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Abstract

Video super-resolution aims at generating a high-

resolution video from its low-resolution counterpart. With

the rapid rise of deep learning, many recently proposed

video super-resolution methods use convolutional neural

networks in conjunction with explicit motion compensation

to capitalize on statistical dependencies within and across

low-resolution frames. Two common issues of such meth-

ods are noteworthy. Firstly, the quality of the final recon-

structed HR video is often very sensitive to the accuracy of

motion estimation. Secondly, the warp grid needed for mo-

tion compensation, which is specified by the two flow maps

delineating pixel displacements in horizontal and vertical

directions, tends to introduce additional errors and jeopar-

dize the temporal consistency across video frames. To ad-

dress these issues, we propose a novel dynamic local filter

network to perform implicit motion estimation and compen-

sation by employing, via locally connected layers, sample-

specific and position-specific dynamic local filters that are

tailored to the target pixels. We also propose a global refine-

ment network based on ResBlock and autoencoder struc-

tures to exploit non-local correlations and enhance the spa-

tial consistency of super-resolved frames. The experimental

results demonstrate that the proposed method outperforms

the state-of-the-art, and validate its strength in terms of lo-

cal transformation handling, temporal consistency as well

as edge sharpness.

1. Introduction

Super-resolution (SR) is considered as a promising tech-

nique to produce high-resolution (HR) pictorial data us-

ing low-resolution (LR) sensors without resorting to hard-

ware upgrades. Over the past few decades, it has received

significant attention in a wide range of areas, including,
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(a) Bicubic (b) Our Result (c) Ground Truth

Figure 1: The comparison of the bicubic interpolation, our

result and the ground truth with the scale ratio set to 4.

among others, medical imaging [9, 35], satellite imaging

[3, 22, 34] and surveillance [10, 15, 40]. Recently, it has

also been used as a pre-processing step to facilitate var-

ious recognition tasks by enhancing the raw data [13, 2].

Super-resolution can be divided into two categories: single

image super-resolution (SISR) and video super-resolution

(VSR). SISR can be viewed as a certain sophisticated im-

age interpolation operation, which attempts to supply the

missing details by strategically exploiting the spatial pat-

terns in LR inputs. In contrast, VSR takes advantage of

both spatial and temporal relationships among consecutive

frames to improve the quality of reconstructed videos. The

traditional approaches to the VSR problem typically con-

sist of three sub-tasks: sub-pixel motion estimation, mo-

tion compensation and up-sampling [7, 28, 33, 26]. In gen-

eral, motions across LR frames are estimated explicitly and

the estimated LR displacements are employed to compen-

sate sub-pixel motions by warping relevant LR frames to

the target frame; the compensated LR frames are then fused

to reconstruct the corresponding HR frame. The existing

deep-learning-based VSR methods largely follow similar

approaches [18, 1, 25, 31, 42]. One common limitation of

such methods is that the motion compensation module is not

trainable, i.e., it cannot be updated through the training pro-

cess. It is also worth noting that the super-resolved frames
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are very sensitive to the accuracy of the initial motion esti-

mation, rendering the quality of SR outputs unstable.

In this paper, we propose a new approach to VSR using

local dynamic filters via locally connected (LC) layers for

implicit motion compensation and demonstrate its compet-

itive advantages over the existing ones. The effectiveness

of this LCVSR approach can be attributed to three major

factors: 1) The overall system is end-to-end trainable and

does not require any pre-training; the accuracy of motion

estimation improves progressively through the training pro-

cess. 2) Local motion estimation and compensation is per-

formed implicitly by a novel dynamic local filter network

(DLFN) with LC layers. There are at least two benefits of

using the DLFN. Firstly, the implicit motion estimation, re-

alized by sample-specific and position-specific dynamic lo-

cal filters generated on-the-fly according to the target pixels,

can deal with complicated local transformations in video

frames such as regional blurring, irregular local movement

and photometric changes. Secondly, the simultaneous ac-

tion of dynamic local filters on all input LR frames via LC

layers helps to maintain the temporal consistency. 3) The

spatial consistency of super-resolved outputs is enforced by

a novel global refinement network (GRN) constructed us-

ing ResBlock and autoencoder structures. Since the implicit

motion estimation performed by the DLFN is spatially lo-

calized, it may cause inconsistencies across neighboring ar-

eas. As such, the GRN plays a critical role of restoring

the spatial consistency. Moreover, the GRN has the capa-

bility of exploiting non-local correlations due to its con-

stituent autoencoder structure, which makes up for the lack

of global motion estimation in the DLFN. Fig. 1 shows the

comparison of the bicubic interpolation (the LR input), our

result (the HR output) and the ground truth for a sample

video frame.

