
GradMix: Multi-source Transfer across Domains and Tasks

Junnan Li*1, Ziwei Xu*1, Yongkang Wang1, Qi Zhao2, and Mohan S. Kankanhalli1

1School of Computing, National University of Singapore
2Department of Computer Science and Engineering, University of Minnesota

{lijunnan,ziwei.xu}@u.nus.edu, yongkang.wong@nus.edu.sg, qzhao@cs.umn.edu,

mohan@comp.nus.edu.sg

Abstract

The computer vision community is witnessing an un-

precedented rate of new tasks being proposed and ad-

dressed, thanks to the deep convolutional networks’ capa-

bility to find complex mappings from X to Y . The advent

of each task often accompanies the release of a large-scale

annotated dataset, for supervised training of deep network.

However, it is expensive and time-consuming to manually

label sufficient amount of training data. Therefore, it is

important to develop algorithms that can leverage off-the-

shelf labeled dataset to learn useful knowledge for the target

task. While previous works mostly focus on transfer learn-

ing from a single source, we study multi-source transfer

across domains and tasks (MS-DTT), in a semi-supervised

setting. We propose GradMix, a model-agnostic method ap-

plicable to any model trained with gradient-based learning

rule, to transfer knowledge via gradient descent by weight-

ing and mixing the gradients from all sources during train-

ing. GradMix follows a meta-learning objective, which as-

signs layer-wise weights to the source gradients, such that

the combined gradient follows the direction that minimize

the loss for a small set of samples from the target dataset.

In addition, we propose to adaptively adjust the learning

rate for each mini-batch based on its importance to the

target task, and a pseudo-labeling method to leverage the

unlabeled samples in the target domain. We conduct MS-

DTT experiments on two tasks: digit recognition and ac-

tion recognition, and demonstrate the advantageous perfor-

mance of the proposed method against multiple baselines.

1. Introduction

Deep convolutional networks (ConvNets) have signifi-

cantly improved the state-of-the-art for visual recognition,
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Figure 1: High-level overview of the proposed method. We

transfer knowledge to the target domain by weighting and

mixing gradients from source domains, such that the com-

bined gradient should minimize the loss for a few validation

samples from the target domain.

by finding complex mappings from X to Y . Unfortu-

nately, these impressive gains in performance come only

when massive amounts of paired labeled data (x, y) s.t.

x ∈ X , y ∈ Y are available for supervised training. For

many application domains, it is often prohibitive to man-

ually label sufficient training data, due to the significant

amount of human efforts required or the concern of violat-

ing individual’s privacy. Hence, there is strong incentive to

develop algorithms that can reduce the burden of manual la-

beling, typically by leveraging off-the-shelf labeled datasets

from other related domains and tasks.

There has been a large amount of efforts in the research

community to address adapting deep models across do-

mains [7, 21, 39], to transfer knowledge across tasks [23, 8,

42], and to learn efficiently in a few shot manner [5, 29, 30].

However, most works focus on a single-source and single-

target scenario. Recently, some works [41, 25, 43] propose

deep approaches for multi-source domain adaptation, but

assume that the source and target domains have shared la-

bel space (task).
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In many computer vision applications, there often exist

multiple labeled datasets available from different domains

and/or tasks related to the target application. Hence, it is im-

portant and practically valuable that we can transfer knowl-

edge from as many source datasets as possible. In this work,

we formalize this problem as multi-source domain and task

transfer (MS-DTT). Given a set of labeled source dataset,

S = {S1, S2, ..., Sk}, we aim to transfer knowledge to a

sparsely labeled target dataset T . Each source dataset Si

could come from a different domain compared to T , having

a different task, or different in both domain and task. We

focus on a semi-supervised setting where only few samples

in T have labels.

