
DATNet: Dense Auxiliary Tasks for Object Detection

Alex Levinshtein Alborz Rezazadeh Sereshkeh Konstantinos G. Derpanis

Samsung AI Centre Toronto

{alex.lev, a.sereshkeh, k.derpanis}@samsung.com

Abstract

Beginning with R-CNN, there has been a rapid advance-

ment in two-stage object detection approaches. While two-

stage approaches remain the state-of-the-art in object de-

tection, anchor-free single-stage methods have been gain-

ing momentum. We believe that the strength of the former

is in their region of interest (ROI) pooling stage, while the

latter simplifies the learning problem by converting object

detection into dense per-pixel prediction tasks. In this pa-

per, we propose to combine the strengths of each approach

in a new architecture. In particular, we first define sev-

eral auxiliary tasks related to object detection and gener-

ate dense per-pixel predictions using a shared feature ex-

traction backbone. As a consequence of this architecture,

the shared backbone is trained using both the standard ob-

ject detection losses and these per-pixel ones. Moreover, by

combining the features from dense predictions with those

from the backbone, we realize a more discriminative rep-

resentation for subsequent downstream processing. In ad-

dition, we feed the fused features into a novel multi-scale

ROI pooling layer, followed by per-ROI predictions. We re-

fer to our architecture as the Dense Auxiliary Tasks Net-

work (DATNet). We present an extensive set of evaluations

of our method on the Pascal VOC and COCO datasets and

show considerable accuracy improvements over compara-

ble baselines.

1. Introduction

Due to its wide variety of applications, object detection

is one of the most active research areas in computer vi-

sion. Currently, the top performing methods on the stan-

dard benchmarks are two-stage approaches, e.g., [6, 10, 2].

These methods first extract features from the input image.

Next, given a set of bounding box proposals, the features

are pooled and used for bounding box refinement, classi-

fication, and other prediction tasks, such as instance mask

prediction [10]. The pooling stage allows the network to

independently focus its attention on the relevant features of

each proposal, thus simplifying the subsequent prediction

Backbone

Distance

Transform

Features

Semantic

Segmentation

Features

Figure 1. Overview of proposed method. Dense per-pixel distance

transform (top) and semantic segmentation (bottom) related fea-

tures are combined with the initial backbone features to improve

the downstream object detection task (right-middle).

tasks, e.g., classification. A major drawback is that the pool-

ing and processing of hundreds of proposals comes with a

computational toll. Moreover, two-stage architectures are

complex in nature and tend to be difficult to optimize. As a

result, a parallel direction has emerged that explores anchor-

free, single-stage methods, e.g., [36, 35]. These methods

formulate object detection as a set of dense per-pixel pre-

diction tasks, yielding simpler and faster architectures.

Judging by their competitive performance, we believe

that anchor-free methods provide a powerful feature sub-

strate for object detection. In this light, we propose a two-

stage detector (based on Mask R-CNN [10]) guided by a set

of dense per-pixel auxiliary tasks. We refer to our archi-

tecture as the Dense Auxiliary Tasks Network (DATNet).

While a variety of per-pixels tasks can be designed in sup-

port of object detection, in this paper we consider two such

auxiliary tasks: semantic segmentation and distance trans-

form (DT). For each pixel, the former contains the seman-

tic category that the pixel belongs to and the latter contains

the distance to the closest instance boundary for all fore-

ground pixels and zero for background pixels. Intuitively,

the features from the semantic segmentation map are di-

rectly useful for instance classification, while the DT fea-

tures support tasks requiring instance delineation, such as

bounding box regression and instance segmentation. We

fuse both sets of features with the backbone features, yield-

1419

ing more discriminative features for object detection. We

substitute the Mask R-CNN [10] backbone features with

the fused features, while keeping all remaining components

largely identical to Mask R-CNN (see Fig. 1). By com-

bining per-region losses from Mask R-CNN and the aux-

iliary per-image losses for semantic segmentation and DT,

the resulting hybrid architecture can be optimized end-to-

end. In addition, we propose a multi-scale region of in-

terest (ROI) pooling layer that eliminates the manual as-

signment of feature layers to specific object scale ranges,

as used in Mask R-CNN. This enables the network to bet-

ter exploit the potential of the fused features, leading to

a further boost in accuracy. We present extensive evalu-

ations and demonstrate that our method attains significant

improvements across common feature extraction backbones

on the standard COCO [19] benchmark. Furthermore, we

demonstrate that our method is beneficial even in the ab-

sence of accurate instance segmentation ground truth. This

is demonstrated on Pascal VOC [5], which has no instance

segmentation annotations. We use the ground truth bound-

ing boxes as a coarse instance segmentation proxy.

Contributions. In this paper, we make the following three

contributions. First, we introduce a novel architecture, the

Dense Auxiliary Tasks Network (DATNet), that combines

the strengths of single- and two-stage object detectors. In

particular, we combine dense per-pixel auxiliary tasks with

those from the feature extraction backbone to realize a more

discriminative representation for object detection. Second,

we propose a multi-scale pooling mechanism with attention

over scales to realize the detections. Finally, we present ex-

tensive evaluations of our method on the Pascal VOC and

COCO datasets and show considerable accuracy improve-

ments over recent baseline methods.

2. Related work

Object detectors. Most modern object detectors can be

categorized as either single- or two-stage detectors. Single-

stage detectors [25, 22, 20, 36, 35] cast the detection task as

(relatively) dense per-pixel object score predictions. Since

these detectors simply propagate the image through an effi-

cient convolutional backbone, they are capable of real-time

detection. A drawback of these detectors is that their accu-

racy is typically below their two-stage counterparts.