2. Related Work

Many SISR and VSR methods have been proposed

over the past few decades. The traditional methods typ-

ically solve the SR problem, which is inherently under-

determined, by formulating it as a certain regularized op-

timization problem [7, 6, 20, 24, 28, 27, 26]. The recent

years, however, have witnessed the increasing dominance

of deep-learning-based SR methods. The work by Dong et

al. [4] is among the earliest ones that brought convolutional

neural networks (CNNs) to bear upon SISR. In their pro-

posed SRCNN, a very shallow network is used to extract LR

features, which are subsequently leveraged to generate HR

images via non-linear mapping. To avoid time-consuming

operations in the HR space, Shi et al. [32] proposed an ef-

ficient sub-pixel convolution network (ESPCN) to extract

and map features from the LR space to the HR space using

convolutional layers instead of naive pre-defined interpola-

tions such as bilinear or bicubic. Zhang et al. [41] designed

a residual dense block with direct connections for the pur-

pose of a more thorough extraction of local features from

LR images.

Compared with SISR, VSR is inherently more complex

due to the additional challenge of harnessing the relevant in-

formation in the temporal domain. To cope with this chal-

lenge, Kappeler et al. [18] proposed to employ the hand-

crafted optical flow method by Drulea and Nedevschi [5]

to compensate motions across input frames and then feed

the compensated frames into a pre-trained CNN to perform

the SR operation. Huang et al. [14] developed a new VSR

method based on the so-called bidirectional recurrent con-

volutional network (BRCN). The BRCN is a variant of re-

current neural network (RNN) with commonly-used recur-

rent connections replaced by weight-sharing convolutional

connections; as a consequence, it inherits the strength of

RNN in terms of capturing long-term temporal dependen-

cies and at the same time admits a more efficient implemen-

tation. Liao et al. [23] introduced a SR draft-ensemble ap-

proach in which multiple SR drafts are generated using an

optical flow method with different estimation settings and

then synthesized by a carefully constructed CNN to produce

the final HR output.

To avoid inaccurate motion estimation caused by fixed

temporal radius, Liu et al. [25] proposed a temporal adap-

tive neural network. This network has several SR infer-

ence branches, each with a different temporal radius; the fi-

nal HR output is obtained by adaptively aggregating all SR

inferences. They also introduced a spatial alignment net-

work that can efficiently estimate motions between neigh-

boring frames. The VESPCN developed by Caballero et al.

[1] combines spatio-temporal networks with an end-to-end

trainable spatial transformer module to generate the super-

resolved video. Based on the motion compensation module

in the VESPCN [1], Tao et al. [33] designed a sub-pixel mo-

tion compensation (SPMC) layer to compensate motion and

up-sample video frames simultaneously. Moreover, they ad-

vocated the use of an encoder-decoder style structure with

ConvLSTM [37] and skip-connections [29] for effectively

processing sequential videos and reducing the training time.

To improve the temporal consistency of super-resolved

videos, Sajjadi et al. [31] proposed a frame recurrent VSR

method, which enables the processing of the current frame

to benefit from the inferred SR results for the previous

frames. This method is more efficient than those treating

the VSR problem as a sequence of multi-frame SR prob-

lems due to the recurrent nature of its operations.

Jo et al. [17] developed a novel VSR method, known

as VSRDUF, which works as follows: A deep neural net-

work is employed to generate dynamic upsampling filters

and frame residuals; certain provisional HR frames are con-

structed from their LR counterparts through dynamic up-

sampling filters, and the inferred residuals are then added
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to such frames to produce the final output. This work is

most related to ours in the sense that motion compensation

is only performed implicitly. However, it will be seen that

the underlying mechanisms are fundamentally different.

3. Method

In this section we give a detailed description of the pro-

posed VSR method with an emphasis on its most prominent

feature, namely, the use of local dynamic filters via LC lay-

ers to implicitly compensate motions across video frames.