Most works achieve domain transfer by aligning the fea-

ture distribution of source domain and target domain [20,

21, 7, 38, 25, 41]. However, this method could be subopti-

mal for MS-DTT. The reason is that in MS-DTT, the distri-

bution of source data p(xSi , ySi) and target data p(xT , yT )

could be significantly different in both input space and label

space, thus feature alignment may generate indiscriminative

features for the target classes. In addition, feature alignment

introduces additional layers and loss terms, which require

careful design to perform well.

In this work, we propose a generic and scalable method,

namely GradMix, for semi-supervised MS-DTT. GradMix

is a model-agnostic method, applicable to any model that

uses gradient-based learning rule. Our method does not

introduce extra layers or loss functions for feature align-

ment. Instead, we perform knowledge transfer via gradient

descent, by weighting and mixing the gradients from all the

source datasets during training. We follow a meta-learning

paradigm and model the most basic assumption: the com-

bined gradient should minimize the loss for a set of unbi-

ased samples from the target dataset [31]. We propose an

online method to weight and mix the source gradients at

each training iteration, such that the knowledge most useful

for the target task is preserved through the gradient update.

Our method can adaptively adjust the learning rate for each

mini-batch based on its importance to the target task. In

addition, we propose a pseudo-labeling method based on

model ensemble to learn from the unlabeled data in target

domain. We perform extensive experiments on two sets of

MS-DTT task, including digit recognition and action recog-

nition, and demonstrate the advantageous performance of

the proposed method compared to multiple baselines.

2. Related Work

2.1. Domain Adaptation

Domain adaptation seeks to address the domain shift

problem [4] and learn from source domain a model that

performs well on the target domain. Most existing works

focus on aligning the feature distribution of the source do-

main and the target domain. Several works attempt to learn

domain-invariant features by minimizing Maximum Mean

Discrepancy [20, 21, 36]. Other methods propose adver-

sarial discriminative models, which try to learn domain-

agnostic representations by maximizing a domain confusion

loss [7, 38, 23].

Recently, multi-source domain adaptation with deep

model has been studied. Mancini et al. [25] use DA-

layers [3, 18] to minimize the distribution discrepancy of

network activations. Xu et al. [41] propose multi-way ad-

versarial domain discriminator that minimizes the domain

discrepancies between the target and each of the sources.

Zhao et al. [43] propose multisource domain adversarial

networks that approach domain adaptation by optimizing

domain-adaptive generalization bounds. However, all of

these methods [25, 41, 43] assume that the source and target

domains have a shared label space.

2.2. Transfer Learning.

Transfer learning extends domain adaptation into more

general cases, where the source and target domain could be

different, in both input space and label space [28, 40, 16,

14]. In computer vision, transfer learning has been widely

studied to overcome the deficit of labeled data by adapting

models trained for other tasks. With the advance of deep

supervised learning, ConvNets trained on large datasets

such as ImageNet [32] have achieved state-of-the-art per-

formance when transfered to other tasks (e.g. object detec-

tion [8], semantic segmentation [19], etc.) by simple fine-

tuning. In this work, we focus on the setting where source

and target domains have the same input space and different

label spaces.

2.3. Meta­Learning.

Meta-learning aims to utilize knowledge from past expe-

riences to learn quickly on target tasks, from only a few an-

notated samples. Meta-learning generally seeks performing

the learning at a level higher than where conventional learn-

ing occurs, e.g. learning the update rule of a learner [29], or

finding a good initialization point that is more robust [17]

or can be easily fine-tuned [5]. Li et al. [13] propose a

meta-learning method to train models with good general-

ization ability to novel domains. Franceschi et al. [6] intro-

duce a framework based on bilevel programming that uni-

fies gradient-based hyperparameter optimization and meta-

learning. Sun et al. [37] propose a meta-transfer learning

method to address the few-shot learning task. Ren et al. [31]

propose example reweighting in a meta-learning frame-

work. Our method follows the meta-learning paradigm that

uses validation loss as the meta-objective. However, differ-

ent from [31] which reweight samples in a batch for robust

learning against noise, we reweight source domain gradi-

ents layer-wise for transfer learning. Gradient alignment
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has also been used to enhance learning congruency in [22].

