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Abstract

To tackle the 3D mask face presentation attack, re-

mote Photoplethysmography (rPPG), a biomedical tech-

nique that can detect heartbeat signal remotely, is employed

as an intrinsic liveness cue. Although existing rPPG-based

methods exhibit encouraging results, they require long ob-

servation time (10-12 seconds) to identify the heartbeat in-

formation, which limits their employment in real applica-

tions such as smartphone unlock and e-payment. To shorten

the observation time (within 1-second) while keeping the

performance, we propose a fast rPPG-based 3D mask pre-

sentation attack detection (PAD) method by analyzing the

similarity of local facial rPPG signals in the time domain.

In particular, a set of temporal similarity features of facial

and background local rPPG signals are designed and fused

to adapt the real world variations based on rPPG shape

and phase properties. For better evaluation under practical

variations, we build the HKBU-MARsV2+ dataset that in-

cludes 16 masks from 2 types and 6 lighting conditions. Fi-

nally, extensive experiments are conducted on 11092 short-

term video slots from 4 datasets with a large number of real-

world variations, in terms of mask type, lighting condition,

camera, resolution of face region, and compression setting.

Results show that the proposed TSrPPG outperforms the

state-of-the-art competitors dramatically on discriminabil-

ity and generalizability. To our best knowledge, this is the

first work that addresses the length of observation time issue

of rPPG-based 3D mask PAD.

1. Introduction

Face recognition technique has been employed in various

applications nowadays due to its practicability and conve-

nience, especially the access control and E-payment. Natu-

rally, the security issue of face recognition systems becomes

a critical concern. Face recognition systems are vulnerable

to presentation attacks when obtaining one’s face image be-

comes easier with the increasing popularity of social net-
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Figure 1. An example of rPPG frequency analysis when the obser-

vation time becomes short. Local rPPG signals are extracted from

local face regions that are located with facial landmarks. With

longer observation time (12 seconds in the green window), the sig-

nal spectrum shows a clear peak at the heartbeat frequency. With

limited observation time (3 seconds and 1 second in red windows),

the heartbeat sign becomes less distinguishable which causes false

rejection error. The right subfigure visualizes the spectrum varia-

tion when the observation time becomes shorter. Each row in the

matrix represents the average of multiple local rPPG spectrums

given a specific observation time length.

works. Face presentation attacks can be conducted at very

low cost with prints or screen. To detect them, great efforts

have been made in the last decades [25, 22, 7, 34, 32, 5, 11]

and a number of liveness cues have been proposed and stud-

ied, such as the appearance-based cues including texture

[22, 5], image quality [11], reflection patterns [32, 21], and

motion-based cues including eyes or mouth motion [25] and

facial expression [7].

In addition to the two conventional attacks, 3D mask at-

tack has attracted increasing attention since the customized

3D mask can be easily made at an affordable price [10]. Al-

though the appearance-based methods exhibit strong ability
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on detecting Thatsmyface masks1 with 3D printing quality

defect [10], their effectiveness can not stand when encoun-

tering high quality 3D masks with vivid texture and shape

as real faces [18]. In addition, the appearance-based meth-

ods fail when the training data environment (light, camera,

and spoofing media) is different from the one of testing data

due to their data-driven nature [32, 18].

Recently, a new liveness cue based on remote photo-

plethysmography (rPPG) is proposed to tackle the 3D mask

attack challenge [18, 16]. rPPG is a new technique that can

extract the heartbeat signal through normal RGB camera

by measuring the subtle skin color variations caused by the

blood pulse. For 3D mask attack problem, such a liveness

signal can only be observed on genuine faces but not on

masked faces because the 3D mask blocks the light trans-

mission from the facial skin [18]. Since the blocking of

heartbeat signal is independent to the mask appearance, the

rPPG-based 3D mask PAD methods can detect the hyper

real mask well and shows good generalizability [18, 19].

However, such good performance is constrained on

long observation time (around 10-12 seconds on existing

datasets), which is not fast enough for practical applica-

tion usage such as the smart-phone access or the electronic

payment. The long-term waiting will make costumer anx-

ious and destroy the user experience of the entire system.

For existing rPPG-based methods that rely on signal spec-

trum analysis in the frequency domain, the input face video

should be long enough to contain sufficient number of stable

heartbeat cycles to obtain distinguishable response (peak) at

the heartbeat frequency [18, 16]. Also, since rPPG measure-

ment relies on the subtle skin color variation which is sen-

sitive to lighting condition and facial movement [8], it re-

quires even longer observation time in unconstrained appli-

cation scenarios. Otherwise, false rejection error increases

since the rPPG spectrum on genuine faces and masked faces

can hardly be differentiated. Figure 1 shows an example of

the rPPG spectrum analysis with different length of obser-

vation time under room light.

