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Abstract

It is well believed that object-object relations and object-

scene relations inherently improve the accuracy of object

detection. However, the way to efficiently model relations

remains a problem. Graph Convolutional Network (GCN),

an effective method to handle structured data with relations,

inspires us to leverage graphs in modeling relations for ob-

jection detection tasks. In this work, we propose a novel

approach, Graph Assisted Reasoning (GAR), to utilize a het-

erogeneous graph in modeling object-object relations and

object-scene relations. GAR fuses the features from neigh-

boring object nodes as well as scene nodes and produces

better recognition than that produced from individual ob-

ject nodes. Moreover, compared to previous approaches

using Recurrent Neural Network (RNN), the light-weight

and low-coupling architecture of GAR further facilitates its

integration into the object detection module. Comprehen-

sive experiments on PASCAL VOC and MS COCO datasets

demonstrate the efficacy of GAR.

1. Introduction

Recently, significant development of object detection has

been witnessed due to the advance in deep Convolutional

Neural Networks (CNNs) [25, 39, 18]. The current ob-

ject detection methods [10, 15, 17, 37] mostly follow the

philosophy of anchor or region proposal introduced by R-

CNN [16]. In these approaches, object classification and

bounding box (bbox) regression are performed either on

explicitly selected proposals that are generated from prede-

fined anchors [10, 37], or directly on anchors (or prior boxes)

[29, 36, 27]. Besides, anchor-free methods are also a set of

emerging solutions that achieve admirable performance on

the detection of multi-scale and heavily occluded objects

[22, 24].

Contextual information including scene context and ob-

ject relationships plays a critical role in humans’ capability

of recognizing objects, revealed by psychological investiga-

tions [3, 34]. Take Figure 1a as an example. There are two

cows on the grassland. Implied by the blue sky and shadows,

(a) (b)
Figure 1. (a) Two cows on the grassland. (b) A ship at the seaside.

the scene is outdoor rather than in a room with green mat.

The white objects on the grass can be recognized as cows, or

closely, goats. However, the white cloud cannot be wrongly

detected as cows or sheeps. The most obvious reason is that

it is in sky. Figure 1b is another good example. The man-

made object is probably a ship instead of car or train since it

is on the water. Studies in the computer vision community

are also conducted to boost performance of object detection

by utilizing contextual information. For instance, previous

studies [8, 12, 15, 32, 33] suggest that one can leverage the

modeling of implicit context or explicit relation in recog-

nition algorithms. Specifically, what categories of objects

may appear in a specific scene, or what category of objects

may appear simultaneously with another category of objects.

However, most of the methods were proposed before the

popularity of deep learning and have not been well explored

in modern CNNs on object detection tasks. One of the chal-

lenges in relation modeling is the computation complexity

due to the significant variations in the quantity and category

of objects across different images. Another challenge is

to efficiently encode and process the object relation into a

CNN-based object detector.

In the recent past, Graph Convolutional Network (GCN)

has been successfully applied to node classification on graph-

structured data [23], such as the citation network, text classi-

fication [41] and some other Natural Language Processing

(NLP) tasks [31, 4]. By aggregating information from neigh-

boring nodes, GCN produces better inference than merely

taking the features from an individual node [23]. This in-

trinsic property of GCN provides it unique advantages in

handling entities with relations.
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Motivated by the property of GCN, we propose a novel

approach, namely Graph Assisted Reasoning (GAR), to im-

prove the efficacy of object detection. In the graph of GAR,

the object nodes are regional features generated by Regional

Proposal Network (RPN) and Region of Interest (ROI) pool-

ing, and the scene nodes are learned embeddings from the

entire image features. The edge between two object nodes

is created with object-object co-occurrence, while the edge

between an object node and a scene node is built with object-

scene co-occurrence. Then GAR generates the node scores,

which act as regularizing items for the basic one-layer object

classifier, suppressing abnormal object candidates and am-

plifying probable ones, thus leading to more reliable object

detection.

To summarize, our contributions are as follows:

(1) We propose a novel graph-assisted reasoning ap-

proach, GAR, that leverages GCN for object detection.

