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Abstract

It is well believed that object-object relations and object-
scene relations inherently improve the accuracy of object
detection. However, the way to efficiently model relations
remains a problem. Graph Convolutional Network (GCN),
an effective method to handle structured data with relations,
inspires us to leverage graphs in modeling relations for ob-
Jection detection tasks. In this work, we propose a novel
approach, Graph Assisted Reasoning (GAR), to utilize a het-
erogeneous graph in modeling object-object relations and
object-scene relations. GAR fuses the features from neigh-
boring object nodes as well as scene nodes and produces
better recognition than that produced from individual ob-
Jject nodes. Moreover, compared to previous approaches
using Recurrent Neural Network (RNN), the light-weight
and low-coupling architecture of GAR further facilitates its
integration into the object detection module. Comprehen-
sive experiments on PASCAL VOC and MS COCO datasets
demonstrate the efficacy of GAR.

1. Introduction

Recently, significant development of object detection has
been witnessed due to the advance in deep Convolutional
Neural Networks (CNNs) [25, 39, 18]. The current ob-
ject detection methods [10, 15, 17, 37] mostly follow the
philosophy of anchor or region proposal introduced by R-
CNN [16]. In these approaches, object classification and
bounding box (bbox) regression are performed either on
explicitly selected proposals that are generated from prede-
fined anchors [10, 37], or directly on anchors (or prior boxes)
[29, 36, 27]. Besides, anchor-free methods are also a set of
emerging solutions that achieve admirable performance on
the detection of multi-scale and heavily occluded objects
[22, 24].

Contextual information including scene context and ob-
ject relationships plays a critical role in humans’ capability
of recognizing objects, revealed by psychological investiga-
tions [3, 34]. Take Figure la as an example. There are two
cows on the grassland. Implied by the blue sky and shadows,
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Figure 1. (a) Two cows on the grassland. (b) A ship at the seaside.

the scene is outdoor rather than in a room with green mat.
The white objects on the grass can be recognized as cows, or
closely, goats. However, the white cloud cannot be wrongly
detected as cows or sheeps. The most obvious reason is that
it is in sky. Figure 1b is another good example. The man-
made object is probably a ship instead of car or train since it
is on the water. Studies in the computer vision community
are also conducted to boost performance of object detection
by utilizing contextual information. For instance, previous
studies [8, 12, 15, 32, 33] suggest that one can leverage the
modeling of implicit context or explicit relation in recog-
nition algorithms. Specifically, what categories of objects
may appear in a specific scene, or what category of objects
may appear simultaneously with another category of objects.
However, most of the methods were proposed before the
popularity of deep learning and have not been well explored
in modern CNNSs on object detection tasks. One of the chal-
lenges in relation modeling is the computation complexity
due to the significant variations in the quantity and category
of objects across different images. Another challenge is
to efficiently encode and process the object relation into a
CNN-based object detector.

In the recent past, Graph Convolutional Network (GCN)
has been successfully applied to node classification on graph-
structured data [23], such as the citation network, text classi-
fication [41] and some other Natural Language Processing
(NLP) tasks [31, 4]. By aggregating information from neigh-
boring nodes, GCN produces better inference than merely
taking the features from an individual node [23]. This in-
trinsic property of GCN provides it unique advantages in
handling entities with relations.
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Motivated by the property of GCN, we propose a novel
approach, namely Graph Assisted Reasoning (GAR), to im-
prove the efficacy of object detection. In the graph of GAR,
the object nodes are regional features generated by Regional
Proposal Network (RPN) and Region of Interest (ROI) pool-
ing, and the scene nodes are learned embeddings from the
entire image features. The edge between two object nodes
is created with object-object co-occurrence, while the edge
between an object node and a scene node is built with object-
scene co-occurrence. Then GAR generates the node scores,
which act as regularizing items for the basic one-layer object
classifier, suppressing abnormal object candidates and am-
plifying probable ones, thus leading to more reliable object
detection.

To summarize, our contributions are as follows:

(1) We propose a novel graph-assisted reasoning ap-
proach, GAR, that leverages GCN for object detection.