To shorten the observation time while achieving bet-

ter the performance, we propose the temporal similarity

of rPPG (TSrPPG) method for fast 3D mask PAD. Dif-

ferent from the spectrum analysis approach which exploits

the heartbeat from long-term observation in frequency do-

main [18, 16], the proposed TSrPPG can extract the heart-

beat vestige within 1 second, by analyzing the rPPG signal

waveform in time domain. Within the proposed TSrPPG,

the similarities between the local rPPG signals extracted

from facial and background regions are employed as the

liveness discriminant, based on the property that facial

rPPG signals are all generated from the same source — the

heartbeat. In particular, an rPPG temporal similarity fea-

ture operator is proposed to extract both the similarity and

1www.thatsmyface.com

the amplitude information in short observation time. On

top of that, a set of distance metric is designed according to

the waveform characteristic of local rPPG signals, in terms

of their shapes and phases. The final result is obtained

through score-level-fusion to better adapt different varia-

tions in practice. The proposed TSrPPG can be regarded

as a general framework that allows different types of signal

similarity metric and fusion strategies.

Moreover, to better evaluate the rPPG-based approach

with practical variations, this paper extends the HKBU-

MARsV2 dataset [17] into a larger scale by adding 4 sub-

jects with their customized hyper real REAL-f masks and

increasing the number of videos by 3 times. The new

dataset HKBU-MARsV2+ now contains 16 subjects with

10 hyper real REAL-f masks and 6 Thatsmyface masks, 6

lighting conditions, and 480 videos in total.

In summary, the contributions of this paper are:1) A fast

rPPG-based 3D mask PAD method based on time domain

rPPG signal analysis. 2) An rPPG feature operator with a

set of time domain rPPG similarity measurement, in terms

of their signal shapes and phases. 3) An new dataset which

contains 2 types of masks, 6 lighting conditions, and 16

subjects. Extensive experiments on 4 datasets with a large

number of variations (mask type, light, and video quality)

demonstrate that the proposed method improves the perfor-

mance dramatically with short observation time compared

with the state-of-the-art rPPG-based methods.

To our best knowledge, this is the first work that ad-

dresses the long observation time issue in the typical rPPG-

based 3D mask PAD methods.

2. Related Work

Existing face presentation attack detection (PAD) meth-

ods can be mainly classified into appearance-based ap-

proach, motion-based approach and rPPG-based approach

based on the liveness cues.according to the liveness cues.

Appearance-based Approach. Due to the precision of

3D printing, multi-scale LBP [22, 5] and other texture fea-

tures [1] show the ability to identify the detailed texture dif-

ferences between mask and real face. However, it is also

found that they fail on hyper real 3D masks [18, 19] since

the quality defects of texture and color can be impercepti-

ble. The image distortion analysis [11] based on the quality

defects of the spoofing instrument [13], e.g., color diversity,

the reflection patterns [32, 21], or the Moiré patterns [26]

also facing this challenge since mask may not contain those

quality defects. Besides, they expose limited generalizabil-

ity when camera or light settings varies [32, 17]. When deep

learning is getting popular recently, deep features have also

been employed in face PAD and exhibit outstanding dis-

criminability [23, 33]. Using auxiliary information such as

the facial depth map [20] or the 3D structure [12] to super-

vise the learning of deep network can further boost the per-
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formance. Still, the over-fitting problem remains unsolved

due to the intrinsic data-driven nature.

Near-infrared or thermal camera can be effective as the

plastic material blocks the heat radiation [3]. However, it

requires additional devices which is not suitable for existing

well-established RGB camera based systems.

Motion-based Approach. The motion-based approach is

based on motion difference between genuine faces and

static spoofing materials. As such, eye-blink [25] or mouth

movement [7] described using the optical flow can be used

to differentiate 2D spoofing media from 3D genuine faces.