The process starts with converting the input LR frames from

RGB to YCbCr color space. Only the Y channels are fed

into the proposed VSR system, which helps to reduce the

computational complexity. The Cb and the Cr channels

are upsampled via bicubic interpolation and merged with

the super-resolved Y channels to generate HR frames in

YCbCr, from which the final result in RGB is obtained.

Let Yt ∈ R
H×W denote the t-th LR frame in the Y channel

degraded by blurring and down-sampling operations from

the corresponding HR frame Xt ∈ R
rH×rW , where r is the

scale ratio. The given LR video sequence of C consecutive

frames centered at Yt is denoted as {Yt−T :t+T }, where T is the

temporal radius and C = 2T + 1. The corresponding HR

video sequence is {Xt−T :t+T }. We use FLCVS R as the func-

tional representation of the proposed LCVSR system with

the end-to-end relation

X̂t = FLCVS R({Yt−T :t+T }; θLCVS R), (1)

where X̂t is the reconstructed HR frame and θLCVS R denotes

the ensemble of the system parameters. Regardless of the

batch size, the shape of the input tensor is set to be C ×

H × W while that of the output is set to be 1 × rH × rW.

The proposed LCVSR system, as shown in Fig. 2, consists

of three modules, which are respectively the dynamic local

filter network (DLFN), the pixel-shuffle network [32] and

the global refinement network (GRN). The input LR frames

{Yt−T :t+T } are first fed into the DLFN, which has two sub-

modules: local filter-generating network (LFGN) and LC

layers. The LFGN produces sample-specific and position-

specific dynamic local filters filters on-the-fly according to

the spatio-temporal relationship among the inputs. These

dynamic local filters, each of size s× s×C (with s = 2d+1,

where d is the spatial radius), then act on the LR frames via

LC layers to generate the feature maps {Ŷ1:L} (we set L =

r2 in this work). These feature maps are forwarded to the

pixel-shuffle network to construct a provisional HR frame

X̂′t , which is subsequently fed into the GRN to enhance the

spatial consistency and cope with global transformations.

The output of the GRN is the reconstructed HR frame X̂t.

3.1. Dynamic Local Filter Network

The existing VSR methods typically compensate mo-

tions across video frames by explicitly estimating pixel

displacements in horizontal and vertical directions. This

error-prone estimation step may potentially jeopardize the

quality of SR results. Therefore, it is of considerable in-

terest to develop deep-learning-based techniques for im-

plicit motion estimation and compensation. One possible

approach is to use the conventional CNNs with weight-

sharing filters, which have been shown to achieve out-

standing performance in image classification and segmen-

tation tasks[11, 36]. However, motion, blur and photomet-

ric changes encountered in the VSR problem are usually

sample-specific and position-specific, in other words, each

pixel in a video frame may exhibit a unique degradation pat-

tern, which cannot be effectively exploited by the weight-

sharing filters. For this reason, we propose a DLFN with

LC layers that can perform local operations tailored to the

spatio-temporal characteristics of the target pixels. Specifi-

cally, a sample-specific and position-specific dynamic local

filter is generated for each pixel in the input LR frames;

these dynamic local filters then collectively act on the input

frames via LC layers to generate feature maps by compen-

sating motions and other transforms in an implicit manner.

Let Θl ∈ R
sH×sW×C denote the lth set of (unbiased) local

filters. Each local filter in Θl (say, Θi, j,l ≔ {Θ
(m,n,k)

i, j,l
: m, n =

1, 2, 3; k = 1, · · · ,C}) is associated with a specific pixel

(say, the (i, j)-pixel) in the tth LR frame. The lth feature

map Ŷl is obtained by applying Θl on the input LR frames

{Yt−T :t+T }. More precisely, we have

Ŷ
(i, j)

l
=

i+d
∑

m=i−d

j+d
∑

n= j−d

t+T
∑

k=t−T

Θ
(m−i+d+1,n− j+d+1,k−t+T+1)

i, j,l
· Y

(m,n)

k
,

(2)

where Ŷ
(i, j)

l
represents the value of the (i, j)-pixel in the lth

feature map, and Y
(m,n)

k
denotes the (m, n)-pixel in the kth LR

frame. It is worth pointing out that bothΘl and Ŷl depend on

t and should actually be written as Θt,l and Ŷt,l respectively;

here we suppress the subscript t for notational simplicity.