3. Method

3.1. Problem Formulation

We first formally introduce the semi-supervised MS-

DTT problem. Assume that there exists a set of k source

domains S = {S1, S2, ..., Sk} and a target domain T . Each

source domain Si contains NSi images, xSi∈XSi , with as-

sociated labels ySi∈YSi . Similarly, the target domain con-

sists of NT unlabeled images, xT ∈ X T , as well as MT

labeled images with associated labels yT ∈YT . We assume

target domain is only sparsely labeled, i.e. MT ≪NT . Our

goal is to learn a strong target classifier that can predict la-

bels yT given xT .

Different from standard domain adaptation approaches

that assume a shared label space between each source and

target domain (YSi = YT ), we study the problem of joint

transfer across domains and tasks. In our setting, only one

of the source domain needs to have the same label space as

the target domain (∃Si s.t. YSi = YT ). Other source do-

mains could either have a partially overlapping label space

with the target domain (YSi ∩YT ⊂ YT and YSi ∩YT 6= ∅),

or a non-overlapping label space (YSi ∩ YT = ∅).

3.2. Meta­learning Objective

Let Θ denote the network parameters for our model. We

consider a loss function L(x, y; Θ) = f(Θ) to minimize dur-

ing training. For deep networks, stochastic gradient descent

(SGD) or its variants are commonly used to optimize the

loss functions. At every step n of training, we forward

a mini-batch of samples from each of the source domain

{Si}
k

i=1, and apply back-propagation to calculate the gradi-

ents w.r.t the parameters Θn, ∇fsi(Θn). The parameters are

then adjusted according to the sum of the source gradients.

For example, for vanilla SGD:

Θn+1 = Θn − α

k
∑

i=1

∇fsi(Θn), (1)

where α is the learning rate.

In semi-supervised MS-DTT, we also have a small val-

idation set V that contains few labeled samples from the

target domain. We want to learn a set of weights for the

source gradients, w = {wsi}
k
i=1, such that when tak-

ing a gradient descent using their weighted combination
∑k

i=1 wsi∇fsi(Θn), the loss on the validation set is min-

imized:

Θ∗(w) = Θn − α

k
∑

i=1

wsi∇fsi(Θn), (2)

w∗ = argmin
w,w≥0

fV(Θ
∗(w)) (3)

3.3. Layer­wise Gradient Weighting

Calculating the optimal w∗ requires two nested loops

of optimization, which can be computationally expensive.

Here we propose an approximation to the above objective.

At each training iteration n, we do a forward-backward pass

using the small validation set V to calculate the gradient,

∇fV(Θn). We take a first-order approximation and assume

that adjusting Θn in the direction of ∇fV(Θn) can minimize

fV(Θn). Therefore, we find the optimal w∗ by maximizing

the cosine similarity between the combined source gradient

and the validation gradient:

w∗= argmax
w,w≥0

cossim

[

k
∑

i=1

wsi∇fsi(Θn),∇fV(Θn)

]

,

(4)

where the cosine similarity between two vectors is defined

as:

cossim[a, b] =
a · b

‖a‖ ‖b‖
. (5)

Instead of using a global weight value for each source

gradient, we propose a layer-wise gradient weighting,

where the gradient for each network layer are weighted sep-

arately. This enables a finer level of gradient combination.

Specifically, in our MS-DTT setting, all source domains and

the target domain share the same parameters up to the last

fully-connected (fc) layer, which is task-specific (the target

domain shares its last layer only with the source domain

that has the same label space as the target). Therefore, for

each layer l with parameter θl, and for each source domain

Si, we have a corresponding weight wl
si

. We can then write

Equation 4 as:

w∗ = argmax
w,w≥0

L−1
∑

l=1

cossim

[

k
∑

i=1

wl
si
∇fsi(θ

l
n),∇fV(θ

l
n)

]

,

(6)

where L is the total number of layers for the ConvNet.