(2) To the best of our knowledge, this is the first study
modeling object proposals and scene features as nodes in
an heterogeneous graph, object-object relation and object-
scene relation as edges, converting object detection from a
perception problem to a reasoning problem.

(3) The proposed GAR is an extendable scheme that en-
codes relations into an adjacent matrix for object detection.
Besides the co-occurrence relation, other relations such as
spatial relations and higher level semantic relations can also
be incorporated into the GAR architecture.

2. Related work
2.1. Contextual Methods for Object Detection

Prior to the emergence of deep learning, various ap-
proaches have explored adding contextual information to
improve object detection [2, 19, 33, 40, 12]. In [15], the
detected objects are re-scored by considering object rela-
tionships such as co-occurrence, which implies how likely
two categories of objects can exist in the same image. On
the contrary, the presence of objects in irrelevant scenes is
penalized in [40]. These methods achieved moderate success
in pre-deep learning era but have not been well established
for deep CNNs. One of the possible reasons is that deep
CNNs generally convey implicitly and hidden contextual
information which is hard to use directly. Another reason
is that to accommodate the contextual information within
CNNss is a complicated and nontrivial work.

Recently, some approaches [5, 38, 42] based on deep
CNNs have made attempts to incorporate contextual infor-
mation into object detection. The work ION [5] integrates
contextual information outside the ROI using a spatial RNN.
GBD-Net [42] proposes a gated bi-directional CNN to pass
messages between the features of different support regions
around objects. Shrivastava et al. [38] use segmentation to
provide top-down context to guide region proposal genera-

tion and object detection.

Despite the aforementioned approaches that essentially
exploit local context near objects and the whole image con-
text, Chen et al. [9] propose a sequential reasoning architec-
ture that mainly utilizes object-object relationship to detect
objects in an image sequentially. Similarly, Hu et al. [21]
introduce attention modules to model object-object relations.
Combining both object-object and object-scene relations,
SIN [30] uses Gated Recurrent Unit (GRU) for message
passing. Different from the existing methods, the proposed
GAR adopts a light-weight GCN with an explicit and accu-
rate scene detection module. This property further improves
the efficiency of GAR in object detection with both object-
object relation and object-scene relation considered.

2.2. Graph on Neural Networks

The topic of Graph Neural Networks (GNN) has re-
ceived growing attention recently [7, 6]. Kipf er al. [23]
presents a simplified yet well-behaved GNN model, i.e.,
GCN, which achieves state-of-the-art classification results
on several benchmark graph datasets. GCN is then explored
in several NLP tasks such as semantic role labeling [31] and
machine translation [4] to encode the syntactic structure of
sentences.

In [11], a document or a sentence is treated as a graph of
word nodes, and GCN-Text [41] regards both the documents
and words as nodes and constructs the corpus graph. In our
work, proposal features and learned scene embeddings form
the nodes of the heterogeneous graph, and the co-occurrence
that is appropriately processed embodies the edges of the
graph in GAR.

3. Approach

Our approach is designed upon the heterogeneous graph
composed by object-object subgraph and object-scene sub-
graph. In this section, we will firstly derive the edges, i.e.,
relations of contextual information. Then we will show the
relation graphs computing flow within the entire object de-
tection network, as shown in Figure 2.

3.1. Relation Modeling

Adopting the same spirit as GCN-Text [41], we use co-
occurrence to encode the relations among objects and scenes.

There are four relations involved in GAR: (i) object-
object, estimating the probability of two different cate-
gories of objects appear in the same image; (ii) object-
indoor/outdoor, measuring the frequency of all types of ob-
jects appear in the indoor/outdoor scenario; (iii) object-place,
wherein place represents place categories such as "living
room", "museum", etc.; and (iv) object-attribute, wherein
attribute represents scene attribute such as "natural light",
"human-made", etc. Scene-scene relations are not required
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Figure 2. (a) The architecture of GAR. RPN and associated modules give /N proposals (each with a size of F'). The cRCN generates N
cursory class scores (each with a size of O) and N bbox regression with a size of 4. Meanwhile, the scene detector generates scene-related
labels with a size of 469. Scene pooling picks and concatenates .S scene nodes from 469 of them, which are generated from scene embedding
module. (b) The GCR module merges the instance subgraph and the scene subgraph as a heterogenous graph. Nodes are proposal features

insi, -
elaborated in the following section.