(2) To the best of our knowledge, this is the first study

modeling object proposals and scene features as nodes in

an heterogeneous graph, object-object relation and object-

scene relation as edges, converting object detection from a

perception problem to a reasoning problem.

(3) The proposed GAR is an extendable scheme that en-

codes relations into an adjacent matrix for object detection.

Besides the co-occurrence relation, other relations such as

spatial relations and higher level semantic relations can also

be incorporated into the GAR architecture.

2. Related work

2.1. Contextual Methods for Object Detection

Prior to the emergence of deep learning, various ap-

proaches have explored adding contextual information to

improve object detection [2, 19, 33, 40, 12]. In [15], the

detected objects are re-scored by considering object rela-

tionships such as co-occurrence, which implies how likely

two categories of objects can exist in the same image. On

the contrary, the presence of objects in irrelevant scenes is

penalized in [40]. These methods achieved moderate success

in pre-deep learning era but have not been well established

for deep CNNs. One of the possible reasons is that deep

CNNs generally convey implicitly and hidden contextual

information which is hard to use directly. Another reason

is that to accommodate the contextual information within

CNNs is a complicated and nontrivial work.

Recently, some approaches [5, 38, 42] based on deep

CNNs have made attempts to incorporate contextual infor-

mation into object detection. The work ION [5] integrates

contextual information outside the ROI using a spatial RNN.

GBD-Net [42] proposes a gated bi-directional CNN to pass

messages between the features of different support regions

around objects. Shrivastava et al. [38] use segmentation to

provide top-down context to guide region proposal genera-

tion and object detection.

Despite the aforementioned approaches that essentially

exploit local context near objects and the whole image con-

text, Chen et al. [9] propose a sequential reasoning architec-

ture that mainly utilizes object-object relationship to detect

objects in an image sequentially. Similarly, Hu et al. [21]

introduce attention modules to model object-object relations.

Combining both object-object and object-scene relations,

SIN [30] uses Gated Recurrent Unit (GRU) for message

passing. Different from the existing methods, the proposed

GAR adopts a light-weight GCN with an explicit and accu-

rate scene detection module. This property further improves

the efficiency of GAR in object detection with both object-

object relation and object-scene relation considered.

2.2. Graph on Neural Networks

The topic of Graph Neural Networks (GNN) has re-

ceived growing attention recently [7, 6]. Kipf et al. [23]

presents a simplified yet well-behaved GNN model, i.e.,

GCN, which achieves state-of-the-art classification results

on several benchmark graph datasets. GCN is then explored

in several NLP tasks such as semantic role labeling [31] and

machine translation [4] to encode the syntactic structure of

sentences.

In [11], a document or a sentence is treated as a graph of

word nodes, and GCN-Text [41] regards both the documents

and words as nodes and constructs the corpus graph. In our

work, proposal features and learned scene embeddings form

the nodes of the heterogeneous graph, and the co-occurrence

that is appropriately processed embodies the edges of the

graph in GAR.

3. Approach

Our approach is designed upon the heterogeneous graph

composed by object-object subgraph and object-scene sub-

graph. In this section, we will firstly derive the edges, i.e.,

relations of contextual information. Then we will show the

relation graphs computing flow within the entire object de-

tection network, as shown in Figure 2.

3.1. Relation Modeling

Adopting the same spirit as GCN-Text [41], we use co-

occurrence to encode the relations among objects and scenes.

There are four relations involved in GAR: (i) object-

object, estimating the probability of two different cate-

gories of objects appear in the same image; (ii) object-

indoor/outdoor, measuring the frequency of all types of ob-

jects appear in the indoor/outdoor scenario; (iii) object-place,

wherein place represents place categories such as "living

room", "museum", etc.; and (iv) object-attribute, wherein

attribute represents scene attribute such as "natural light",

"human-made", etc. Scene-scene relations are not required
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Figure 2. (a) The architecture of GAR. RPN and associated modules give N proposals (each with a size of F ). The cRCN generates N

cursory class scores (each with a size of O) and N bbox regression with a size of 4. Meanwhile, the scene detector generates scene-related

labels with a size of 469. Scene pooling picks and concatenates S scene nodes from 469 of them, which are generated from scene embedding

module. (b) The GCR module merges the instance subgraph and the scene subgraph as a heterogenous graph. Nodes are proposal features

ins1 , · · · ,insN and selected scene embeddings scn1, · · · , scnS . Edges are created from the normalized co-occurrence matrix that are

elaborated in the following section.

since GAR is object detection oriented. As classic datasets

in object detection are typically lack of scene labels, we train

a scene detector on the Place365 [43] recognition dataset

to extract scene information for generating co-occurrence

matrices for object-scene relations, i.e., (ii), (iii) and (iv).