Alternatively, two-stage detectors [7, 11, 26, 6, 10, 21, 2]

combine an object proposal stage that yields a sparse set

of object candidate regions with a classifier operating over

pooled features of the proposals. A prime example of these

detectors is the R-CNN family [7, 6, 26, 10, 8] which has

progressively evolved into end-to-end trainable architec-

tures that detect objects and in parallel generate additional

outputs, e.g., instance segmentation [10] and 3D shapes [8].

Here, we propose a two-stage architecture that combines

features from dense per-pixel predictions of auxiliary tasks

(i.e., semantic segmentation and distance transform) with

backbone features to improve downstream region process-

ing. Note that these auxiliary tasks are fused early in the

feature processing pipeline to enrich the features for down-

stream processing, as opposed to being relegated as multi-

task outputs realized in parallel (e.g., [10]) or used at the

later stage of ROI pooling, e.g., [3].

Auxiliary image tasks. Combining multiple related tasks

with a shared network has been shown to improve the over-

all output task accuracies [16, 33]. He et al. [10] showed

that using mask prediction as a parallel auxiliary task to

object detection not only provides a richer output but also

improves the detector accuracy. Several works [4, 34, 17]

showed that rather than having parallel branches, features

from related tasks can be fused with detector branch fea-

tures for improved results. However, with the exception of

[34], they merge features only after ROI pooling, thereby

limiting the effect of contextual information. In the con-

text of panoptic segmentation [15, 31] (i.e., joint object in-

stance and semantic segmentation), region-related features

are combined with semantic segmentation to realize the fi-

nal segmentation output. In contrast to these detection and

segmentation methods that treat multiple tasks separately,

fuse features on a per-ROI basis, or fuse their features at a

late stage, features from our auxiliary tasks are fused earlier

with those from the initial feature extraction phase to enrich

the features processed onwards.

Multi-stage object detectors [2, 3] recurrently adjust the

proposal bounding boxes. These works are complimentary

to our own, as we do not attempt to cascade bounding box

proposals. Moreover, [2] does not leverage contextual sig-

nals provided by auxiliary tasks, as proposed here.

Bai and Urtasun [1] propose a pipeline for instance seg-

mentation, where the final segmentation output is directly

inferred from the distance transform of each image to its

corresponding object boundary. In our work, the distance

transform and semantic segmentation serve as auxiliary

tasks, whose features together with the backbone features

are passed for further processing to the region proposal net-

work (RPN) and ROI processing stages.

Most similar to our work is Chen et al. [3], where they

leverage semantic segmentation as extra contextual features

in a cascaded process. Similar fusion is performed by Zhao

et al. [34], though it is not the main contribution of their pa-

per. In contrast, we fuse the features earlier (affecting the

region proposal stage as well), make use of additional con-

textual information (distance transform), and generate our

semantic segmentation ground truth from instance segmen-

tation rather than making use of extra annotation data.

Attention. Attention is the process of filtering informa-

tion to highlight the most informative portion of the signal

[27]. Over the last few years, attention has been integrated

into a variety of visual tasks, including object recognition

1420

and detection [14, 29]. Generically, attention is realized as

a conditional gating mechanism, integrated within the net-

work, applied along the spatial dimension alone (e.g., [32]),

the channel dimension alone (e.g., [14]), or both dimensions

(e.g., [29]). For object detection, [28] use attention to select

an image domain, such as traffic or aerial, while [13] use

attention to focus on relevant contextual detections.

Most related to our work is the adaptive feature pool-

ing mechanism proposed in [21]. This mechanism allows

an object detection architecture to select useful information

from different levels of a feature pyramid network (FPN)

[18] by fusing these features using an element-wise max

operation. Albeit simple and effective, the max operation

could still eliminate useful information. In contrast, we con-

catenate the feature maps from all scale levels of the pyra-

mid, and use the squeeze-and-excitation mechanism [14] to

attend to the most useful channels.

3. Technical approach

In this section, we introduce our model, DATNet, and its

implementation details. Our model is built upon the Fea-

ture Pyramid Network [18] (Fig. 2a). To assist the object

detection and instance segmentation tasks, we define auxil-

iary dense prediction tasks over the entire image (Fig. 2b).

Rather than serving solely as auxiliary output losses, we

fuse the features from these tasks with the backbone fea-

tures. The remaining architecture is largely similar to Mask

R-CNN, where the features are used to generate region pro-

posals with an RPN and pooled to predict bounding boxes

and masks. In contrast to Mask R-CNN, we employ a novel

multi-scale pooling mechanism with attention to realize the

final outputs. The following subsections provide the details

of our two technical contributions.

3.1. Auxiliary image tasks

A variety of auxiliary tasks can be considered. Intu-

itively, since our final goal is object delineation and clas-

sification, our auxiliary tasks should jointly encode this in-

formation. We opt for two auxiliary branches that predict

the distance transform and semantic segmentation, resp.

Motivated by Bai and Urtasun [1], our first branch (head)

is class agnostic and predicts the distance transform (DT) to

object instance boundaries. Instead of regressing the dis-

tance transform, we normalize and discretize the distances

into K = 4 bins. Let Di(x, y) be the distance transform for

object instance i. We define D(x, y) = maxi
Di(x,y)

maxxy Di(x,y)

to be the normalized distance transform. The target bins

correspond to 0: background, 1: 0 < D(x, y) ≤ 0.2, 2:

0.2 < D(x, y) ≤ 0.4, and 3: D(x, y) > 0.4.

