. Datasets

The person re-identification Market-1501 dataset [44] is

composed of 32,668 images of 1,501 different persons cap-

tured from 6 surveillance cameras. This dataset is challeng-

ing because of the high diversity in pose, background, view-

point and illumination, and because of the low-resolution

images (128×64). To train our model, we need tuples of

images of the same person in different poses. As this dataset

is relatively noisy, we follow the preprocessing described in

[29]. The images where no human body is detected using

the HPE are removed. Other methods [19, 20, 9, 29] gen-

erate all the possible pairs for each identity. However, in
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Market-1501 DeepFashion

Model M SSIM IS mask-SSIM mask-IS SSIM IS

Ma et al. [19] 1 0.253 3.460 0.792 3.435 0.762 3.090
Ma et al. [20] 1 0.099 3.483 0.614 3.491 0.614 3.228
Esser et al. [9] 1 0.353 3.214 0.787 3.249 0.786 3.087
Siarohin et al. [26, 29] 1 0.290 3.185 0.805 3.502 0.756 3.439

Ours 1 0.270± 0.09 3.251± 0.09 0.771± 0.07 3.614± 0.08 0.757± 0.07 3.420± 0.06

Ours 2 0.285± 0.09 3.474± 0.09 0.778± 0.06 3.634± 0.08 0.769± 0.07 3.421± 0.06

Ours 3 0.291± 0.06 3.442± 0.09 0.783± 0.06 3.739± 0.08 0.774± 0.07 3.400± 0.03
Ours 5 0.306± 0.09 3.444± 0.05 0.788± 0.06 3.814± 0.07 0.774± 0.06 3.416± 0.06
Ours 7 0.320± 0.09 3.613± 0.05 0.801± 0.06 3.567± 0.06 - -

Ours 10 0.326± 0.09 3.442± 0.07 0.806± 0.06 3.514± 0.04 - -

Table 1: Comparison with the state of the art on the Market-1501 and the DeepFashion datasets.

our approach, since we consider tuples of size M + 1 (M

sources and 1 target image), considering all the possible

tuples is computationally infeasible. In addition, Market-

1501 suffers from a high person-identity imbalance and

computing all the possible tuples, would exponentially in-

crease this imbalance. Hence, we generate tuples randomly

in such a way that we obtain the same identity repartition

than it is obtained when sampling all the possible pairs. In

addition, this solution also allows for a fair comparison with

single-source methods which sample based on pairs. Even-

tually, we get 263K tuples for training. For testing, follow-

ing [19], we randomly select 12K tuples without person is

in common between the training and the test split.

The DeepFashion dataset (In-shop Clothes Retrieval

Benchmark) [18] consists of 52,712 clothes images with

a resolution of 256×256 pixels. For each outfit, we dis-

pose of about 5 images with different viewpoints and poses.

Thus, we only perform experiments using up to Mn = 5
sources. Following the training/test split adopted in [19], we

create tuples of images following the same protocol as for

the market-1501 dataset. After removing the images where

the HPE does not detect any human body, we finally collect

about 89K tuples for training and 12K tuples for testing.

4.2. Metrics

Evaluation metrics in the context of generation tasks is

a problem in itself. In our experiments we adopt the eval-

uation metrics proposed in [19] which is used by most of

the single-source methods. Specifically, we use: Struc-

tural Similarity (SSIM) [38], Inception Score (IS) [23] and

their corresponding masked versions mask-SSIM and mask-

IS [19]. The masked versions of the metrics are obtained by

masking-out the image background. The motivation behind

the use of masked metrics is that no background information

is given to the network, and therefore, the network cannot

guess the correct background of the target image. For a fair

comparison, we adopt the masks as defined in [19].

It is worth noting that the SSIM-based metrics compare

the generated image with the ground-truth. Thus, they mea-

sure how well the model transfers the appearance of the

person from the source image. Conversely, IS-based met-

rics evaluate the distribution of generated images, jointly

assessing the degree of realism and diversity of the gener-

ated outcomes, but do not take into account any similarity

with the conditioning variables. These two metrics are each

other complementary [4] and should be interpreted jointly.