since GAR is object detection oriented. As classic datasets
in object detection are typically lack of scene labels, we train
a scene detector on the Place365 [43] recognition dataset
to extract scene information for generating co-occurrence
matrices for object-scene relations, i.e., (ii), (iii) and (iv).
The above four relations are elaborated as follows:

Object-object relation The value of each co-occurrence
entry represents the co-occurrence number enumerating the
entire training images. Multiple occurrences of objects with
the same class label in a single image are counted as 1.
Calculation of the 2D O x O object-object co-occurrence

. b
matrix Egb;- can be formulated as:

M . ) }
L) =3 {1, if DET,() & DET.()) |
= |0, otherwise

where DET, () means that the x-th training sample contains
the object(s) with class index 7. "&" means its left event and
its right event happen at the same time. M represents the
size of the training set and O is the number of classes in the
selected dataset. It is worth noting that diagonal entries (self-
loop) of £°% are 0 instead of 1, as self-loop information is

obj
adaptively learned in GAR. The cumulative co-occurrence

sansn and selected scene embeddings scni, - - -, scng. Edges are created from the normalized co-occurrence matrix that are

is normalized within GAR computing which is described in
the following content.

Object-indoor/outdoor relation Indoor/outdoor is a bi-
nary label for an image. The output of the scene detector
is composed of "indoor/outdoor" label (scalar), place cat-
egories (a vector containing 365 elements) and scene at-
tributes (a vector containing 102 elements).

The calculation of the O x 2 object-indoor/outdoor co-

10 o.
occurrence £29 18t

if DET, (i) & INOUT, (indoor)
if DET, (i) & INOUT, (outdoor)
2
Where INOUT, (indoor) means that the image x is clas-
sified as "indoor". DET, (i) is a vector composed by class
indices of all objects detected in image .

N - L0
%UW=Z“ML

r=1

Object-place relation The scene detector infers place la-
bels among 365 place categories. We will calculate the

O x 365 object-place co-occurrence 85},; by:
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Algorithm 1: cls-roi edge

Algorithm 2: scene-roi edge

. bi
Data: co-occurance matrix €57

cursory instance class score Imsgscore
self-loop edges for instances A

Result: Instance relation edges €78

bi . .
1 Softmax Egb]’- in a row-wise manner;

2 for every instance pair: {i, j} do

3 get cursory instance class label:

4 cls' = argmax;.c o {InsiE .}

5 cls’ = argmaxyco {Insik .}

6 get instance relation:

7 &) = Sggg. (cls', cls?) ;

8 add self-loop edge:

’ Eins = Eins + Ali), Vi € [0, N).
10 end

E!MS = Softmax &,; in a row-wise manner;

—
—

if DET. (i) & PLACE,(p)
otherwise

Mo(4

lc /s )

ERS(i,p) =) { 0 3)
=1 ?

where PLACE, (p) means that place labels with indices

p are detected in the image =. Multiple place categories are

taken since they could be synonyms in the sense of "scene",

sharing the similar scene context.

Object-attribute relation The scene attributes are also
generated by the scene detector among 102 classes. The

O x 102 object-attribute co-occurrence & gg‘; is calculated
by:

if DET, (i) & ATTR.(q)
otherwise

M
gatr . _ 17 4
obj(laCI)—Z 0 “4)
x=1

)

Similarly, ATTR,(q) means scene attribute labels with
indices q are detected in image .

3.2. GAR Design

Different from existing works that use implicit visual
appearance context, GAR is designed to make use of explicit
object-object/scene relation to reward or penalize object
proposals and thus assist object detection.