We constrain wl
si

≥ 0 for all i and l, since negative gradient

update can usually result in unstable behavior. To efficiently

solve the above constrained non-linear optimization prob-

lem, we utilize a sequential quadratic programming method,

SLSQP, implemented in NLopt [10].

In practice, we normalize the weights for each layer

across all source domains so that they sum up to one:

w̃l
si

=
wl

si
∑k

i=1 w
l
si

(7)

The computational overhead of GradMix mainly comes

from optimizing w and calculating ∇fV . Compared to

source-only training, GradMix increases the training time

per-batch by approximately 40%.
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3.4. Adaptive Learning Rate

Intuitively, certain mini-batches from the source do-

mains contain more useful knowledge that can be trans-

ferred to the target domain, whereas some mini-batches

contain less. Therefore, we want to adaptively adjust our

training to pay more attention to the important mini-batches.

To this end, we measure the importance score ρ of a mini-

batch using the cosine similarity between the optimally

combined gradient and the validation gradient:

ρ =

L−1
∑

l=1

cossim

[

k
∑

i=1

w̃l
si
∇fsi(θ

l
n),∇fV(θ

l
n)

]

(8)

Based on ρ, we calculate a scaling term η bounded be-

tween 0 and 1:

η =
1

1 + e−(βρ−γ)
, (9)

where β controls the rate of saturation for η, and γ controls

the shift along the horizontal axis (i.e. when βρ = γ, η =
0.5). We determine the value of β and γ empirically through

experiments.

Finally, we multiply η to the learning rate α, and perform

SGD to update the parameters:

θln+1 = θln − ηα

k
∑

i=1

w̃l
si
∇fsi(θ

l
n), for l = 1, 2, ..., L− 1

(10)

3.5. Pseudo­label with Ensembles

In our semi-supervised MS-DTT setting, there also ex-

ists a large set of unlabeled images in the target domain,

denoted as U = {(xT
n )}N

T

n=1. We want to learn target-

discriminative knowledge from U . To achieve this, we

propose a method to calculated pseudo-labels ŷT
n for the

unlabeled images, and construct a pseudo-labeled dataset

Su = {(xT
n , ŷT

n )}N
p

n=1. Then we leverage Su using the same

gradient mixing method as described above. Specifically,

we consider to minimize a loss Lu(x, ŷ; Θ) during training

where (x, ŷ) ∈ Su. At each training iteration n, we sample

a mini-batch from Su, calculate the gradient ∇fsu(Θn), and

combine it with the source gradients {∇fsi(Θn)}
k

i=1 using

the proposed layer-wise weighting method.

In order to acquire the pseudo-labels, we perform a first

step to train a model using the source domain datasets fol-

lowing the proposed gradient mixing method, and use the

learned model to label U . However, the learned model

would inevitably create some false pseudo-labels. Previ-

ous studies found that ensemble of models helps to produce

more reliable pseudo-labels [34, 11]. Therefore, in our first

step, we train multiple models with different combination

of β and γ in Equation 9. Then we pick the top R mod-

els with the best accuracies on the hyper-validation set (we

set R = 3 in our experiments), and use their ensemble to

create pseudo-labels. The difference in hyper-parameters

during training ensures that different models learn signifi-

cantly different sets of weight, hence the ensemble of their

prediction is less biased.

Here we propose two approaches to create pseudo-labels,

namely hard label and soft label:

Hard label. Here, we assume that the pseudo-label is

more likely to be correct if all the models can reach an

agreement with high confidence. We assign a pseudo-label

ŷ = C to an image x ∈ U , where C is a class index, if the

two following conditions are satisfied. First, all of the R

models should predict C as the class with maximum proba-

bility. Second, for all models, the probability for C should

exceed certain threshold, which is set as 0.8 in our exper-

iments. If these two conditions are satisfied, we will add

(x, ŷ) into Su. During training, the loss Lu(x, ŷ; Θ) is the

standard cross entropy loss.