4.3. Comparison with previous work

Quantitative comparison. In Tab. 1 we show a quanti-

tative comparison with state-of-the-art single-source meth-

ods. Note that, except from [20], none of the compared

methods, including ours, is conditioned on background in-

formation. On the other hand, the mask-based metrics fo-

cus on only the region of interest (i.e., the foreground per-

son) and they are not biased by the randomly generated

background. For these reasons, we believe the mask-based

metrics are the most informative ones. However, on the

DeepFashion dataset, following [20], we do not report the

masked values since the background is uniform in most of

the images. On both datasets, we observe that the SSIM

and masked-SSIM increase when we input more images to

our model. This confirms the idea that multi-source image

generation is an effective direction to improve the gener-

ation quality. Furthermore, it illustrates that the proposed

model is able to combine the information provided by the

different source images. Interestingly, our method reaches

high SSIM scores while keeping high IS values, thus show-

ing that it is able to transfer better the appearance without

loosing image quality and diversity.

Concerning the comparison with the state of the art, our

method reports the highest performance according to both

the mask-SSIM and the mask-IS metrics on the Market-

1501 dataset when we use 10 source images. When we

employ fewer images, only Siarohin et al [29] obtain bet-

ter masked-SSIM but at the cost of a significantly lower IS.

Similarly, we observe that [9] achieves a really high SSIM
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xi, i ∈ [1..5] xτ [29] [9] [19] Ours Attention Saliency

Mn = 1 Mn = 1Mn = 3Mn = 5 Mn = 5

Figure 4: A qualitative comparison on the Market-1501 dataset. The first column shows the source images. Note that

[29, 19, 9] use only the leftmost source image. The target poses are given by the ground truth images in column 2. In column

4, we show the results obtain by our model while increasing the number of source images. The source from the first column

are added while increasing Mn from left to right. In the last column we show the saliency maps predicted by our model when

using all the five source images. These maps are shown in the same order than the source images xi.

score, but again at the cost of a drastically lower IS, mean-

ing that we can generate more diverse and higher quality im-

ages. Moreover, we notice that [9] obtains a lower masked-

SSIM. This seems to indicate that their high SSIM score

is mostly due to a better background generation. Similar

conclusions can be drawn for the DeepFashion dataset. We

obtain the best IS and rank second in SSIM. Only [9] out-

performs our model in terms of SSIM at the cost of a much

lower IS value. The gain in performance seems smaller than

on the market-1501 dataset. This is probably due to the

lower pose diversity of the DeepFashion dataset.

Qualitative comparison. Fig. 4 shows some images ob-

tained using the Market-1501 dataset. We compare our re-

sults with the images generated by three methods for which

the code is publicly available [9, 19, 29]. The source images

are shown in the first column. Note that the single-source

methods use only the leftmost image. The target pose is ex-

tracted from the ground-truth target image. We display the

generated images varying Mn ∈ {1, 3, 5}. We also show

the corresponding saliency tensors Ai
r (see Sec. 3.2) at the

highest resolution r = 1. Specifically, we use Mn = 5 and,

at each (h,w) location in Ai
r, we average the values over

the channel axis (c) using a color scale from dark blue (0

values) to orange (1 values).

The qualitative results confirm the quantitative evalua-

tion since we clearly obtain better images when we increase

the number of source images. The images become sharper

and with more details and contain less artifacts. By look-

ing at the saliency maps, we observe that our model uses

mostly the source images in which the human pose is simi-

lar to the target pose. For instance in row 1 and 4, the model

has high attention values for the two frontal images but very

low values for the back view images. Interestingly, in row

1, among the two source images with a pose similar to the

target pose, the saliency values are lower for the more blurry

image. This illustrates that, between two images with sim-

ilar poses, our attention model favours the image with the

highest quality. Concerning the comparison with the state

of the art, we observe that our model better preserves the

details of the source images. In general, we obtain higher-

quality details and less artefacts. For instance, in row 3, the

three other methods do not generate the white hat nor the
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small logo of the shirt. In particular, the V-UNet architec-

ture proposed in [9] generates realistic images but with less

accurate details. This can be easily observed in the last two

rows where the colors of the clothes are wrongly generated.