GAR is composed of four major modules: (i) a backbone
object detector that generates object proposals, (ii) a scene
detector that generates scene labels, (iii) a cursory Regres-
sion and Classification Network (cRCN) that returns the
cursory detection scores as well as a spatial adjustment vec-
tor for each object proposal, and (iv) Graph Convolutional

gplc

Data: scenic co-occurrence matrices £*9 obj

obj’
£qtr.
cursory ROI class score ROIscore,
indoor/outdoor score Ingcore!/ OUtscore,
place category scores Plcscore,
attribute scores Attrscore
Result: scene-ROI relation graph Escene—ros
1 Softmax co-occurrence matrices in a row-wise
manner;
2 for every ROI pair: {i, j} do
3 get ROI cls:
4 Rils = arginaXyec g {RO]z,C]‘(;TP >
R’ =argmax,c {ROIZF };
6 get ROI relation:

.. R \,Rj
7| €l = ROLg

rot
8 end
9 Softmax &,.,; in a row-wise manner;

W

Reasoning (GCR) module which takes cursory detection,
object/scene features (nodes) and prior relation knowledge
(edges) as inputs and generates the graph reasoning scores.
The entire framework of GAR is illustrated in Figure 2.

GAR is a general method. In this work, we use Faster R-
CNN [37] as the backbone object detector for demonstration
purpose. Other CNN-based detectors are also compatible
with it.

Object edges to instance edges In Faster R-CNN, thou-
sands of region proposals that might contain objects are
obtained after Region Proposal Network (RPN). Non-
Maximum Suppression (NMS) [14] is then used to select a
fixed number (e.g., N=300) of ROIs. Next, for each ROI 7,
its visual feature v; is processed by the ROI pooling and a
fully connected projection layer. Consequently, the instance
feature matrix V,o; concatenated by all N ROI vectors is fed
into cRCN to get N cursory class scores and bbox adjust-
ment.

The N x N relation edges among N instances, S:T’:ss
is obtained by utilizing the prior O x O object-object co-
occurrence Eggj and the cursory detection score, as shown
in Algorithm 1.

Scene nodes and instance-scene relation In GAR, in-
stance nodes of the GCR module input are the instance fea-
ture matrix Vins in the shape of N x F', which are naturally
compatible with GCN. However, the latent feature of the
whole image is in the shape of 512 x 14 x 14 (conv5_3 of
VGG-16 [39]). Therefore, we design a scene nodes embed-
ding module to project the latent scene features in the same
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Net mAP arpl. bike bird boat bot. bus car cat chr.  cow  tbl dog  hrs. mbk. prs. plt shp. sofa trn.  tvm.
FS-N 70.0 77.0 781 693 594 383 816 786 867 428 788 689 847 8.0 766 699 318 70.1 748 804 704
FR-N 732 765 790 709 655 521 831 847 864 520 819 657 848 846 775 767 388 736 739 830 726
SSD500[29]175.1 79.8 795 745 634 519 849 856 872 566 80.1 700 854 849 809 782 49.0 784 724 846 55
ION [5] 756 792 831 776 656 549 854 851 87.0 544 80.6 738 853 822 822 744 471 758 727 842 804
SIN[30] 760 778 736 612 617 836 859 851 566 834 672 817 839 784 782 475 733 683 718 767 70.0

GAR 761 774 813 748 659 599 850 866 88.6 562 846 722 869 862 773 792 468 774 46 832 713

Table 1. Detection on PASCAL VOC 2007, trained on VOC 2007 and VOC 2012 trainval combined. Abbreviation: Fast R-CNN (FS-N)
[16], Faster R-CNN (FR-N), aeroplane (arpl.), bottle (bot.), chair (chr.), table (tbl.), horse (hrs.), motorbike (mbk.), person (prs.), plant (plt.),

sheep (shp.), train (trn.), tvmonitor (tvm.).

Net mAP arpl. bike bird boat bot. bus car cat chr.  cow  tbl dog  hrs. mbk. prs. plt. shp. sofa  trn. tvm.
FS-N 683 823 784 708 523 387 778 716 893 442 730 550 875 805 808 72 351 683 657 804 642
FR-N 704 849 798 743 539 498 775 759 885 456 77.1 553 869 81.7 809 79.6 401 726 609 812 615

SIN 73.1 848 795 745 597 557 795 788 899 519 768 582 878 829 818 8l6 512 752 639 818 678
GAR 731 849 801 746 580 539 800 789 895 498 77.6 584 883 832 815 824 507 764 636 822 677

Table 2. Detection results on PASCAL VOC 2012, trained on VOC 2007 trainval, 2012 trainval and 2007 test combined.

space as instance nodes. There are S = 2 + 2K scene nodes
selected for scene subgraph, including an indoor node, an
outdoor node, K place category nodes, and K scene attribute
nodes. Instance-scene relation edges £;57 obtained in a sim-
ilar manner as Algorithm 1. By performing softmax on £;72
in a row-wise manner, we are able to get a normalized re-
lation measurement of nodes in the heterogeneous relation
graph and maintain the numeric stability while training the
GCR module.