The above four relations are elaborated as follows:

Object-object relation The value of each co-occurrence

entry represents the co-occurrence number enumerating the

entire training images. Multiple occurrences of objects with

the same class label in a single image are counted as 1.

Calculation of the 2D O × O object-object co-occurrence

matrix E
obj
obj can be formulated as:

E
obj
obj (i, j) =

M∑

x=1

{
1, if DETx(i) & DETx(j)

0, otherwise
(1)

where DETx(i) means that the x-th training sample contains

the object(s) with class index i. "&" means its left event and

its right event happen at the same time. M represents the

size of the training set and O is the number of classes in the

selected dataset. It is worth noting that diagonal entries (self-

loop) of E
obj
obj are 0 instead of 1, as self-loop information is

adaptively learned in GAR. The cumulative co-occurrence

is normalized within GAR computing which is described in

the following content.

Object-indoor/outdoor relation Indoor/outdoor is a bi-

nary label for an image. The output of the scene detector

is composed of "indoor/outdoor" label (scalar), place cat-

egories (a vector containing 365 elements) and scene at-

tributes (a vector containing 102 elements).

The calculation of the O × 2 object-indoor/outdoor co-

occurrence E
io
obj is:

E
io
obj(i, :) =

M∑

x=1

{
[1 0], if DETx(i) & INOUTx(indoor)

[0 1], if DETx(i) & INOUTx(outdoor)

(2)

Where INOUTx(indoor) means that the image x is clas-

sified as "indoor". DETx(i) is a vector composed by class

indices of all objects detected in image x.

Object-place relation The scene detector infers place la-

bels among 365 place categories. We will calculate the

O × 365 object-place co-occurrence E
plc
obj by:
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Algorithm 1: cls-roi edge

Data: co-occurance matrix E
obj
obj

cursory instance class score Insscore

self-loop edges for instances A

Result: Instance relation edges Eins
ins

1 Softmax E
obj
obj in a row-wise manner;

2 for every instance pair: {i, j} do

3 get cursory instance class label:

4 clsi = argmaxk∈O {Insi,kscore};

5 clsj = argmaxk∈O {Insj,kscore};

6 get instance relation:

7 E i,j
ins = E

obj
obj (cls

i, clsj) ;

8 add self-loop edge:

9 E i,i
ins = E i,i

ins +A(i), ∀ i ∈ [0, N).

10 end

11 Ẽ
ins
ins = Softmax Eroi in a row-wise manner;

E
plc
obj(i,p) =

M∑

x=1

{
1, if DETx(i) & PLACEx(p)

0, otherwise
(3)

where PLACEx(p) means that place labels with indices

p are detected in the image x. Multiple place categories are

taken since they could be synonyms in the sense of "scene",

sharing the similar scene context.

Object-attribute relation The scene attributes are also

generated by the scene detector among 102 classes. The

O × 102 object-attribute co-occurrence E
atr
obj is calculated

by:

E
atr
obj (i,q) =

M∑

x=1

{
1, if DETx(i) & ATTRx(q)

0, otherwise
(4)

Similarly, ATTRx(q) means scene attribute labels with

indices q are detected in image x.

3.2. GAR Design

Different from existing works that use implicit visual

appearance context, GAR is designed to make use of explicit

object-object/scene relation to reward or penalize object

proposals and thus assist object detection.