Our second auxiliary branch aims to encode the object

class information, and thus is simply a semantic segmen-

tation head. Note that while our target is semantic seg-

mentation, our method requires only instance segmentation

ground truth for training. We convert instance segmentation

ground truth into semantic segmentation ground truth with a

one-hot encoding for every image pixel by pasting instance

masks into the appropriate class channel of a semantic seg-

mentation target. Both the DT and semantic heads share

the same architecture (but not the same weights), see Fig.

2b. The architecture is similar to Kirillov et al. [15] and is

described in detail in Sec. 3.3.

Since both our image heads have categorical targets, they

have a similar loss structure. Here we describe the loss for

the DT head, LDT . The semantic head loss, Lseg , is iden-

tical with the lone difference being the number of target

classes. While the natural choice is to use the cross entropy

loss, due class imbalance and the dominance of the back-

ground class, we instead use a variant of the focal loss [20].

For each pixel i, our loss is:

Li = −

K∑

k

αk(1− pik)
2 log(pik)y

i
k, (1)

where yik is an indicator variable for pixel i belonging to

class k, pik is the model’s softmax output, and αk is a

weighting factor for class k. The weighting factor α is set

to 0.2 for background and to 1 for all other classes. Our

overall DT loss is given by:

LDT =
1

BWH

B×W×H∑

i

Li, (2)

where B, W , and H denote the batch size, image width, and

height, respectively. Both LDT and Lseg are added as aux-

iliary losses to the original Mask R-CNN loss, Lmaskrcnn.

The Mask R-CNN loss contains RPN terms (i.e., bounding

box regression and objectness), bounding box head terms

(i.e., regression and classification), and a mask head seg-

mentation term; please see [10] for details. The overall loss

is:

L = Lmaskrcnn + w1LDT + w2Lseg. (3)

Both weights, w1 and w2, are set to 0.25 based on cross-

validation.

3.2. Multi­scale attention pooling

In the FPN model [18], each proposal is assigned to

a single-scale feature map, depending on the proposal

area. In particular, small proposals are assigned to finer-

resolution levels, while larger proposals are assigned to

coarser-resolutions. This hard selection of scale levels,

based on manual tuning, may be suboptimal for the follow-

ing reasons. First, invoking a hard boundary between sim-

ilar sized proposals may be suboptimal. Second, the most

important features for an ROI may not be strongly corre-

lated to its assigned scale level. Depending on the proposal

1421

–

𝐻4 x
𝑊4 x256

C3

C2

C4

C5 P5

P4

P3

P2

P2

P3

P5

P4 Multiscale

Pooling

Feature

Fusion

Box head

Mask head masks

boxes

classes
+

(a) (b)

HxWx3

𝐻4x
𝑊4 x256
𝐻8x

𝑊8 x512
𝐻16x

𝑊16x1024
𝐻32x

𝑊32x2048 𝐻32x
𝑊32x256
𝐻16x

𝑊16x256
𝐻8x

𝑊8 x256

𝐻4x
𝑊4 x256

𝐻4 x𝑊4 x256 x 5

𝐻4 x𝑊4 x256 x 5

convx 2

convx 2

Fseg

FDTP6
𝐻64x

𝑊64x256
P2 to 6

P2 to 5

conv +softmax

conv +softmax
P2 to 6

Figure 2. Overview of our proposed architecture. (a) Feature Pyramid Network (FPN) [18] is used as the backbone in our network with

an extra layer P6 generated from subsampling P5. (b) Features from the auxiliary distance transform (top) and semantic segmentation

(bottom) branches are fused with the backbone features, and then pooled using our multi-scale pooling mechanism. The pooled feature are

used to predict the class, bounding box, and mask of each proposal.

content, coarser-resolution features may provide important

contextual cues, while larger proposals can benefit from the

high localization accuracy of finer-resolution features. Fi-

nally, for DATNet, where the features maps contain fused

features, the FPN’s hard selection of single-scale feature

maps is not necessarily the best strategy to make use of

these fused features.

To address these issues, for each proposal, we concate-

nate the features from all levels into a single multi-scale

feature map and let the network decide the relative impor-

tance of each channel via an attention mechanism. We call

this process multi-scale pooling with attention (MSPwA).

More specifically, first, similar to FPN [18], for each pro-

posal, we create four feature maps, each representing one

of the four scale-levels. Next, we concatenate these feature

maps (channel-wise) together. In the next layer, we use a

squeeze-and-excitation (SE) attention operation [14] to fo-

cus further processing on the most informative channels in

the concatenated feature map. In particular, the SE atten-

tion layer re-weights all the channels by a per channel mul-

tiplicative scalar, ranging between zero and one (see Fig.

3).