Soft label. Let pr denote the output from the r-th

model’s softmax layer for an input x, which represents the

probability over classes. We calculate the average of pr
across all of the R models as the soft pseudo-label for x,

i.e. ŷ = 1

R

∑
R

r=1
pr. Every unlabeled image x ∈ U will

be assigned a soft label and added to Su. During training,

let pΘ be the output probability from the model, we want

to minimize the KL-divergence between pΘ and the soft

pseudo-label for all pairs (x, ŷ) ∈ Su. Therefore, the loss

is Lu(x, ŷ; Θ) = DKL(pΘ, ŷ).

For both hard label and soft label approach, after getting

the pseudo-labels, we train a model from scratch using all

available datasets {Si}
k

i=1, Su and V. Since the proposed

gradient mixing method relies on V to estimate the model’s

performance on the target domain, we enlarge the size of

V to 100 samples per class, by adding hard-labeled images

from Su using the method described above. The enlarged

V can represent the target domain with less bias, which

helps to calculate better weights on the source gradients,

such that the model’s performance on the target domain is

maximized.

3.6. Incorporating Semi­supervised Learning

We can further exploit the unlabeled target domain data

U by leveraging semi-supervised learning (SSL) methods.

Specifically, we incorporate two state-of-the-art SSL meth-

ods, virtual adversarial training [26] and MixMatch [2], into

our GradMix method, by adding an additional unlabeled

loss term on U during training. The details of the unlabeled

loss can be found in the original papers [26, 2].
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Figure 2: An illustration of the two experimental settings for multi-source domain and task transfer (MS-DTT). Our method

effectively transfers knowledge from multiple sources to the target task.

4. Experiment

4.1. Experimental Setup

Datasets. In our experiment, we perform MS-DTT across

two different groups of data settings, as shown in Fig-

ure 2. First, we do transfer learning across different digit do-

mains using MNIST [12] and Street View House Numbers

(SVHN) [27]. MNIST is a popular benchmark for handwrit-

ten digit recognition, which contains a training set of 60,000

examples and a test set of 10,000 examples. SVHN is a real-

word dataset consisting of images with colored background

and blurred digits. It has 73,257 examples for training and

26,032 examples for test.

For our second setup, we study MS-DTT from human

activity images in MPII dataset [1] and human action im-

ages from the Web (BU101 dataset) [24], to video action

recognition using UCF101 [35] dataset. MPII dataset con-

sists of 28,821 images covering 410 human activities in-

cluding home activities, religious activities, occupation, etc.

UCF101 is a benchmark action recognition dataset col-

lected from YouTube. It has 13,320 videos from 101 ac-

tion categories, captured under various lighting conditions

with camera motion and occlusion. We take the first split

of UCF101 for our experiment. BU101 contains 23,800

images collected from the Web, with the same action cat-

egories as UCF101. It contains professional photos, com-

mercial photos, and artistic photos, which differ signifi-

cantly from video frames.

Network and implementation details. For digit recogni-

tion, we use the same ConvNet architecture as [23], which

has 4 Conv layers and 2 fc layers. We randomly initialize

the weights, and train the network using SGD with learning

rate α = 0.05, and a momentum of 0.9. For fine-tuning we

reduce the learning rate to 0.005. For action recognition, we

use ResNet-18 [9] architecture. We initialize the network

with ImageNet pre-trained weights, which is important for

all baseline methods to perform well. The learning rate is

0.001 for training and 5e−5 for fine-tuning.