GAR is composed of four major modules: (i) a backbone

object detector that generates object proposals, (ii) a scene

detector that generates scene labels, (iii) a cursory Regres-

sion and Classification Network (cRCN) that returns the

cursory detection scores as well as a spatial adjustment vec-

tor for each object proposal, and (iv) Graph Convolutional

Algorithm 2: scene-roi edge

Data: scenic co-occurrence matrices Eio
obj , E

plc
obj ,

E
attr
obj ,

cursory ROI class score ROIscore,

indoor/outdoor score Inscore/ Outscore,

place category scores Plcscore,

attribute scores Attrscore

Result: scene-ROI relation graph Escene−roi

1 Softmax co-occurrence matrices in a row-wise

manner;

2 for every ROI pair: {i, j} do

3 get ROI cls:

4 Ri
cls = argmaxk∈K {ROIi,kscore};

5 R
j
cls = argmaxk∈K {ROIj,kscore};

6 get ROI relation:

7 E i,j
roi = ROI

Ri
cls,R

j

cls
score

8 end

9 Softmax Eroi in a row-wise manner;

Reasoning (GCR) module which takes cursory detection,

object/scene features (nodes) and prior relation knowledge

(edges) as inputs and generates the graph reasoning scores.

The entire framework of GAR is illustrated in Figure 2.

GAR is a general method. In this work, we use Faster R-

CNN [37] as the backbone object detector for demonstration

purpose. Other CNN-based detectors are also compatible

with it.

Object edges to instance edges In Faster R-CNN, thou-

sands of region proposals that might contain objects are

obtained after Region Proposal Network (RPN). Non-

Maximum Suppression (NMS) [14] is then used to select a

fixed number (e.g., N=300) of ROIs. Next, for each ROI i,

its visual feature vi is processed by the ROI pooling and a

fully connected projection layer. Consequently, the instance

feature matrix Vroi concatenated by all N ROI vectors is fed

into cRCN to get N cursory class scores and bbox adjust-

ment.

The N × N relation edges among N instances, Eins
ins ,

is obtained by utilizing the prior O × O object-object co-

occurrence E
obj
obj and the cursory detection score, as shown

in Algorithm 1.

Scene nodes and instance-scene relation In GAR, in-

stance nodes of the GCR module input are the instance fea-

ture matrix Vins in the shape of N × F , which are naturally

compatible with GCN. However, the latent feature of the

whole image is in the shape of 512× 14× 14 (conv5_3 of

VGG-16 [39]). Therefore, we design a scene nodes embed-

ding module to project the latent scene features in the same
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Net mAP arpl. bike bird boat bot. bus car cat chr. cow tbl. dog hrs. mbk. prs. plt. shp. sofa trn. tvm.

FS-N 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

FR-N 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

SSD500 [29] 75.1 79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

ION [5] 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

SIN [30] 76.0 77.8 73.6 61.2 61.7 83.6 85.9 85.1 56.6 83.4 67.2 81.7 83.9 78.4 78.2 47.5 73.3 68.3 77.8 76.7 70.0

GAR 76.1 77.4 81.3 74.8 65.9 59.9 85.0 86.6 88.6 56.2 84.6 72.2 86.9 86.2 77.3 79.2 46.8 77.4 4.6 83.2 77.3

Table 1. Detection on PASCAL VOC 2007, trained on VOC 2007 and VOC 2012 trainval combined. Abbreviation: Fast R-CNN (FS-N)

[16], Faster R-CNN (FR-N), aeroplane (arpl.), bottle (bot.), chair (chr.), table (tbl.), horse (hrs.), motorbike (mbk.), person (prs.), plant (plt.),

sheep (shp.), train (trn.), tvmonitor (tvm.).

Net mAP arpl. bike bird boat bot. bus car cat chr. cow tbl. dog hrs. mbk. prs. plt. shp. sofa trn. tvm.

FS-N 68.3 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72 35.1 68.3 65.7 80.4 64.2

FR-N 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

SIN 73.1 84.8 79.5 74.5 59.7 55.7 79.5 78.8 89.9 51.9 76.8 58.2 87.8 82.9 81.8 81.6 51.2 75.2 63.9 81.8 67.8

GAR 73.1 84.9 80.1 74.6 58.0 53.9 80.0 78.9 89.5 49.8 77.6 58.4 88.3 83.2 81.5 82.4 50.7 76.4 63.6 82.2 67.7

Table 2. Detection results on PASCAL VOC 2012, trained on VOC 2007 trainval, 2012 trainval and 2007 test combined.

space as instance nodes. There are S = 2+2K scene nodes

selected for scene subgraph, including an indoor node, an

outdoor node, K place category nodes, and K scene attribute

nodes. Instance-scene relation edges Escn
ins obtained in a sim-

ilar manner as Algorithm 1. By performing softmax on E
ins
ins

in a row-wise manner, we are able to get a normalized re-

lation measurement of nodes in the heterogeneous relation

graph and maintain the numeric stability while training the

GCR module.