Following the MSPwA block, the final processing stage

consists of a set of ROI heads, i.e., the bounding box and

mask predictor heads. In previous work [18, 10], the box

predictor head includes two fully connected layers (2fc) to

extract features from the ROIs. Since the number of feature

channels is now four times larger (due to the concatena-

tion of the scale levels), keeping 2fc would require adding

a large number of new parameters to the head and yields a

limited performance gain (see Sec. 4.2). Also, the 2fc ar-

chitecture is optimized for FPNs, and hence, does not nec-

essarily take full advantage of the additional contextual and

Figure 3. Overview of our multi-scale pooling with attention

(MSPwA). Numbers denote spatial resolution and channels.

multi-scale information in the feature map provided by DT

and MSPwA. To address these issues, we alter the architec-

ture of the box head by using the ResNet Conv5 (res5) block

[12]. The res5 feature extractor has been previously used in

[10], but only in their single-scale model. Here, we use res5

to let the network exploit the extra information provided by

auxiliary features and multi-scale pooling. We also experi-

mented with other strong heads, such as the one suggested

in [20] with four convolutions and one fully connected layer

(4conv1fc), but found that res5 returned the highest detec-

tion accuracies (see Sec. 4.2).

We propose two different ROI head architectures, re-

ferred to as Light and Heavy. Both use the res5 feature

extractor for the box head but the latter shares it with the

mask head and employs a higher pooling resolution. Addi-

tional details are provided in Sec. 3.3.

3.3. Implementation details

Our network is trained end-to-end minimizing the loss in

Eq. 3. We implemented our method in PyTorch [24] based

on the recent maskrcnn-benchmark code [23].

Auxiliary image tasks. The auxiliary image tasks take

as input the four FPN [18] feature maps (P2, . . . , P5) and

an extra coarse (P6) resolution generated by subsampling

P5. All feature maps, excluding P2, are upsampled to quar-

ter resolution using a sequence of convolution, ReLU, and

1422

×2 bilinear upsampling operations. The upsampled feature

maps are summed together and further processed using a se-

quence of two convolutions with ReLU. This yields the fea-

tures F (of size H
4 ×

W
4 × 256), used in feature fusion. For

the purpose of auxiliary loss computation, one final convo-

lution and softmax is used to generate per-pixel probabili-

ties. All convolutions are 3×3 with 256 channels, except the

final one where the number of output channels corresponds

to the number of object classes or distance transform bins.

Feature fusion. For feature fusion, the DT features,

FDT , and semantic segmentation features, Fseg , are re-

sized using bilinear interpolation to the resolution of each

FPN level i and summed with the respective backbone fea-

tures, yielding new features maps P ′

2, . . . , P
′

5, where P ′

i =
Pi+ resizei(FDT)+ resizei(Fseg), and resizei(x) resizes x

to the resolution of Pi. Section 4.3 evaluates a more elabo-

rate fusion mechanism, which yields additional benefits for

proposal generation; however, the simple fusion strategy

above, used for all the experiments in this paper, already

yields competitive results. The fused features are used by

the standard Mask R-CNN RPN, box, and mask heads.

MSPwA. We use ROIAlign [10] to extract four k×k×256
feature maps, one from each level of FPN, and concatenate

them to form a k × k × 1024 feature map. We use different

k values for the Light and Heavy heads (see the next two

paragraphs for details). The channels are then re-weighted

using an SE attention layer with max-pooling and a reduc-

tion ratio of 16 (see [14] for details).

Light ROI head architecture. The Light architecture uses

lower-resolution 7 × 7 feature maps (MSPwA with k = 7)

for the box head and higher resolution 14×14 feature maps

(MSPwA with k = 14) for the mask head. For the box

head, we use res5, followed by average pooling. For the

mask head, we use the mask head architecture suggested

by [10] for FPNs (see Fig. 4 left). In particular, the mask

head uses a stack of convolutional layers followed by spa-

tial upsampling to form 28 × 28 feature maps and another

convolutional layer.

Heavy ROI head architecture. Our Heavy architecture is

consistent with the single-scale feature extractors proposed

in [10]. Feature maps are pooled to 14 × 14 × 1024 ROIs

(MSPwA with k = 14), followed by a shared res5 feature

extractor for box and mask heads. For the mask head, the

res5 extractor is followed by spatial upsampling with two

convolutional layers yielding 14 × 14 masks (see Fig. 4

right). In Sec. 4, we show that the higher pooling resolu-

tion in the Heavy method leads to higher box AP at the cost

of processing time. For masks, there is a trade-off, as the

Light method predicts masks at a higher resolution. Since

our focus is object detection rather than instance segmenta-

tion, improvement of the mask head is left for future work.

Figure 4. Proposed Light and Heavy ROI head architectures. The

numbers denote the spatial resolution and channels of each feature

map. All convolutions (conv) are 3 × 3, except the output conv

which is 1× 1. ‘res5’ denotes the fifth stage of ResNet [12] (with

a stride of two in its first conv layer), ‘upsamp’ refers to spatial

upsampling with strided transposed convolution, and ‘×4’ denotes

a stack of four consecutive conv layers.

4. Empirical evaluation

We perform extensive ablation studies and compare vari-

ous instantiations of DATNet (Ours) to other closely related

baselines. We make direct comparison with Mask R-CNN

[10] and the winner of the 2017 COCO Challenge, PANet

[21]. To the best of our knowledge PANet is the leading ob-

ject detection method that does not employ an ROI cascade.

Similar to PANet, we report results with and without multi-

scale training (MST). Unlike PANet, we do not make use of

synchronized batch normalization.

In the Mask R-CNN appendix [10], end-to-end training

details are provided, resulting in higher accuracy; however,

in the main manuscript evaluation is based on pre-computed

proposals. In our case, end-to-end training is essential,

since features are fused prior to RPN. For fairness, we use

the end-to-end baselines reported in [23], which are more

accurate than [10].

Datasets. We evaluate our method on the standard COCO

2017 [19] and Pascal VOC [5] datasets.