To generate dynamic local filters, we build a novel LFGN

based on ResBlocks [12]. Its input-output relationship can

be expressed as

Θ = FLFGN({Yt−T :t+T }; θLFGN), (3)

where FLFGN is the functional representation of the LFGN

and θLFGN denotes the ensemble of its parameters. Note

that the output Θ ≔ {Θ1:L} ∈ R
C×sH×sW×L is a 4-D tensor

(which consists of all dynamic local filters) whereas the in-

put of the LFGN is a 3-D tensor of shape C × H × W. To

generate Θ based on {Yt−T :t+T }, we employ modified Res-

Blocks in concatenation to progressively increase the depth

of the input tensor from C to C′, where C′ = C × s2 × L,

then resize the resulting 3-D tensor of shape C′ × H ×W to

a 4-D tensor of shape C × sH × sW × L. The LFGN con-

sists of one Resize module and four sub-blocks, each of
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Figure 2: The left part shows the overall architecture of the proposed LCVSR system. The right part provides a detailed

illustration of the LFGN.

which is built using ResBlocks. We find that using more

ResBlocks in each sub-block leads to better performance.

However, to strike a balance between system performance

and computational complexity, in each sub-block we deploy

one ResBlock for depth enlargement and three ResBlocks

with no shape change. Besides, grouped convolutions [21]

are also utilized. The four sub-blocks are densely connected

by shortcuts to facilitate information exchange among them.

If the tensors at the two sides of a shortcut have different

shapes, a 1 × 1 convolution is performed to make the shape

compatible; otherwise, we directly connect the two sides

without modification. Each ResBlock consists of two 3 × 3

convolutional layers, two LeakyReLU layers [38] and an

inner shortcut. The output of the DLFN consists of L fea-

ture maps, each of which is generated by exploiting, via

implicit motion compensation, the relevant spatio-temporal

information in all LR frames. These feature maps are then

fed into the pixel-shuffle network to construct a provisional

HR frame X̂′t .

It is worth emphasizing that dynamic local filters are in-

termediate computational results produced within the pro-

posed system and should not be viewed as the parameters

of the system itself. They are generated by the LFGN based

on the input LR frames, then act back on the input frames,

via LC layers, to perform pixel-level fine-grained motion

estimation and compensation. More generally, this is an ef-

fective mechanism for leveraging the learning capability of

a deep neural network (say, the LFGN in the current setting)

to realize dynamic localized functionalities. See Sections

4.1 and 4.4 for some supporting experimental results.

3.2. Global Refinement Network

Since the proposed DLFN performs localized motion es-

timation and compensation across LR frames, it can poten-

tially cause inconsistencies among neighboring areas. To

address this issue, we propose a GRN (see Fig. 2) em-

ploying ResBlock and autoencoder structures to improve

the spatial consistency of super-resolved frames. The au-

toencoder structure enlarges the receptive field so that the

GRN also has the ability to deal with global transforma-

tions, which makes up for the lack of global motion es-

timation in the DLFN. The GRN mainly consists of five

sub-blocks connected by shortcuts. Each sub-block con-

tains a convolutional layer or a transposed convolutional

layer with LeakyReLu as the activation function, followed

by three ResBlocks that are structurally the same as those

in the DLFN. The encoder, formed by the second and third

sub-blocks, reduces the spatial dimension but increases the

depth dimension to enlarge the receptive field progressively.

In contrast, the decoder, formed by the last two sub-blocks,

reduces the depth dimension but increases the spatial di-

mension to perform global refinement. Finally, a 5 × 5

convolutional layer activated by LeakyRelu produces the re-

constructed HR frame. The input-output relationship of the

proposed GRN is given by

X̂t = FGRN(X̂′t ; θGRN), (4)
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where FGRN is the functional representation of the GRN and

θGRN denotes the ensemble of its parameters.

3.3. Data Preparation

Deep-learning-based VSR methods rely heavily on the

quality and the quantity of the training datasets. Unfortu-

nately, so far there is no standard training dataset for VSR.

To build our own, we totally collect 100k ground-truth se-

quences, each with 7 consecutive frames of size 252 × 444,

where 70k sequences are selected from the Vimeo-90k

dataset recently built by Xue et al. [39] and the rest 30k

sequences are extracted from several videos provided by

Harmonic1; as a comparison, the current state-of-the-art

VSRDUF uses 160k sequences for training. We adopt the

Vid4 dataset [24] and the SPMCS dataset [33] for testing.