4.2. SVHN 5­9 + MNIST 0­4 → MNIST 5­9

Experimental setting. In this experiment, we define four

sets of training data: (1) labeled images of digits 5-9 from

the training split of SVHN dataset as the first source S1,

(2) labeled images of digits 0-4 from the training split of

MNIST dataset as the second source S2, (3) few labeled im-

ages of digits 5-9 from the training split of MNIST dataset

as the validation set V , (4) unlabeled images from the rest

of the training split of MNIST 5-9 as U . We subsam-

ple k examples from each class of MNIST 5-9 to con-

struct the unbiased validation set V . We experiment with

k = 2, 3, 4, 5, which corresponds to 10, 15, 20, 25 labeled

examples. Since V is randomly sampled, we repeat our

experiment 10 times with different V . In order to monitor

training progress and tune hyper-parameters (e.g. α, β, γ),

we split out another 1000 labeled samples from MNIST 5-9

as the hyper-validation set. The hyper-validation set is the

traditional validation set and is fixed across 10 runs.

Baselines. We compare the proposed method to multiple

baseline methods:

• Target only: the model is trained using V .

• Source only: the model is trained using S1 and S2 without

gradient reweighting.

• Fine-tune: the Source only model is fine-tuned using V .

• MME [33]: Minimax Entropy is a state-of-the-art method

for single-source semi-supervised domain adaptation. We

use S1 (SVHN 5-9) as the source domain because it is has

the same label space as the target task.

• MDDA [25]: Multi-domain domain alignment layers that

shift the network activations for each domain using a param-

eterized transformation equivalent to batch normalization.

• DCTN [41]: Deep Cocktail Network, which uses multi-

way adversarial adaptation to align the distribution of mul-

tiple source domains and the target domain.
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Table 1: Classification accuracy (%) of the baselines and our method on the test split of MNIST 5-9. We report the mean and

the standard error of each method across 10 runs with different randomly sampled V .

Method Datasets k=2 k=3 k=4 k=5

Target only V 71.35±1.85 77.15±1.36 81.43±1.41 84.83±1.10

Source only S1, S2 82.39 82.39 82.39 82.39

Fine-tune S1, S2,V 89.94±0.35 89.86±0.46 90.89±0.48 91.96±0.39

GradMix SGD [31] S1, S2,V 89.30±0.73 89.78±0.72 91.70±0.45 92.05±0.29

GradMix w/o AdaLR S1, S2,V 90.10±0.37 90.22±0.62 92.14±0.43 92.92±0.29

GradMix S1, S2,V 91.17±0.37 91.45±0.52 92.14±0.40 93.06±0.46

MME [33] S1,V,U 90.25±0.31 90.37±0.36 91.38±0.29 91.76±0.24

MDDA [25] S1, S2,V,U 90.23±0.40 90.28±0.50 91.45±0.37 91.85±0.31

DCTN [41] S1, S2,V,U 91.81±0.26 92.34±0.28 92.42±0.39 92.97±0.37

GradMix w/ soft label S1, S2,V,U 94.62±0.18 95.03±0.30 95.26±0.17 95.74±0.21

GradMix w/ hard label S1, S2,V,U 96.02±0.24 96.24±0.33 96.63±0.17 96.84±0.20

GradMix w/ VAT [26] S1, S2,V,U 96.23±0.21 96.35±0.31 96.87±0.19 96.94±0.20

GradMix w/ MixMatch [2] S1, S2,V,U 96.30±0.23 96.43±0.32 96.85±0.19 97.02±0.21

We also evaluate different variants of our model with and

without certain component to show its effect:

• GradMix SGD: instead of calculating the optimal weights

w∗ by maximizing cosine similarity of gradients (Equa-

tion 6), we follow the method in [31] and perform SGD on

w to directly minimize the validation error in Equation 3.

• GradMix w/o AdaLR: the method in Section 3.3 without

the adaptive learning rate (Section 3.4).

• GradMix: the proposed method that uses S1, S2 and V
during training.

• GradMix w/ hard label: using the hard label approach

to create pseudo-labels for U , and train a model with all

available datasets.

• GradMix w/ soft label: using the soft label approach to

create pseudo-labels for U , and train a model with all avail-

able datasets.