Facing 3D mask attacks, these methods may not work since

the aforementioned motion pattern can be well preserved on

3D masks with exposed eyes and mouth [9]. In addition, the

soft silicon gel mask that preserves the subtle facial muscle

motion makes the motion cue more unreliable.

rPPG-based Approach. rPPG is a new biomedical tech-

nique that can measure human heartbeat remotely through

a normal RGB camera based on the principle of contact-

PPG [27, 29, 15]. When applying rPPG on face PAD, 3D

masks on live faces blocks the heartbeat signals so that

attacks can be detected by analyzing the spectrum of ob-

served signals strength [16]. Local rPPG extracted from

local facial regions can provide more spatial information

which is more robust to cross-dataset testing [18]. On top

of that, they developed a new version based on correlation

filter which is robust to noisy spectrums [19]. In addition

to 3D mask attacks, the rPPG-based solution can be ef-

fective on conventional prints and screen attacks [24] be-

cause these materials block the heartbeat signals in the same

way [16]. The rPPG-based 3D mask PAD methods exhibit

encouraging performance on 3DMAD [10] and HKBU-

MARsV1+ [19]. However, the reported results are based on

long-term input face videos (10s and 12s for 3DMAD and

HKBU-MARsV1+), which is not applicable in practice.

3. Analysis of rPPG-based 3D mask PAD

Photoplethysmography (PPG) is a heartbeat monitoring

technique which uses pulse oximeter to illuminate the skin

and measure the changes in light absorption caused by the

pumping of blood during cardiac cycles [30]. Remote PPG

(rPPG) follows the same principle while using normal RGB

camera to measure the heartbeat-caused skin color variation

under room lighting condition. As a liveness cue for face

anti-spoofing, for a genuine face, the heartbeat cycles can

be detected from the observed rPPG signals. For a masked

face, the 3D mask material blocks the light transmission and

rPPG signals only remain environmental noise [18].

Since the heartbeat is periodic, it is intuitive to analyze

the observed rPPG signal in the frequency domain. The

liveness evidence can be measured by the signal strength

such as the maximum amplitude, or the signal to noise ra-

tio (SNR) of the rPPG spectrum. Following this approach,

the rPPG-based solution has shown promising results under

both intra and cross dataset scenarios [18, 16]. However,

existing methods do not consider the observation time issue

of a face recognition system and their reported results are

restricted to 10-12 seconds videos, which is not fast enough

for real application.

To obtain an rPPG spectrum with clear heartbeat period-

icity, we empirically found that the input face video should

contain at least 3-5 heartbeat cycles, under well-controlled

lighting condition. Ideally, the observation time is 3-5 sec-

onds for a static user whose heartbeat is around 60 beats per

minute (bpm). While under unconstrained environment in

real applications, the heartbeat sign in the rPPG spectrum

can easily get contaminated since the rPPG signal, i.e., the

subtle skin color variation is sensitive to camera settings and

lighting condition based on the principle discussed above.

Therefore, for existing rPPG-based PAD method, longer in-

put video length is obligatory to obtain more stable rPPG

signals with distinguishable periodicity. Otherwise, false

rejection error occurs as the rPPG spectrum on genuine

faces and masked face can hardly be differentiated. This

will make the entire system less convenient especially for

the application that requires quick response time, e.g., the

mobile phone unlock or E-payment. Fig. 1 shows an exam-

ple of this deduction. Given a genuine face video recorded

through a web-cam under room light2, the periodicity of the

rPPG spectrums tends to be less significant when the ob-

servation time (rPPG signal length) becomes shorter. Note

that the heartbeat peak is obvious on 12 seconds rPPG sig-

nals but concealed on 3 seconds and 1 second signals. The

trend of spectrum variation with different observation time

length also indicates the performance degradation of rPPG

frequency analysis based 3D mask PAD methods when ob-

servation time becomes limited.

4. Proposed Method

To overcome the limitations of long observation time, we

propose a fast rPPG-based 3D mask PAD solution by ana-

lyzing the temporal similarity of local rPPG signals. For

preprocessing, we first use the CLNF landmark tracker [2]

to obtain 68 points facial landmarks and define local facial

regions r1, r2, . . . , rN on them. Then, local rPPG signals

s1, s2, . . . , sN are extracted through CHROME [8], where

si = [s1i , . . . , s
T
i ] and T is the number of frames. Imple-

mentations details are summarized in Section 5.

4.1. Temporal rPPG Similarity Feature for Fast 3D
Mask PAD

Given local rPPG signals S = [s1, s2, . . . , sN ], it is in-

tuitive to use the amplitude or the signals themselves as fea-

tures to detect masks from genuine face since one contains

2Example face video in Fig. 1 is selected from HKBU-MARsV1

dataset [18]
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Figure 2. Similarity comparison of local rPPG signals between genuine face and masked face, in terms of the amplitude, gradient and

phase.

the heartbeat information and the other is random noise.