Our input LR frames are generated from the ground-truth

sequences via Gaussian blur and downsampling. For the

Gaussian blur, we set the standard deviation to be 1 and the

kernel size to be 3 × 3. As to the downsampling operation,

we choose the scale ratio r = 3, 4 (considered to be the most

challenging cases in the VSR task).

3.4. Implementation

The proposed LCVSR system is end-to-end trainable and

no pre-training is needed for sub-networks. Our training is

carried out on a PC with two NVIDIA GeForce GTX 1080

Ti, but only one GPU is used for testing. We adopt Xavier

initialization [8] and set the mini-batch size to be 12. The

L2 loss function is used to calculate the reconstruction error

as follows:

L2(Xt, X̂t) =
∥

∥

∥Xt − X̂t

∥

∥

∥

2

2
. (5)

We train the proposed system for about 0.8 million itera-

tions using the Adam optimizer [19] with β1 = 0.9, β2 =

0.999. The learning rate is set to 10−4 at the beginning and

decays to 10−5 after 0.7 million iterations. Our source code

will be made publicly available.

4. Experimental Results

In our experiments, we set C = 7, T = 3, s = 3 and

d = 1. As such, one super-resolved frame is generated

based on 7 consecutive LR frames with the middle one as

the reference, and the size of generated dynamic local filters

is 3 × 3 × 7. We use PSNR and SSIM for quantitative as-

sessment of the SR results. All PSNR values are calculated

based on the Y channel using the ITU-R BT.601 standard

to make fair comparisons [1]. In addition to the aforemen-

tioned quantitative performance metrics, we also consider

qualitative measures such as edge sharpness and temporal

consistency. The following existing VSR methods are cho-

sen as benchmarks: Bayesian [24], VSRNet [18], VESPCN

1https://www.harmonicinc.com/free-4k-demo-footage/

[1], B1,2,3 + T [25], SPMC [33], FRVSR [31] and VSRDUF

[17]. For the VSRDUF, both its basic version with 16 layers

(DUF-16L) and the enhanced version with 52 layers (DUF-

52L) are used for comparisons. The quantitative experimen-

tal results of these benchmarks are obtained using the pro-

vided source codes (if available) or cited from the original

papers.

4.1. Visualization of Dynamical Local Filters

Although the performance of the proposed LCVSR sys-

tem benefit from many contributing factors, arguably the

most crucial one is the use of dynamic local filters, via LC

layers, for implicit motion estimation and compensation. To

gain a better understanding, it is instructive to distinguish

generated filters from learned filters [16]. The learned fil-

ters such as those in the LFGN update themselves only dur-

ing the training process and become static afterwards. On

the contrary, the generated filters are adaptive in the sense

that they are not fully specified until the input is given. The

dynamic local filters in the proposed system belong to this

category. They are computed based on the input LR frames

and used as the kernel weights in LC layers; moreover, to

reduce the computational complexity, they are applied to the

LR space rather than the HR space. Fig. 3 illustrates the dy-

namic local filters that are used to generate the first feature

map Ŷ1, shown as the yellow cube in Fig. 2. It also shows

some sample patches of size 5 × 5 extracted from smooth,

edge and texture areas in the first and the last LR frames to-

gether with their corresponding dynamic local filters, which

are of size 15 × 15 (since s = 3). It can be seen from

Fig. 3 that the dynamic local filters are spatially content-

adaptive within each frame and temporally distinct (even

when the associated pixels are of similar nature) across dif-

ferent frames. This provides supporting evidence for their

ability to adapt according to the spatio-temporal character-

istics of the target pixels and perform implicit motion esti-

mation and compensation. It can also been seen from Fig. 3

that, in a given frame, the dynamic local filters for pixels

with a homogeneous neighborhood tend to have similar pat-

terns, which helps to retain intra-frame spatial consistency.

For example, the local filters associated with the pixels in

the smooth area and those in the edge area (except the ex-

act edge pixels) are quite alike. In contrast, each pixel in

the texture area has a distinct dynamic local filter, which is

essential since this area is very sensitive to motions.