Acquiring of instance-scene edges Escn
ins is distinct from

that of instance-instance edges in two-fold: (i) It selects

S scene nodes rather than all the 469 = (2 + 365 + 102)
nodes to reduce computational complexity and to avoid over-

smoothing [26] induced by overwhelming irrelevant informa-

tion. (ii) It normalizes complementary relations by row-wise

softmax. Concretely, E
plc
ins and E

atr
ins are normalized individ-

ually, while instance-indoor/outdoor relation are normalized

by softmax([Ein
ins, E

out
ins ]). Detailed computing flow is elab-

orated in Algorithm 2.

GCR module Now we get our heterogeneous graph nodes

(instance nodes and scene nodes) and edges ready. It is time

to perform graph reasoning.

The graph is fed into a similar two-layer GCN as used in

[23]. In the first layer, each node has a size of 4096. For the

second layer, each node has a size of 512. The output of a

node is in the same size as the number of object classes. The

scores of instance nodes are generated and then fused to the

cursory scores weighted by learnable factors, generating the

final cogitative scores:

Yg = ÃReLU(ÃXW0)W1 (5)

Z = softmax(
exp(wb)

exp(wb) + exp(wg)
·Yb

+
exp(wg)

exp(wb) + exp(wg)
·Yg) (6)

where Yb is the cursory detection scores, Ã is the normal-

ized adjacent matrix of the heterogeneous graph, X are the

nodes. W0, W1 are parameters of the two-layer GCN. wb

and wp are fusion factors used for adding graph reasoning

scores with the cursory scores.

4. Experiments

In this section, we evaluate the proposed GAR on PAS-

CAL VOC [13] and MS COCO [28] object detection

datasets. The base detection framework is Faster R-CNN

[37] whose feature extractor is by default a VGG-16 [39]

that is pre-trained on ImageNet classification dataset [25].

Following the same practice as [30], we trained the Faster

R-CNN from scratch as the baseline. We find that train-

ing backbone Faster R-CNN for several epochs and then

jointly training several epochs with GAR performs better

than jointly training from the beginning. This is because

that GAR constructs the instance and scene edges based on

the cursory detection. This training strategy is denoted as

two-stage (M, N) training, where M and N represent the

number of training epochs in the first and the second stage,

respectively. On the contrary, training the whole system from

scratch is denoted as one-stage (M+N) training wherein the

network is trained for M +N epochs in total.

Specifically, when training on VOC 2007 dataset with

two-stage (5, 5) strategy, we use a learning rate of 5 ×
10−4 for the first 5 epochs, then 5 × 10−5 for the last 5

epochs. When training on VOC 2012 trainval with VOC

2007 trainval combined following two-stage (4, 6) strategy,

we use a learning rate of 5 × 10−4 for the first 4 epochs,

then 5× 10−5 for the following 6 epochs. When training on

COCO 2014 dataset with two-stage (4, 6) strategy, we use a

learning rate 5 × 10−4 for the first 4 epochs and 5 × 10−5

for the last 6 epochs.
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Net AP AP
50

AP
70

AP
S

AP
M

AP
L

AR
1

AR
10

AR
100

AR
S

AR
M

AR
L

FS-N 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0

FR-N 21.1 40.9 19.9 6.7 22.5 32.3 21.5 30.4 30.8 9.9 33.4 49.4

ION 23.0 42.0 23.0 6.0 23.8 37.3 23.0 32.4 33.0 9.7 37.0 53.5

SIN 23.2 44.5 22.0 7.3 24.5 36.3 22.6 31.6 32.0 10.5 34.7 51.3

GAR 23.1 44.0 23.1 7.0 23.8 37.1 23.1 32.0 32.4 10.3 35.9 51.7

Table 3. Detection on COCO 2014 test-dev.