The COCO 2017 [19] consists of 80 object categories

with ∼118k, 5k, and ∼20k images available for training,

validation (val), and testing on the test server (test-dev), re-

spectively. We perform ablation studies on the val set and

compare to other approaches on the test-dev set. We fol-

low the official evaluation metrics [19]: average precision

(AP), AP50, AP75, APS , APM and APL, measuring the av-

erage precision for different intersection over union (IoU)

thresholds (0.5 to 0.95), and object sizes, small (S), medium

(M), and large (L). While the main objective of this paper

is object detection, since our method returns both bounding

boxes and masks, we present results on both.

We use Pascal VOC [5] to show that our approach to in-

tegrating auxiliary tasks is beneficial even in the absence

of instance segmentation annotations. Following [26], we

trained on VOC2007 and VOC2012 trainval (16551 im-

ages) and tested on VOC2007 test (4952 images). In place

of instance segmentation ground truth, we use the bound-

ing boxes and their corresponding labels as coarse proxies.

Since the standard AP50 measure used on Pascal VOC is

saturated, we report results using the COCO metrics.

1423

Object Detection Instance Segmentation

Method Backbone AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN [23] ResNet-50 38.0 59.8 41.4 21.3 40.2 48.1 34.2 56.4 36.1 14.9 36.0 49.5

PANet [21] ResNet-50 41.2 60.4 44.4 22.7 44.0 54.6 36.6 58.0 39.3 16.3 38.1 53.1

PANet (MST) [21] ResNet-50 42.5 62.3 46.4 26.3 47.0 52.3 38.2 60.2 41.4 19.119.119.1 41.141.141.1 52.6

Ours Light ResNet-50 40.7 62.1 44.5 23.1 43.0 52.4 36.5 58.9 38.9 16.3 38.4 52.5

Ours Heavy ResNet-50 41.9 62.5 45.8 24.1 44.3 53.1 36.5 59.6 38.9 16.9 38.3 51.9

Ours Light (2×) ResNet-50 41.3 62.5 45.2 23.2 43.4 52.9 37.0 59.4 39.4 16.8 38.7 53.2

Ours Heavy (2×) ResNet-50 42.5 62.7 46.3 24.4 44.5 54.6 36.8 59.9 39.2 17.3 38.3 52.6

Ours Light (MST, 2×) ResNet-50 43.4 65.0 47.7 25.6 45.8 55.1 38.7 61.8 41.4 18.4 40.4 55.155.155.1

Ours Heavy (MST, 2×) ResNet-50 44.744.744.7 65.365.365.3 49.249.249.2 26.926.926.9 47.147.147.1 56.556.556.5 38.838.838.8 62.562.562.5 41.741.741.7 19.119.119.1 40.6 54.4

Mask R-CNN [23] ResNeXt-101 42.6 64.9 46.7 25.3 45.8 53.3 37.8 61.4 40.0 17.6 40.3 54.1

PANet [21] ResNeXt-101 † 45.0 65.0 48.6 25.4 48.6 59.1 40.0 62.8 43.1 18.8 42.3 57.2

PANet (MST) [21] ResNeXt-101 † 47.4 67.2 51.8 30.1 51.751.751.7 60.0 42.042.042.0 65.1 45.745.745.7 22.422.422.4 44.744.744.7 58.1

Ours Light ResNeXt-101 45.1 66.5 49.6 26.9 48.1 57.2 39.8 63.3 42.6 19.2 42.1 56.8

Ours Heavy ResNeXt-101 45.8 66.8 50.3 28.0 48.8 57.9 39.7 63.8 42.6 19.8 42.0 56.0

Ours Light (MST, 2×) ResNeXt-101 47.4 68.968.968.9 52.2 29.4 50.0 59.7 41.7 65.7 44.7 21.2 43.9 58.858.858.8

Ours Heavy (MST, 2×) ResNeXt-101 48.048.048.0 68.8 52.952.952.9 30.330.330.3 50.8 60.260.260.2 41.4 65.865.865.8 44.6 21.8 43.5 57.7

Table 1. Evaluation of box and mask AP on COCO test-dev. 2× and MST denote double learning schedule and multi-scale training,

respectively. No test time enhancements are used. † denotes PANet uses ResNeXt-101 64× 4d while we use 32× 8d.

DT head Semantic head AP/APM AP50/APM
50 AP75/APM

75 APS /APM
S APM /APM

M APL/APM
L

✗ ✗ 37.7/34.3 59.3/55.9 41.0/36.3 21.8/15.6 40.9/36.8 49.6/51.0
✓ ✗ 39.0/35.2 60.3/56.9 42.3/37.3 22.5/15.9 41.9/37.7 51.3/52.0
✗ ✓ 38.6/35.0 60.5/57.3 42.0/37.3 22.5/16.2 41.4/37.3 50.6/51.8
✓ ✓ 39.339.339.3/35.535.535.5 61.161.161.1/57.857.857.8 42.642.642.6/37.637.637.6 23.223.223.2/16.616.616.6 42.042.042.0/37.837.837.8 51.851.851.8/52.452.452.4

Table 2. Ablation of image heads on COCO 2017 val. All results are based on the same pooling and ROI processing as Mask R-CNN,

thus the first row corresponds to the Mask R-CNN baseline. These results show the performance gains obtained from adding different

combinations of the per-pixel tasks.