Acquiring of instance-scene edges £;°7 is distinct from
that of instance-instance edges in two-fold: (i) It selects
S scene nodes rather than all the 469 = (2 + 365 + 102)
nodes to reduce computational complexity and to avoid over-
smoothing [26] induced by overwhelming irrelevant informa-
tion. (ii) It normalizes complementary relations by row-wise
softmax. Concretely, E2:¢ and £247 are normalized individ-
ually, while instance-indoor/outdoor relation are normalized
by softmax([£:"_, £2%¢]). Detailed computing flow is elab-

wns’ wns

orated in Algorithm 2.

GCR module Now we get our heterogeneous graph nodes
(instance nodes and scene nodes) and edges ready. It is time
to perform graph reasoning.

The graph is fed into a similar two-layer GCN as used in
[23]. In the first layer, each node has a size of 4096. For the
second layer, each node has a size of 512. The output of a
node is in the same size as the number of object classes. The
scores of instance nodes are generated and then fused to the
cursory scores weighted by learnable factors, generating the
final cogitative scores:

Y, = AReLU(AXWy)W, (5)
_ exp(Wp) )
7 = SOftmaX(ewp(WbHexp(wg) b
exp(wg) Y,) ©)

exp(wy) + exp(wg) .

where Y}, is the cursory detection scores, A is the normal-
ized adjacent matrix of the heterogeneous graph, X are the
nodes. Wy, Wy are parameters of the two-layer GCN. wy,
and wp, are fusion factors used for adding graph reasoning
scores with the cursory scores.

4. Experiments

In this section, we evaluate the proposed GAR on PAS-
CAL VOC [13] and MS COCO [28] object detection
datasets. The base detection framework is Faster R-CNN
[37] whose feature extractor is by default a VGG-16 [39]
that is pre-trained on ImageNet classification dataset [25].

Following the same practice as [30], we trained the Faster
R-CNN from scratch as the baseline. We find that train-
ing backbone Faster R-CNN for several epochs and then
jointly training several epochs with GAR performs better
than jointly training from the beginning. This is because
that GAR constructs the instance and scene edges based on
the cursory detection. This training strategy is denoted as
two-stage (M, N) training, where M and N represent the
number of training epochs in the first and the second stage,
respectively. On the contrary, training the whole system from
scratch is denoted as one-stage (M+N) training wherein the
network is trained for M + N epochs in total.

Specifically, when training on VOC 2007 dataset with
two-stage (5, 5) strategy, we use a learning rate of 5 x
10~ for the first 5 epochs, then 5 x 1075 for the last 5
epochs. When training on VOC 2012 trainval with VOC
2007 trainval combined following two-stage (4, 6) strategy,
we use a learning rate of 5 x 10~* for the first 4 epochs,
then 5 x 10~° for the following 6 epochs. When training on
COCO 2014 dataset with two-stage (4, 6) strategy, we use a
learning rate 5 x 104 for the first 4 epochs and 5 x 10~°
for the last 6 epochs.

1299



Net | AP AP™ AP™ | AP® APM AP" | AR' AR' AR'™| AR® ARM AR"

FS-N 20.5 399 194 4.1 200 358 | 21.3 295 30.1 7.3 321 520

FR-N 21.1 409 199 6.7 225 323 | 21.5 304 308 99 334 494

ION 23.0 42.0 230 6.0 238 373 | 23.0 324 33.0 9.7 370 535

SIN 232 445 220 73 245 363 | 226 31.6 320 10.5 347 513

GAR 23.1 440 231 7.0 238 37.1 | 231 320 324 103 359 517

Table 3. Detection on COCO 2014 test-dev.