GAR mAP arpl. bike bird boat bot. bus car cat chr. cow tbl. dog hrs. mbk. prs. plt. shp. sofa trn. tvm.

K=1 70.2 70.5 77.2 70.1 55.3 52.8 78.4 83.0 83.6 49.8 80.7 59.1 78.0 83.9 75.6 77.1 42.5 72.4 64.2 75.2 73.8

K=3 70.7 71.5 77.7 71.2 56.8 54.4 78.2 83.8 85.0 49.2 81.4 59.0 77.5 83.6 76.1 78.8 43.9 72.0 64.8 76.6 72.9

K=5 70.4 70.9 77.9 69.6 55.1 55.1 76.6 85.0 83.6 48.3 81.4 59.3 80.6 84.1 74.9 77.5 43.9 71.7 65.3 74.2 72.6

K=10 70.2 69.1 78.2 69.8 54.3 53.7 78.9 84.2 83.2 48.3 78.9 61.5 80.5 84.1 75.6 79.0 42.7 73.2 64.1 74.1 71.3

Table 4. Performance on VOC 2007 validation set using different K for scene nodes selection.

4.1. Overall Performance

PASCAL VOC. There are 20 classes of objects in the

VOC dataset. The VOC 2007 dataset consists of about 5k

training and validation combined (trainval) images and 5k

testing images, while VOC 2012 dataset includes about 11k

trainval images and 11k test images. We set two kinds of

training datasets. The evaluations that are performed on the

VOC 2007 and VOC 2012 testing sets are shown in Table 1

and Table 2, respectively. By applying GAR, we get the

mAP of 76.1% on VOC 2007 testing set and mAP of 73.1%
on VOC 2012 testing set.

MS COCO To validate the efficacy of GAR on a larger

dataset, we conduct experiments on COCO and summarize

the results in Table 3. COCO dataset involves 80 object

categories. Different from VOC, COCO dataset uses AP as

its evaluation metric. The overall performance AP averages

mAP over different intersection over union (IOU) thresholds

from 0.5 to 0.95, placing more weight on localization. In

this more challenging dataset, GAR achieves 23.1% on test-

dev score and brings about 2.1% improvement over baseline

detector, again verifying the advantage of its efficacy.

4.2. Design Analysis and Ablation Study

Top K place labels and scene attributes As aforemen-

tioned, a lot of place labels are synonyms which can be

hardly differentiated. For example, "cafeteria", "restaurant"

and "dining hall" are all places for dining and share a lot

of common features. Though making use of more possible

place labels and scene attributes tends to provide more in-

formation about the scene. However, too much irrelevant

information involved aggravates over-smoothing problem

[26] of GCN. To find the optimal design hyper-parameter

K, we conduct evaluations on VOC 2007 validation set with

different K by tuning K, as shown in Table 4. It is observed

that K = 3 achieves the optimal mAP for GAR.

To get a better understanding of object-object/scene rela-

tion, we summarize the top 3 related entities (object classes,

place categories, scene attribute, and indoor/outdoor labels)

in terms of co-occurrence for each object class, as shown in

Table 5. Some interesting phenomenons are observed: First,

the object "person" is highly correlated with other objects

in the VOC dataset; Second, besides "person", "car" usu-

ally appears with "bus" and "motorbike". Meanwhile, these

three methods of transportation are all labeled as "outdoor"

usually appear at "street" and "parking lot" which are fea-

tured by "man-made", "natural-light" and "open-area". In

Table 5, "NA" in the indoor/outdoor field means that neither

the probability of "indoor" nor "outdoor" exceeds 30%.

Scene/Object Ablative Comparison We evaluate the ef-

fectiveness of object-object reasoning (edge) and object-

scene reasoning (scene) separately and compare their per-

formance with the previous work SIN [30]. As shown in

Table 7, all methods are trained on VOC 2007 trainval and

testing set on VOC 2007 testing set. GAR-scene module

achieves better mAP of 70.29% as compared to SIN-scene

with mAP of 70.23%. SIN-edge module provides higher

mAP of 70.31% than GAR-edge with mAP of 70.29%. The

reason is that SIN-edge takes more complicated spatial and

geometric relations, which might contain more information

than co-occurrence relation used in GAR-edge.