Training details. Our network starts from public pre-

trained ImageNet weights provided in [23]. We use the set-

tings from [10] for training. For each image, we sample 512
regions-of-interest (ROIs) with a positive-to-negative ratio

of one to three. We train using SGD with weight decay of

0.0001 and momentum of 0.9. The default data augmen-

tation strategy is random color jitter, image resizing, and

random horizontal flipping. In the case of multi-scale train-

ing (MST), image resizing randomly selects a size from a

predefined list. The remaining settings are dataset and ar-

chitecture dependent.

For training on COCO, we use the official 1× schedule

[23]. With a ResNet-50 backbone, we use a batch of 16
images, training for 90k iterations, with the learning rate

initialized at 0.02 and reduced by 10 at 60k and 80k itera-

tions. Similar to [10], images are scaled while maintaining

the aspect ratio. We scale the short image edge to 800 pix-

els while not allowing the long image edge to exceed 1333.

For MST, the shorter image edge is randomly chosen be-

tween 400 and 1200, while the longer edge cannot exceed

1400. For the ResNeXt-101 (32 × 8d) backbone [30] we

use a batch size of eight images, scaling the learning rate

and the schedule proportionally [9]. Following the observa-

tions in [10] about the positive effect of longer training, we

also evaluate a double training schedule (2×), which is the

default training schedule in [21].

For Pascal VOC, we use a batch size of eight images,

training for 24k iterations, with the learning rate initialized

at 0.01 and reduced by 10 at 18k iterations. The image di-

mensions are scaled in the 600 to 1000 pixel range. We

retrain the Faster R-CNN and Mask R-CNN baselines us-

ing the same settings. Since our goal for Pascal VOC is

to show a use-case without instance segmentation ground

truth rather than obtain state-of-the-art accuracy, we report

results only with the ResNet-50 backbone.

4.1. COCO evaluation

We compare our model to the Mask R-CNN and PANet

baselines. Table 1 shows the results on the COCO test-dev

set. Our best method (Heavy), significantly outperforms

the corresponding Mask R-CNN baselines with both back-

bones on box AP (+6.7 mAP for ResNet-50 and +5.4 mAP

for ResNeXt-101) and mask AP (+4.6 mAP for ResNet-50

and +3.9 mAP for ResNeXt-101). Compared to PANet, we

realize an improved box AP with and without MST: +2.2
mAP for ResNet-50 and +0.6 mAP for ResNeXt-101 with

MST, and +1.3 mAP for ResNet-50 without MST. The lat-

ter is only 1.1 mAP behind the baseline from [3] which is

currently the top method on the COCO instance segmen-

tation leaderboard (modulo bells and whistles). Moreover,

the cascaded ROI approach is conceptually orthogonal to

our own, and could be added to further improve upon our re-

sults. Such a combination is beyond the scope of the current

paper. For mask AP, our method is comparable to PANet

(+0.6 mAP for ResNet-50 and −0.3 mAP for ResNeXt-

101), despite PANet’s use of synchronized batch normaliza-

1424

MSPwA Box Fext AP/APM AP50/APM
50 AP75/APM

75 APS /APM
S APM /APM

M APL/APM
L

✗ 2fc 37.7/34.3 59.3/55.9 41.0/36.3 21.8/15.6 40.9/36.8 49.6/51.0
✗ 4conv1fc 37.8/33.9 58.1/55.0 41.3/35.8 21.2/15.2 40.9/36.5 50.1/50.7
✗ res5 38.6/34.2 59.1/55.7 42.0/36.2 22.1/15.5 41.4/36.6 50.8/50.5
✓ 2fc 38.0/34.8 59.9/56.5 41.1/36.9 21.9/15.6 41.1/37.6 49.8/51.7
✓ 4conv1fc 38.0/34.4 58.9/55.9 41.2/36.5 20.9/14.8 40.9/37.2 50.1/51.6
✓ res5 39.539.539.5/35.435.435.4 60.460.460.4/57.157.157.1 43.143.143.1/37.637.637.6 23.423.423.4/16.216.216.2 42.842.842.8/37.837.837.8 52.052.052.0/52.652.652.6

Table 3. Ablation of the multi-scale pooling components on COCO 2017 val. For this experiment we use the original Mask R-CNN loss

for training (w1 = w2 = 0 in Eqn. 3), thus the first row corresponds to the Mask R-CNN baseline.

Head Training AP/APM AP50/APM
50 AP75/APM

75 APS /APM
S APM /APM

M APL/APM
L

Light 1x 40.3/36.1 61.6/58.2 44.2/38.6 24.1/16.6 43.5/38.5 53.9/53.9
Light 2x 41.0/36.6 61.7/58.8 44.7/38.8 24.8/17.6 43.7/38.7 54.8/54.8
Light MST 2x 42.8/38.138.138.1 64.0/60.5 47.3/40.6 26.7/18.6 45.8/40.640.640.6 56.6/56.356.356.3
Heavy 1x 41.4/36.2 61.7/58.7 45.0/38.7 24.8/17.8 44.7/38.6 55.2/53.3
Heavy 2x 42.3/36.6 62.2/59.0 46.3/38.9 25.7/17.7 45.2/38.7 56.6/54.0
Heavy MST 2x 43.943.943.9/38.0 64.364.364.3/61.261.261.2 48.548.548.5/40.740.740.7 27.627.627.6/19.419.419.4 47.147.147.1/40.5 57.457.457.4/55.0

Table 4. Ablation of training settings and ROI head architectures on COCO 2017 val. 2× and MST denote double learning schedule and

multi-scale training, respectively.

tion. Figure 5 shows qualitative results of DATNet Heavy

ResNeXt-101 on COCO test-dev.