4.2. Analysis of Temporal Consistency

The Lack of temporal consistency may cause flickering

artifacts that manifest visually, for instance, in the form of

jagged edges. To validate that our proposed method main-

tains temporal consistency, we extract spatially co-located

rows from consecutive super-resolved frames of Calendar

in the Vid4 dataset with the scale ratio r = 4, and arrange
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Figure 3: Dynamic local filters applied on smooth, edge and texture areas respectively.

Figure 4: Visual comparison of the temporal profiles gener-

ated by the proposed VSR method and some existing ones

for super-resolved Calendar and City frames in Vid4.

them vertically to compose a temporal profile [31]; we also

compose a temporal profile for the City frames in the same

dataset. Fig. 4 shows the comparison of our temporal pro-

files and the corresponding ones generated by five existing

VSR methods. Overall, the proposed method presents the

most consistent temporal profiles.In fact, its maintenance

of temporal consistency remains good even in some cases

where the ground-truth frames have certain artifacts in this

respect (see, e.g., City). Moreover, it can be seen from

the temporal profiles that our method produces the sharpest

edges, as compared to the other ones, in all Calendar and

City frames.

4.3. Qualitative and Quantitative Comparisons

The proposed method is compared to several existing

VSR methods qualitatively and quantitatively with a par-

ticular focus on the VSRDUF, which is the current state-

of-the-art. In the VSRDUF, the generated dynamic upsam-

pling filters (DUF) are only applied on the central LR frame

to reconstruct the SR one without joint consideration of all

input frames. This mechanism would cause fuzzy edges

and temporal inconsistencies (see Fig. 4 (e)). In contrast,

the generated dynamic local filters (DLF) are applied on all

input LR frames to reconstruct the SR one, yielding bet-

ter visual quality in terms of edge sharpness and temporal

consistency (see Fig. 4 (f)), and achieving higher PSNR

and SSIM values. Moreover, the essence of the DUF is

still a weight-sharing filter that has been widely used in

conventional CNNs. However, the proposed DLF is spa-

tially content adaptive (position-specific) within each frame

and temporally distinct (sample-specific) among different

frames. This is a new mechanism and is not like conven-

tional CNNs. The reason we employ the DLF in VSR is

based on the observation that each pixel in a video frame

may exhibit a unique degradation pattern, which cannot be

effectively exploited by the weight-sharing filters. Fig. 5

shows the qualitative comparisons of different methods on

the Vid4 dataset with r = 4, and Table 1 demonstrates

the quantitative comparisons in terms of average PSNR and

SSIM values on the same dataset with r = 3, 4. Note that

our SR results contain more fine details and restore sharper

edges. Moreover, the PSNR value achieved by the proposed

method is 0.61 dB higher than that by the DUF-16L when

r = 3 and 0.66 dB higher when r = 4. Even compared

with the DUF-52L, our result is still 0.13 dB higher when

r = 4. We have also performed the test on the SPMCS

dataset, which contains 31 video clips, for further qualita-

tive and quantitative comparisons. It can seen from Fig. 6

and Table 2 that the proposed method performs competi-

tively on this dataset as well.
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(a) VSRNet [18] (b) VESPCN [1] (c) SPMC [33] (d) FRVSR [31] (e) DUF-52L [17] (f) Proposed (g) GT

Figure 5: Visual comparisons on the Vid4 dataset with r = 4.

Vid4 Metric Bicubic
Bayesian

[24]

VSRNet

[18]

VESPCN

[1]

B1,2,3 + T

[25]

SPMC

[33]

FRVSR

[31]

DUF-16L

[17]

DUF-52L

[17]
Proposed

x3
PSNR 25.28 25.82 26.79 27.25 - 27.49 - 28.90 - 29.51

SSIM 0.7329 0.8323 0.8098 0.8447 - 0.8400 - 0.8898 - 0.8964

x4
PSNR 23.79 25.06 24.84 25.35 25.39 25.52 26.69 26.81 27.34 27.47

SSIM 0.6332 0.7466 0.7049 0.7557 0.7490 0.7600 0.8220 0.8145 0.8327 0.8394

Table 1: Quantitative comparisons on the Vid4 dataset with r = 3, 4.

SPMCS Metric SPMC [33] DUF-16L [17] DUF-52L [17] Proposed

x3
PSNR 32.10 - - 33.91

SSIM 0.9000 - - 0.9358

x4
PSNR 29.89 30.01 30.39 30.66

SSIM 0.8400 0.8355 0.8646 0.8711

Table 2: Quantitative comparisons on the SPMCS dataset

with r = 3, 4.