Interestingly, it is observed that the edge/scene module

boosts mAP in some categories, such as "boat", "cow",

"horse", "sheep", "tvmonitor", etc. This is expected since

such categories are generally correlated with scene context

and other objects occurrence. However, we observed that

the mAP of "table" is suffering from degradation. One possi-

ble reason is that "table" is so similar to "chair" and "sofa".

Therefore, the possibility of mislabeling as well as the IOU
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aeroplane bicycle bird boat bottle bus car cat chair cow

person person person person person car person chair person person

car car cow car diningtable person bus person diningtable horse

boat bus boat bird chair bicycle motorbike sofa sofa bird

outdoor outdoor outdoor outdoor indoor outdoor outdoor indoor indoor outdoor

airfield raceway water-hole harbor pub bus-station park-lot vetr-office din-room corral

runway crosswalk pond boat-deck beer-hall street street pet-shop din-hall pasture

sky street field ocean bar park-lot raceway kennel liv-room farm

natur-light natur-light natur-light natur-light no-horizon man-made man-made no-horizon no-horizon natur-light

open-area man-made no-horizon open-area enclosed natur-light natur-light enclosed enclosed open-area

man-made no-horizon open-area man-made man-made open-area open-area man-made man-made no-horizon

diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor

chair person person person car person person person person chair

person sofa car car chair chair dog chair car person

bottle chair dog bicycle horse sofa cow tvmonitor boat sofa

indoor NA outdoor outdoor NA NA outdoor indoor outdoor indoor

din-hall veter-ofc corral raceway street roof-grdn pasture liv-room rail-track home-ofc

restaurant outdoor racecourse street indoor vege-grdn farm wait-room platform office

din-room pet-shop stable highway nurs-home liv-room hayfield drm-room platform cmpt-room

no-horizon no-horizon natur-light natur-light no-horizon no-horizon natur-light no-horizon man-made no-horizon

enclosed enclosed open-area man-made man-made man-made open-area enclosed natur-light enclosed

man-made man-made man-made no-horizon natur-light enclosed grass man-made open-area man-made

Table 5. Top 3 related object/scene entities in terms of co-occurrence, on VOC 2007 trainval. From top to bottom: three categories of mostly

co-occurred objects, the indoor/outdoor label, three categories of mostly co-occurred places and three mostly related scene attributes.

Net GAR SIN

Mode Edge Scene Total Edge Scene Total

#FLOPS 540M 17.4M 558M 25.8G 102M 25.9G

#params <1K 2.35M 2.35M 101M 106M 207M

Table 6. Number of FLOPS and number of parameters required by

GAR and SIN modules.

loss are largely increased due to similar relations.

Qualitative Analysis We show representative qualitative

results in Figure 3 to present how GAR with graph reasoning

helps object detection. GAR benefits object detection in two

folds:

(1) It detects obscure objects better with reliable scene

inference. For example, Figure 3a depicts a car in front of a

gas station. With the detected scene and prior knowledge that

"car" is highly correlated with "person", GAR successfully

detects the driver inside the car. Similar reasoning is applied

to the dog in Figure 3b and the person at the left-bottom

corner of Figure 3d.

(2) It helps to drop irrelevant objects which are, in some

sense, ridiculous. For example, the baseline detector detects

the car door as a "tvmonitor" in Figure 3c. While based

on the prior knowledge in Table 5, we know "tvmonitor"

is typically related with "indoor", "enclosed area" and fre-

quently appears in "home office", "office" and "computer

room". Thus, GAR drops this wrong detection correctly.

Other similar cases also demonstrate the efficacy of GAR,

Another example is that the "boat" detected by the baseline

detector in Figure 3d is successfully eliminated by GAR.

Sensitivity of Object Characteristics To further quati-

tively measure the approvement achived by GAR, we look

at a detailed breakdown of results of VOC 2007 using the

detection analysis tool from [20]. Figure 4 provides a com-

pact summary of the sensitivity to each characteristic group

and the potential impact of improving robustness on seven

categories selected by [20], which are ’aeroplane’, ’bicycle’,

’bird’, ’boat’, ’cat’, ’chair’ and ’diningtable’. Overall, our

method is more robust than baseline and SIN method against

occlusion, truncation and area size.