GAR mAP arpl. bike bird boat bot. bus car cat chr. cow tbl. dog hrs. mbk. prs. plt. shp. sofa trn. tvm.
K=1 702 70.5 77.2 70.1 553 52.8 78.4 83.0 83.6 49.8 80.7 59.1 78.0 839 75.6 77.1 42.5 724 642 752 73.8
K=3 70.7 71.5 77.7 71.2 56.8 544 782 83.8 85.0 49.2 81.4 59.0 77.5 83.6 76.1 78.8 43.9 72.0 64.8 76.6 72.9
K=5 704 709 779 69.6 55.1 55.1 76.6 85.0 83.6 48.3 81.4 59.3 80.6 84.1 74.9 77.5 439 71.7 653 742 72.6
K=10 70.2 69.1 78.2 69.8 54.3 53.7 78.9 84.2 83.2 483 789 61.5 80.5 84.1 75.6 79.0 42.7 73.2 64.1 74.1 71.3

Table 4. Performance on VOC 2007 validation set using different K for scene nodes selection.

4.1. Overall Performance

PASCAL VOC. There are 20 classes of objects in the
VOC dataset. The VOC 2007 dataset consists of about 5k
training and validation combined (trainval) images and 5k
testing images, while VOC 2012 dataset includes about 11k
trainval images and 11k test images. We set two kinds of
training datasets. The evaluations that are performed on the
VOC 2007 and VOC 2012 testing sets are shown in Table 1
and Table 2, respectively. By applying GAR, we get the
mAP of 76.1% on VOC 2007 testing set and mAP of 73.1%
on VOC 2012 testing set.

MS COCO To validate the efficacy of GAR on a larger
dataset, we conduct experiments on COCO and summarize
the results in Table 3. COCO dataset involves 80 object
categories. Different from VOC, COCO dataset uses AP as
its evaluation metric. The overall performance AP averages
mAP over different intersection over union (IOU) thresholds
from 0.5 to 0.95, placing more weight on localization. In
this more challenging dataset, GAR achieves 23.1% on test-
dev score and brings about 2.1% improvement over baseline
detector, again verifying the advantage of its efficacy.

4.2. Design Analysis and Ablation Study

Top K place labels and scene attributes As aforemen-
tioned, a lot of place labels are synonyms which can be
hardly differentiated. For example, "cafeteria", "restaurant”
and "dining hall" are all places for dining and share a lot
of common features. Though making use of more possible
place labels and scene attributes tends to provide more in-
formation about the scene. However, too much irrelevant
information involved aggravates over-smoothing problem
[26] of GCN. To find the optimal design hyper-parameter
K, we conduct evaluations on VOC 2007 validation set with
different K by tuning K, as shown in Table 4. It is observed

that K = 3 achieves the optimal mAP for GAR.

To get a better understanding of object-object/scene rela-
tion, we summarize the top 3 related entities (object classes,
place categories, scene attribute, and indoor/outdoor labels)
in terms of co-occurrence for each object class, as shown in
Table 5. Some interesting phenomenons are observed: First,
the object "person” is highly correlated with other objects
in the VOC dataset; Second, besides "person", "car" usu-
ally appears with "bus" and "motorbike". Meanwhile, these
three methods of transportation are all labeled as "outdoor"
usually appear at "street" and "parking lot" which are fea-
tured by "man-made", "natural-light" and "open-area". In
Table 5, "NA" in the indoor/outdoor field means that neither

the probability of "indoor" nor "outdoor" exceeds 30%.