4.4. Ablation study and qualitative analysis

In this section we present an ablation study to clarify

the impact of each part of our proposal on the final perfor-

mance. We first describe the compared methods, obtained

by “amputating” important parts of the full-pipeline pre-

sented in Sec. 3. The discriminator architecture is the same

for all the methods.

• Avg No-d: In this baseline version of our method

we use the encoder described in Sec. 3.3 without the

deformation-based alignment of the features with the

target pose. For the decoder, we use a standard U-Net

decoder without attention module. More precisely, the

tensors provided by the skip connections of each en-

coder are simply averaged and concatenated with the

decoder tensors as in the original U-Net. In other

words, Eq. (2) is replaced by the average over each

convolution layer of the decoder, similarly to (1).

• Avg: We use the encoder described in Sec. 3.3 and the

same decoder of Avg No-d.

• Att. 2D: We use an attention model similar to the full

model described in Sec. 3.2. However, in Eq. (3),

f(·, ·)[c] is not used.

• Full: This is the full-pipeline as described in Sec. 3.

Market-1501 DeepFashion

Model Mn SSIM IS mask-SSIM mask-IS SSIM IS

Single source 1 0.27 3.251 0.771 3.614 0.757 3.420

Avg No-d 2 0.258 3.182 0.766 3.658 0.756 3.274
Avg 2 0.294 3.468 0.779 3.274 0.785 3.321
Att. 2D 2 0.285 3.460 0.777 3.632 0.769 3.375
Full 2 0.285 3.474 0.778 3.634 0.769 3.421

Avg 5 0.299 3.383 0.782 3.751 0.763 3.454

Att. 2D 5 0.308 3.159 0.792 3.606 0.773 3.411
Full 5 0.306 3.444 0.788 3.814 0.774 3.416

Table 2: Quantitative ablation study on the Market-1501

and the DeepFashion dataset.

Tab. 2 shows a quantitative evaluation. First, we notice that

our method without spatial deformation performs poorly on

both datasets. This is particularly evident with the SSIM-

based scores. This confirms the importance of source-target

alignment before computing a position-dependent attention.

Interestingly, when using only two source images, Avg, Att.

2D and Full perform similarly to each other on the Market-

1501 dataset. However, when we dispose of more source

images we clearly observe the benefit of using our proposed

attention approach. Avg performs constantly worst than our

Full pipeline. The 2D attention model outputs images with

xi, i ∈ [1..2] xτ Avg Full Attention Saliency

Figure 5: A qualitative ablation study on the Deep-Fashion

dataset. We compare Avg with Full using Mn = 2. The

attention saliency are displayed in the same order than the

source images xi.

higher SSIM-based scores but with lower IS values. Con-

cerning the DeepFashion dataset, our attention model per-

forms that the simpler approach with 2 and 5 source images.

In Fig. 5 we compare Avg with Full using Mn = 2. The

advantage of using Full is is clearly illustrated by the fact

that Avg mostly performs an average of the front and back

images. In the second row, Full reduces the amount of arte-

facts. Interestingly, in the last row, Full fails to generate

correctly the new viewpoint but we see that it chooses to

focus on the back view in order to generate the collar.

5. Conclusion

In this work we introduced a generalization of the

person-image generation problem. Specifically, a human

image is generated conditioned on a target pose and a set

X of source images. This makes it possible to exploit mul-

tiple and possibly complementary images. We introduced

an attention-based decoder which extends the U-Net archi-

tecture to a multiple-input setting. Our attention mechanism

selects relevant information from different sources and im-

age regions. We experimentally validate our approach on

two different datasets. As future works, we plan to extend

this work to video generation and in particular image ani-

mation [27, 28].
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