Vid4 Metric w/o LC Layers w/o GRN w/ U-Net [30] Our full model

x3
PSNR 27.27 28.13 29.20 29.51

SSIM 0.8471 0.8752 0.8896 0.8964

x4
PSNR 25.45 26.20 27.29 27.47

SSIM 0.7530 0.8134 0.8352 0.8394

Table 3: Quantitative comparisons on the Vid4 dataset for

different variants of the proposed method with r = 3, 4.
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(a) SPMC [33] (b) DUF52 [17] (c) Proposed (d) GT

Figure 6: Visual comparisons for NewYork and Venice from

the SPMCS dataset with r = 4.

4.4. Ablation Study

To gain a better understanding of the effectiveness of the

new mechanism for implicit motion estimation and com-

pensation, we conduct an ablation study by directly feeding

the output of the LFGN (via a convolutional layer) to the

pixel-shuffle network; the resulting system is trained in the

same way as before. Compared to the original system, this

new system has (essentially) the same number of parame-

ters but bypasses the action of dynamic local filters, via LC

layers, on the input LR frames. As shown in Table 3, this

modification leads to significant performance degradation

on the Vid4 dataset, suggesting that the mechanism adopted

by the original system is more effective in terms of exploit-

ing the learning capability of the LFGN to realize dynamic

localized functionalities. We also conducted the analysis on

the role of the GFN by 1) removing it from the proposed

system and 2) replacing it with the U-Net [30]. It can be

seen from Table 3 that these two variants incur significant

performance loss compared with our full model.

Figure 7: PSNR vs. runtime for different configurations of

the LCVSR system on the Vid4 dataset with the input length

set to be 1, 3, 5 and 7.

Method VSRNet [18] VESPCN [1] SPMC [33] DUF-52L [17] Proposed

Params. 0.39M 0.89M 2.17M 5.82M 5.81M

Time (s) 0.23 0.29 2.80 2.68 2.32

Table 4: The number of parameters and average runtime of

different methods for 1080p frames.

We further investigate the performance-complexity

trade-off for the proposed system by varying the input

length and the network size. Specifically, by employing

1, 2 and 3 ResBlocks (the ones without shape change) in

both DLFN and GRN, we construct three different config-

urations of the proposed system, denoted by LCVSR-Res1,

LCVSR-Res2 and LCVSR-Res3, respectively. Fig. 7 plots

the PSNR against the average runtime for each configura-

tion on the Vid4 dataset with the number of input LR frames

set to be 1, 3, 5 and 7. It can be seen that increasing the input

length leads to higher PSNRs at the cost of longer runtimes.

When the input length is 1, the VSR task degenerates to the

SISR task, which only exploits intra-frame dependencies.

Increasing the input length from 1 to 3 significantly im-

proves the PSNR values due to the additional freedom of ex-

ploring inter-frame dependencies via motion estimation and

compensation. Further increasing the input length provides

more spatial and temporal information that can be capital-

ized on, which helps to generate better SR results. However

the improvement becomes negligible when the input length

goes beyond 7. Employing more ResBlocks in DLFN and

GRN has a similar effect. Indeed, it can be seen from Fig. 7

that the PSNR value increases progressively from LCVSR-

Res1 to LCVSR-Res3 for the same input length, and the

runtime follows the same trend. Note that the proposed

LCVSR system corresponds to LCVSR-Res3 with input

length 7. The above experimental results provide certain

justifications for the design of the proposed system in con-

sideration of the performance-complexity trade-off.

4.5. Network parameters and runtime Analysis

In table 4, the number of parameters and the runtime

of different methods are demonstrated. Our method has

slightly less parameters and faster runtime than the cur-

rent state-of-the-art DUF-52L. Although the VSRNet has

the least number of parameters and is close to real-time, it

has the worst VSR performance.

5. Conclusion

In this paper, we have proposed an end-to-end train-

able VSR method based on a new mechanism for implicit

motion estimation and compensation (realized through dy-

namic local filters and LC layers). Our experimental results

demonstrate that the proposed method outperforms the cur-

rent state-of-the-art in terms of local transformation han-

dling, edge sharpness and temporal consistency.
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