Scene/Object Ablative Comparison We evaluate the ef-
fectiveness of object-object reasoning (edge) and object-
scene reasoning (scene) separately and compare their per-
formance with the previous work SIN [30]. As shown in
Table 7, all methods are trained on VOC 2007 trainval and
testing set on VOC 2007 testing set. GAR-scene module
achieves better mAP of 70.29% as compared to SIN-scene
with mAP of 70.23%. SIN-edge module provides higher
mAP of 70.31% than GAR-edge with mAP of 70.29%. The
reason is that SIN-edge takes more complicated spatial and
geometric relations, which might contain more information
than co-occurrence relation used in GAR-edge.
Interestingly, it is observed that the edge/scene module
boosts mAP in some categories, such as "boat", "cow",
"horse", "sheep", "tvmonitor", etc. This is expected since
such categories are generally correlated with scene context
and other objects occurrence. However, we observed that
the mAP of "table" is suffering from degradation. One possi-
ble reason is that "table" is so similar to "chair" and "sofa".
Therefore, the possibility of mislabeling as well as the IOU
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aeroplane bicycle bird boat bottle bus car cat chair cow
person person person person person car person chair person person
car car cow car diningtable person bus person diningtable horse
boat bus boat bird chair bicycle motorbike sofa sofa bird
outdoor outdoor outdoor outdoor indoor outdoor outdoor indoor indoor outdoor
airfield raceway water-hole harbor pub bus-station park-lot vetr-office din-room corral
runway crosswalk pond boat-deck beer-hall street street pet-shop din-hall pasture
sky street field ocean bar park-lot raceway kennel liv-room farm
natur-light natur-light natur-light natur-light no-horizon man-made man-made no-horizon no-horizon natur-light
open-area man-made no-horizon open-area enclosed natur-light natur-light enclosed enclosed open-area
man-made no-horizon open-area man-made man-made open-area open-area man-made man-made no-horizon
diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor
chair person person person car person person person person chair
person sofa car car chair chair dog chair car person
bottle chair dog bicycle horse sofa cow tvmonitor boat sofa
indoor NA outdoor outdoor NA NA outdoor indoor outdoor indoor
din-hall veter-ofc corral raceway street roof-grdn pasture liv-room rail-track home-ofc
restaurant outdoor racecourse street indoor vege-grdn farm wait-room platform office
din-room pet-shop stable highway nurs-home liv-room hayfield drm-room platform cmpt-room
no-horizon no-horizon natur-light natur-light no-horizon no-horizon natur-light no-horizon man-made no-horizon
enclosed enclosed open-area man-made man-made man-made open-area enclosed natur-light enclosed
man-made man-made man-made no-horizon natur-light enclosed grass man-made open-area man-made

Table 5. Top 3 related object/scene entities in terms of co-occurrence, on VOC 2007 trainval. From top to bottom: three categories of mostly
co-occurred objects, the indoor/outdoor label, three categories of mostly co-occurred places and three mostly related scene attributes.

Net GAR SIN
Mode Edge Scene Total Edge Scene Total
#FLOPS 540M 17.4M 558M 25.8G 102M 25.9G
#params <1K 2.35M 2.35M 101M 106M 207M

Table 6. Number of FLOPS and number of parameters required by
GAR and SIN modules.

loss are largely increased due to similar relations.

Qualitative Analysis We show representative qualitative
results in Figure 3 to present how GAR with graph reasoning
helps object detection. GAR benefits object detection in two
folds:

(1) It detects obscure objects better with reliable scene
inference. For example, Figure 3a depicts a car in front of a
gas station. With the detected scene and prior knowledge that
"car" is highly correlated with "person”, GAR successfully
detects the driver inside the car. Similar reasoning is applied
to the dog in Figure 3b and the person at the left-bottom
corner of Figure 3d.

(2) It helps to drop irrelevant objects which are, in some
sense, ridiculous. For example, the baseline detector detects
the car door as a "tvmonitor" in Figure 3c. While based
on the prior knowledge in Table 5, we know "tvmonitor"
is typically related with "indoor", "enclosed area" and fre-
quently appears in "home office", "office"” and "computer
room". Thus, GAR drops this wrong detection correctly.
Other similar cases also demonstrate the efficacy of GAR,
Another example is that the "boat" detected by the baseline

detector in Figure 3d is successfully eliminated by GAR.

Sensitivity of Object Characteristics To further quati-
tively measure the approvement achived by GAR, we look
at a detailed breakdown of results of VOC 2007 using the
detection analysis tool from [20]. Figure 4 provides a com-
pact summary of the sensitivity to each characteristic group
and the potential impact of improving robustness on seven
categories selected by [20], which are *aeroplane’, "bicycle’,
’bird’, *boat’, ’cat’, ’chair’ and ’diningtable’. Overall, our
method is more robust than baseline and SIN method against
occlusion, truncation and area size.