• GradMix w/ VAT: incorporating VAT [26] into GradMix.

• GradMix w/ MixMatch: incorporating MixMatch [2] into

GradMix.

Results. Table 1 shows the results for methods described

above. We report the mean and standard error of classifi-

cation accuracy across 10 runs with randomly sampled V .

Methods in the upper part of the table do not use the un-

labeled target domain data U . Among these methods, the

proposed GradMix has the best performance. If we remove

the adaptive learning rate, the accuracy would decrease. As

expected, the performance improves as k increases, which

indicates more samples in V can help the GradMix method

to better combine the gradients during training.

10 20 30 40 50 60 70 80 90 100
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0

0.5

1
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L
o
s
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GradMix
Source only
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L
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Figure 3: Loss on the hyper-validation set as training pro-

ceeds on digit recognition task. Top row is with k = 2
whereas the bottom row is with k = 5. We define 1 epoch

as training for 100 mini-batches (gradient descents).

The lower part of the table shows methods that lever-

age the unlabeled target data U . MME [33] only uses

S1, whereas other methods use both S1 and S2. The pro-

posed GradMix without U can achieve comparable perfor-

mance with state-of-the-art baselines that use U (MME,

MDDA and DCTN). Using pseudo-label with model en-

semble significantly improves performance compared to
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Table 2: Results of GradMix using different β and γ when k = 3. Numbers indicate the test accuracy (%) on MNIST 5-9

(averaged across 10 runs). The ensemble of the top three models is used to create pseudo-labels.

γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

β = 5 90.92 90.96 90.95 90.58 90.75 90.75 90.51 90.63 91.12

β = 6 90.41 90.75 89.95 90.79 90.59 89.95 90.58 90.63 90.56

β = 7 89.76 90.44 90.42 90.94 90.28 90.40 90.52 90.70 90.66

β = 8 90.05 90.89 90.93 90.57 90.77 90.69 89.99 90.58 90.71

β = 9 90.32 90.70 90.48 90.94 90.47 90.92 90.20 90.23 90.86

β = 10 90.52 90.03 89.67 90.01 89.84 90.51 91.45 90.58 90.70

baseline methods. Comparing soft label to hard label, the

hard label approach achieves better performance. More

detailed results about model ensemble for pseudo-labeling

is shown later in the ablation study. Furthermore, both

VAT [26] and MixMatch [2] can achieve performance im-

provement by effectively utilizing the unlabeled data U .

Ablation Study. In this section, we perform ablation ex-

periments to demonstrate the effectiveness of our method

and the effect of different hyper-parameters. First, Figure 3

shows two examples of the hyper-validation loss as training

proceeds. We show the loss for the Source only baseline and

the proposed GradMix, where we perform hyper-validation

every 100 mini-batches (gradient descents). In both exam-

ples with different k, GradMix achieves a quicker and stead-

ier decrease in the hyper-validation loss.

In Table 2, we show the results using GradMix with dif-

ferent combination of β and γ when k = 3. We perform a

grid search with β = [5, 6, ..., 10] and γ = [0, 0.1, ..., 0.8].
The accuracy is the highest for β = 10 and γ = 0.6. The

top three models are selected for ensemble to create pseudo-

labels for the unlabeled set U .

In addition, we perform experiments with various num-

ber of models used for ensemble when creating pseudo-

labels for the unlabeled set U . Figure 4 shows the results

for R = 1, 2, 3, 4, 5 across all values of k. R = 3 has

the best overall performance and a moderate computational

cost. Therefore, we use the ensemble of the top three mod-

els to create reliable pseudo-labels.