Computational Overhead The proposed GAR is efficient

for both training and inference thanks to its paralleled com-

puting flow and small model size. Use the same feature

extractor network (VGG-16) as the backbone object detec-

tion, we take the output feature of conv5_3 and re-train the

fully connected layer for the scene detector on Place365

scene recognition dataset [43]. Table 6 demonstrates the

number of floating point operations (FLOPs) as well as the

number of parameters required by GAR and compares it with

the previous work SIN [30]. It is observed that SIN requires

much more computing and parameter memory than our GAR

due to its complicated edge calculation and sequential GRU

propagation. We compare the training and inference speed

of baseline Faster R-CNN, SIN and GAR on a single Nvidia

RTX 2080 GPU. For sake of the fair comprarison, we im-

plemente the SIN with Pytorch [35] framework. We also
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Method mAP arpl. bike bird boat bot. bus car cat chr. cow tbl. dog hrs. mbk. prs. plt. shp. sofa trn. tvm.

FR-N 68.89 68.9 77.7 67.5 54.0 53.8 76.0 80.0 80.0 49.0 74.0 65.8 77.2 80.2 76.5 76.9 39.0 67.0 65.5 75.6 71.5

SIN-E 70.31 70.0 78.2 67.5 57.6 56.0 78.5 80.0 79.9 51.1 74.1 70.2 78.0 80.6 77.5 77.6 41.0 69.0 68.3 76.2 74.6

SIN-S 70.23 70.1 78.4 69.3 60.9 53.1 77.0 79.6 86.0 49.9 75.0 68.0 78.7 80.7 74.7 77.3 41.2 68.3 65.4 76.6 74.5

GAR-E 70.21 70.2 78.9 67.5 56.5 54.7 75.7 84.3 84.1 48.4 78.5 61.1 79.0 84.0 74.8 77.2 42.4 70.9 65.4 75.3 74.7

GAR-S 70.29 69.6 76.1 68.3 57.2 54.2 76.9 84.6 83.6 48.6 79.6 62.2 80.6 83.5 75.2 76.7 43.4 69.7 65.3 75.5 74.5

Table 7. Ablative comparison with SIN on VOC 2007 test, trained on VOC 2007 trainval. Abbreviation: edge module (E), scene module (S).

(a) (b) (c) (d)

outdoor
gas station (0.945)
raceway (0.020)
high way (0.008)

man-made
natual light

driving

indoor
stage (0.083)
arena (0.063)

vtr. office (0.060)
no-horizon

cloth
enclosed area

outdoor
junkyard (0.453)

picnic area (0.040)
excavation (0.027)

natural light
man-make
open area

outdoor
construction (0.121)

bullring (0.118)
raceway (0.080)

man-made
no-horizon

natural light

personperson
dogdog

tvmonitortvmonitor

bicyclebicycle

boatboat

personperson

Figure 3. Qualitative results of GAR detection. From top to bottom: GAR detection, baseline detection, the indoor/outdoor label, place

categories with possibilities, scene attributes.

B

occ trn viewaspsize part

Figure 4. Summary of sensitivity of object characteristics. It

presents the average (over 7 categories) Normalized AP(APN [20])

of the highest score and lowest score subsets in each characteristic

group (occlusion, truncation, bounding box area, aspect ratio, view-

point, part visibility). Overall APN is indicated by the dashed line.

Red: Scene. Green: baseline.

optimize its edge calculation with parallel tensor operation

instead of iterative loops where used in its original Tensor-

flow [1] implementation. For training, frame per second

(FPS) of baseline is 6.3, SIN is 2.2 and GAR is 4.0. For

inference, FPS of baseline is 15.5, SIN is 8.8 and GAR is

14.1. It can be observed that the overhead of GAR module is

much lower than SIN.

5. Conclusion

In this paper, we propose a graph-assisted detection

method, GAR, that leverages object-object and object-scene

relations in object detection. Experiments show prominent

accuracy improvement, especially on the categories which

are highly correlated to scene context. Moreover, our GAR

method has the advantage of computation efficiency: it re-

quires less FLOPs and parameter memory than previous

RNN-based methods, making GAR a practical solution in

real-time applications.
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