Computational Overhead The proposed GAR is efficient
for both training and inference thanks to its paralleled com-
puting flow and small model size. Use the same feature
extractor network (VGG-16) as the backbone object detec-
tion, we take the output feature of conv5_3 and re-train the
fully connected layer for the scene detector on Place365
scene recognition dataset [43]. Table 6 demonstrates the
number of floating point operations (FLOPs) as well as the
number of parameters required by GAR and compares it with
the previous work SIN [30]. It is observed that SIN requires
much more computing and parameter memory than our GAR
due to its complicated edge calculation and sequential GRU
propagation. We compare the training and inference speed
of baseline Faster R-CNN, SIN and GAR on a single Nvidia
RTX 2080 GPU. For sake of the fair comprarison, we im-
plemente the SIN with Pytorch [35] framework. We also
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Method mAP arpl. bike bird boat bot.  bus car cat chr.  cow  tbl dog  hrs. mbk. prs. plt shp.  sofa trn.  tvm.
FR-N 68.89 689 777 675 540 538 760 800 80.0 490 740 658 772 802 765 769 390 670 655 756 715
SIN-E 70.31 700 782 675 576 560 785 800 799 511 741 702 780 806 775 77.6 410 69.0 683 762 746
SIN-S 7023 70.1 784 693 609 531 77.0 796 86.0 499 750 680 787 80.7 747 773 412 683 654 76.6 745

GAR-E 7021 702 789 675 565 547 757 843 841 484 785 611 790 840 748 772 424 709 654 7153 747

GAR-S 7029 69.6 76.1 683 572 542 769 846 836 486 796 622 806 835 752 767 434 697 653 755 745

Table 7. Ablative comparison with SIN on VOC 2007 test, trained on VOC 2007 trainval. Abbreviation:

indoor

|- 1=

< o B
i

[persor]

outdoor outdoor outdoor
gas station (0.945) stage (0.083) junkyard (0.453) construction (0.121)
raceway (0.020) arena (0.063) picnic area (0.040) bullring (0.118)
high way (0.008) vtr. office (0.060) excavation (0.027) raceway (0.080)
man-made no-horizon natural light man-made
natual light cloth man-make no-horizon
driving enclosed area open area natural light

(a) (b)

(c) (d)

Figure 3. Qualitative results of GAR detection. From top to bottom: GAR detection, baseline detection, the indoor/outdoor label, place

categories with possibilities, scene attributes.

0.9020.9130.919
0.94 r 0.8540.8510.851
0.8010-8140:820 0.7980.8090.811

0.801 7920-806
0.771
7400762

0.8
0.737 0

0.733ZZZFFI=Z222
1 o711

0.6

0.544
0.5+

Baseline
SIN
GAR

0.4+

0.372

0.330~

0.31 0.302

1 HHH

occ trn size aép view part

Figure 4. Summary of sensitivity of object characteristics. It
presents the average (over 7 categories) Normalized AP(APN [20])
of the highest score and lowest score subsets in each characteristic
group (occlusion, truncation, bounding box area, aspect ratio, view-
point, part visibility). Overall APN is indicated by the dashed line.

Red: Scene. Green: baseline.

optimize its edge calculation with parallel tensor operation
instead of iterative loops where used in its original Tensor-
flow [1] implementation. For training, frame per second
(FPS) of baseline is 6.3, SIN is 2.2 and GAR is 4.0. For

inference, FPS of baseline is 15.5, SIN is 8.8 and GAR is
14.1. It can be observed that the overhead of GAR module is
much lower than SIN.

5. Conclusion

In this paper, we propose a graph-assisted detection
method, GAR, that leverages object-object and object-scene
relations in object detection. Experiments show prominent
accuracy improvement, especially on the categories which
are highly correlated to scene context. Moreover, our GAR
method has the advantage of computation efficiency: it re-
quires less FLOPs and parameter memory than previous
RNN-based methods, making GAR a practical solution in
real-time applications.
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