4.3. MPII + BU101 → UCF101

Experimental setting. In the action recognition experi-

ment, we have four sets of training data similar to the digit

recognition experiment, which include (1) S1: labeled im-

ages from the training split of MPII, (2) S2: labeled images

from the training split of BU101, (3) V: k labeled video

clips per class randomly sampled from the training split

of UCF101, (4) U : unlabeled images from the rest of the

training split of UCF101. We experiment with k = 3, 5, 10
which corresponds to 303, 505, 1010 video clips. Each ex-

periment is run two times with different V . We report the

mean accuracy across the two runs for both per-frame clas-
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Figure 4: Results of GradMix w/ hard label using various

number of pre-trained models (R) for ensemble on digit

recognition task. k is the number of labeled samples per

class in V .

sification and per-video classification. Per-frame classifi-

cation is the same as doing individual image classification

for every frame in the video, and per-video classification is

done by averaging the softmax score for all the frames in a

video as the video’s score.

Baselines. We compare our method with multiple base-

lines described in Section 4.2, including Target only, Source

only, Fine-tune, MDDA [25] and DCTN [41]. In addi-

tion, we evaluate another baseline for knowledge transfer

in action recognition, namely EnergyNet [15]: The Con-

vNet (ResNet-18) is first trained on MPII and BU101, then

knowledge is transfered to UCF101 through spatial atten-

tion maps using a Siamese Energy Network.

Results. Table 3 shows the results for action recognition.

Target only has better performance compared to Source

only even for k = 3, which indicates a strong distribu-

tion shift between source data and target data for actions

in the wild. For all values of k, the proposed GradMix out-

performs baseline methods that use S1, S2 and V for train-

ing in both per-frame and per-video accuracy. GradMix

also has comparable performance with MDDA that uses the
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Table 3: Classification accuracy (%) of the baselines and our method on the test split of UCF101. We report the mean

accuracy of each method across two runs with different randomly sampled V .

Method Datasets
per-frame per-video

k=3 k=5 k=10 k=3 k=5 k=10

Target only V 42.58 53.31 63.05 43.74 55.50 64.74

Source only S1, S2 41.96 41.96 41.96 43.46 43.46 43.46

Fine-tune S1, S2,V 55.86 60.55 66.77 58.57 66.01 70.21

EnergyNet [15] S1, S2,V 55.93 60.82 66.73 58.70 66.23 70.25

GradMix S1, S2,V 56.25 61.73 67.30 59.41 66.27 71.49

MDDA [25] S1, S2,V,U 56.65 61.58 67.65 60.00 65.14 71.54

DCTN [41] S1, S2,V,U 57.88 61.97 68.46 61.64 66.59 72.85

GradMix w/ hard label S1, S2,V,U 68.92 68.76 69.25 72.58 72.34 73.48

GradMix w/ VAT [26] S1, S2,V,U 69.02 69.59 70.11 73.35 73.05 73.71

GradMix w/ MixMatch [2] S1, S2,V,U 69.33 69.88 70.09 73.57 73.46 73.68

unlabeled dataset U . The proposed pseudo-label method

achieves significant gain in accuracy by assigning hard la-

bels to U and learn target-discriminative knowledge from

the pseudo-labeled dataset. Futhermore, performance im-

proved is achieved by incorporating state-of-the-art semi-

supervised learning methods.

5. Conclusion

In this work, we propose GradMix, a method for semi-

supervised MS-DTT: multi-source domain and task trans-

fer. GradMix assigns layer-wise weights to the gradients

calculated from each source objective, in a way such that

the combined gradient can optimize the target objective,

measured by the loss on a small validation set. GradMix

can adaptively adjust the learning rate for each mini-batch

based on its importance to the target task. In addition,

we assign pseudo-labels to the unlabeled samples using

model ensembles, and consider the pseudo-labeled dataset

as a source during training. We validate the effectiveness

our method with extensive experiments on two MS-DTT

settings, namely digit recognition and action recognition.

GradMix is a generic framework applicable to any models

trained with gradient descent. For future work, we intend to

extend GradMix to other problems where labeled data for

the target task is expensive to acquire, such as image cap-

tioning.
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