4.2. Ablation study

In this section, we analyze the effect of the two auxiliary

branches and the components of multi-scale pooling. Sim-

ilar to previous work (e.g., [3, 21]), we use the ResNet-50

FPN backbone for all ablations. We evaluate on the COCO

2017 validation set and report box AP and mask APM using

the standard COCO metrics.

Auxiliary image heads. We evaluate the effect of each of

the auxiliary heads independently, as well as their combi-

nation. For this analysis, pooling and ROI processing is

identical to Mask R-CNN. Table 2 summarizes the results

of this evaluation. As shown in the table, while each head

is beneficial on its own, their combination yields the best

result (+1.6 mAP).

Multi-scale attention pooling. We evaluate the contribu-

tion of multi-scale pooling with attention (MSPwA) across

different box feature extractors (Box Fext). We take Mask

R-CNN as our baseline for this experiment, i.e., we set

w1 = w2 = 0 in Eqn. 3. Without multi-scale pooling, the

two baseline extractors perform similarly, while res5 yields

a +0.9 box mAP. With multi-scale pooling, the baseline

extractors yield minor improvements in box mAP (+0.3
for 2fc and +0.2 for 4conv1fc). The largest improvement

comes from using res5 (with our Light head), yielding +1.8
box mAP. We also note that the combination of MSPwA

with res5 provides a larger improvement compared to the

sum of the improvements from each component.

Heavier head, multi-scale training, and 2× training

schedule. We analyze the effect of the remaining enhance-

ments in Table 4. Longer training yields +0.7 (+1.1) box

mAP improvement for DATNet Light (Heavy). Multi-scale

training augmentation yields further +1.8 (+1.6) box mAP

for DATNet Light (Heavy). Heavy outperforms Light by

+1.1 box mAP, but performs similarly for mask mAP. The

latter can be explained by the use of a lower feature resolu-

tion for the mask head in the Heavy variant.

4.3. Region proposal evaluation

One of the motivating factors for early feature fusion is

to obtain better box proposals from RPN. Table 5 analyzes

the average proposal recall for different architectures with

a ResNet-50 backbone. We report results for 100 and 1000
proposals. While the box and mask heads have elaborate

feature extractors, RPN is extremely shallow. As a result,

our default feature fusion strategy from Sec. 3.3, which has

no learned parameters, has only a marginal effect on pro-

posal recall. Here, we experiment with more advanced fu-

sion strategies that contain multiple Conv+ReLU layers af-

ter the sum. The layers are shared across all FPN scales.

The last two rows in Table 5 show that adding these extra

layers has a positive effect on proposal recall, yielding +3.4
(+5.5) AR100 and +1.8 (+3.4) AR1000, for two and four

layers, respectively. We leave further exploration of feature

fusion strategies for future work.

4.4. Pascal VOC evaluation

Here we make the case for using our model despite the

unavailability of instance segmentation ground truth. Ta-

ble 6 illustrates that using coarse proxy masks created us-

ing bounding boxes is beneficial, with Mask R-CNN out-

performing Faster R-CNN, and our DATNet outperforming

Mask R-CNN.

1425

Model AR100 AR100
S AR100

M AR100
L AR1K AR1K

S AR1K
M AR1K

L

Mask R-CNN [23] 48.2 32.8 55.1 65.6 59.3 48.3 66.3 68.6
Ours Light (sum) 49.4 34.3 56.0 66.3 59.6 48.8 66.1 69.5
Ours Heavy (sum) 48.8 34.0 55.2 65.6 59.2 48.7 65.4 68.9

Ours Heavy (sum2conv) 51.6 37.0 57.5 69.1 61.1 50.3 66.8 72.0
Ours Heavy (sum4conv) 53.753.753.7 38.838.838.8 59.859.859.8 71.171.171.1 62.762.762.7 51.751.751.7 68.368.368.3 73.973.973.9

Table 5. RPN proposal recall on COCO 2017 val. All models use the ResNet-50 FPN backbone. For variants of our method, the feature

fusion operation is indicated in brackets.

Figure 5. Qualitative object detection and instance segmentation results of our method on COCO test-dev.

Model AP AP50 AP75

Faster R-CNN [23] 46.5 76.5 50.4
Mask R-CNN [23] 47.9 76.6 51.9

Ours Light 49.249.249.2 77.377.377.3 53.453.453.4

Table 6. Results on Pascal VOC 2007 test. All models use the

ResNet-50 FPN backbone.

Model Backbone
Time Parameters

(msec) (millions)

Mask R-CNN [23] ResNet-50 91 44.4

Ours Light ResNet-50 220 62.3

Ours Heavy ResNet-50 391 59.9

Mask R-CNN [23] ResNeXt-101 219 107.4

Ours Light ResNeXt-101 414 139.2

Ours Heavy ResNeXt-101 594 136.8

Table 7. Per image inference speed and model size comparison.

All results are based on an NVIDIA Tesla P100 GPU.

4.5. Run­time and memory comparison

In Table 7, we compare the inference run-time and size

of different models. For the timing analysis, we use eight

NVIDIA Tesla P100 GPUs (with one image per GPU) and

report the per image per GPU inference time, averaged

across COCO 2017 val set images. Our models have a

∼ 30% increase in model parameters compared to the re-

spective Mask R-CNN baseline. The inference time of our

models is considerably longer, primarily due to the process-

ing of multiple ROIs with a much heavier box head. The

long inference time of the Heavy variant (despite it having

fewer parameters than Light), is due to the higher resolution

of pooling (14× 14 versus 7× 7) in the box head.

5. Conclusion

In summary, we proposed an object detection archi-

tecture, DATNet, that combines favourable aspects from

single- and two-stage detectors. Our architecture consists

of a common backbone trained with additional per-pixel

auxiliary losses, features derived for these auxiliary tasks

are fused with those from the backbone, and multi-scale

attention for feature pooling for the box and mask heads.

Through an extensive set of empirical evaluations this archi-

tecture was shown to provide detection improvements over

comparable baseline detectors.

1426

References

[1] M. Bai and R. Urtasun. Deep watershed transform for in-

stance segmentation. In CVPR, pages 2858–2866, 2017. 2,

3

[2] Z. Cai and N. Vasconcelos. Cascade R-CNN: Delving into

high quality object detection. In CVPR, pages 6154–6162,

2018. 1, 2

[3] K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng,

Z. Liu, J. Shi, W. Ouyang, C. C. Loy, and D. Lin. Hybrid

task cascade for instance segmentation. In CVPR, 2019. 2,

6, 7

[4] J. Dai, K. He, and J. Sun. Instance-aware semantic segmenta-

tion via multi-task network cascades. In CVPR, pages 3150–

3158, 2016. 2

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The Pascal visual object classes (VOC) chal-

lenge. IJCV, 88(2):303–338, 2010. 2, 5

[6] R. B. Girshick. Fast R-CNN. In ICCV, pages 1440–1448,

2015. 1, 2

[7] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

feature hierarchies for accurate object detection and semantic

segmentation. In CVPR, pages 580–587, 2014. 2

[8] G. Gkioxari, J. Malik, and J. Johnson. Mesh R-CNN. In

ICCV, 2019. 2

[9] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,

L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.

Accurate, large minibatch SGD: Training ImageNet in 1

hour. arXiv preprint arXiv:1706.02677, 2017. 6

[10] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

R-CNN. In ICCV, pages 2980–2988, 2017. 1, 2, 3, 4, 5, 6

[11] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition.

TPAMI, 37(9):1904–1916, 2015. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 4, 5

[13] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei. Relation networks

for object detection. In CVPR, pages 3588–3597, 2018. 3

[14] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. In CVPR, pages 7132–7141, 2018. 3, 4, 5

[15] A. Kirillov, R. B. Girshick, K. He, and P. Dollár. Panoptic

feature pyramid networks. In CVPR, 2019. 2, 3

[16] I. Kokkinos. UberNet: Training a universal convolutional

neural network for low-, mid-, and high-level vision using

diverse datasets and limited memory. In CVPR, pages 5454–

5463, 2017. 2

[17] W. Lee, J. Na, and G. Kim. Multi-task self-supervised ob-

ject detection via recycling of bounding box annotations. In

CVPR, pages 4984–4993, 2019. 2

[18] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and

S. J. Belongie. Feature pyramid networks for object detec-

tion. In CVPR, pages 936–944, 2017. 3, 4

[19] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, pages 740–755, 2014. 2,

5

[20] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. In CVPR, pages 2980–2988,

2017. 2, 3, 4

[21] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia. Path aggregation

network for instance segmentation. In CVPR, pages 8759–

8768, 2018. 2, 3, 5, 6, 7

[22] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: Single shot multibox detec-

tor. In ECCV, pages 21–37, 2016. 2

[23] F. Massa and R. Girshick. maskrcnn-benchmark: Fast,

modular reference implementation of Instance Segmen-

tation and Object Detection algorithms in PyTorch.

https://github.com/facebookresearch/

maskrcnn-benchmark, 2018. 4, 5, 6, 8

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala. PyTorch: An imperative style, high-

performance deep learning library. In NeurIPS, 2019. 4

[25] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi.

You only look once: Unified, real-time object detection. In

CVPR, pages 779–788, 2016. 2

[26] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. TPAMI, 39(6):1137–1149, 2017. 2, 5

[27] J. K. Tsotsos. A Computational Perspective on Visual Atten-

tion. MIT Press, 2011. 2

[28] X. Wang, Z. Cai, D. Gao, and N. Vasconcelos. Towards uni-

versal object detection by domain attention. In CVPR, pages

7289–7298, 2019. 3

[29] S. Woo, J. Park, J. Lee, and I. S. Kweon. CBAM: Convolu-

tional block attention module. In ECCV, pages 3–19, 2018.

3

[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. In CVPR,

pages 1492–1500, 2017. 6

[31] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and

R. Urtasun. UPSNet: A unified panoptic segmentation net-

work. In CVPR, 2019. 2

[32] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-

dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:

Neural image caption generation with visual attention. In

ICML, pages 2048–2057, 2015. 3

[33] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and

S. Savarese. Taskonomy: Disentangling task transfer learn-

ing. In CVPR, pages 3712–3722, 2018. 2

[34] X. Zhao, S. Liang, and Y. Wei. Pseudo mask augmented

object detection. In CVPR, pages 4061–4070, 2018. 2

[35] X. Zhou, D. Wang, and P. Krähenbühl. Objects as points.

CoRR, abs/1904.07850, 2019. 1, 2

[36] X. Zhou, J. Zhuo, and P. Krähenbühl. Bottom-up object de-

tection by grouping extreme and center points. In CVPR,

2019. 1, 2

1427