However, this approach may not work because of the fol-

lowing issues. i) The rPPG signal amplitude for different

subjects varies due to the difference of heartbeat strength

or skin color. ii) Even for subjects with similar heartbeat

strength, the phase of their rPPG signals will vary from time

to time. iii) Moreover, in unconstrained environment with

lower light or poor quality camera, rPPG signals on masked

faces and genuine faces may exhibit similar amplitude and

result in false acceptance or false rejection errors.

Therefore, to avoid the variation of rPPG signals ampli-

tude and phase for different subject, we tackle the problem

by analyzing the temporal similarity between local rPPG

signals for each subject. Based on the principle that rPPG

signals are generated from the human heartbeat, given a

genuine face, the local rPPG signals extracted from differ-

ent facial regions should be similar, in terms of their shape,

phase and amplitude. While for a masked face, the observed

local rPPG signals vary randomly since their sources are

from the environmental noise. This indicates that the sim-

ilarity between local rPPG signals of each subject can be

used as the liveness cue for differentiating 3D mask attacks

from genuine faces.

TSrPPG Feature Operator One intuitive solution to mea-

sure the similarity is using the distance metric d(si, sj).
However, d(si, sj) from genuine faces and masked faces

can be similar since the amplitude of rPPG signals on

masked faces is smaller than those on genuine faces [18]

(Defect of this solution is illustrated in experiment by the

TSrPPG-strfwd method). In stead of directly measure the

distance, we propose the temporal rPPG feature operator as

follows:

TSrPPGi,j [m] =

∫ +∞

−∞

D(si[t], sj [t+m])dt (1)

where t is the observation time, m is the shifting index, and

D(si, sj) measures the similarity of si, sj . TSrPPG is

first calculated for all TSrPPGi,j where i <= j, i, j =
1, . . . , N . Then, the mean, standard deviation of columns,

and the center value (n = 0) of rows is concatenated as the

TSrPPG feature.

The example of TSrPPG on genuine and masked face

is visualized in Fig. 3(a) and Fig. 3(c). For genuine face,

the center value TSrPPGi,j [0] measures the distance D of

si, sj when the two signals are aligned. When m comes to

half of the heartbeat cycle H/2, the largest distance which

reflects the maximum amplitude information is acquired.

When |m| is between 0 to H/2, the detailed heartbeat in-

formation hidden in the distance variation of si and shifted

sj is obtained. Therefore, liveness pattern can be extracted

between half to one heartbeat cycle (around 1 second) using

the proposed TSrPPG feature operator. While for masked

face, such pattern differs from the one on genuine face as

the si, sj may not align at m = 0 and maximum amplitude

may not be reached at |m| = H/2.

rPPG from Background Region As indicated above, for

masked faces, the facial rPPG signals should be identical

to the rPPG signals extracted from background since both

of them are random noise. While for genuine faces, they

should be less similar since facial rPPG signals contains

heartbeat information. Inspired by this property, we further

boost the discriminability by extracting the TSrPPG feature

between local facial rPPG signals and background signals

as follows:

TSrPPG
bg
i,j [m] =

∫ +∞

−∞

D(sfi [t], s
b
j [t+m])dt (2)

where s
f
i , s

b
j is the rPPG signals extracted from local fa-

cial regions and background regions respectively. The

TSrPPG
bg is also obtained by getting all TSrPPG

bg
i,j ,

where i = 1, . . . , N , and j = 1, . . . , J . The background

TSrPPG feature is then constructed as the concatenation of

the mean and standard deviation of each column, and the

center value (n = 0) of each row.
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Figure 3. Example of TSrPPG matrix on genuine face (left two)

and masked face (right two)

We construct the final liveness feature as the concate-

nation of TSrPPG feature from local facial regions and

TSrPPG feature between local facial regions and back-

ground regions.

To thoroughly extract the liveness information from local

rPPG signals, we design three types of similarity measure-

ment based on their shapes and phases. Fig. 2 shows an

example of the temporal similarities of local rPPG signals

of genuine face and masked face.

Amplitude. The similarity of the amplitude can reflect the

liveness evidence because the amplitude of rPPG signals on

genuine faces varies along local facial regions and forms a

stable distribution for different subjects. This is due to the

following two aspects:

1) The density of facial blood vessels forms a stable spa-

tial distribution for different subjects [6]. Since the rPPG

signal is calculated from the color variation of blood, the

signal strength highly depends on the density of blood ves-

sels. For different genuine faces, the cheek and chin with

dense arterial and venous blood vessels [6] always yield

significant rPPG amplitude [14]. 2) The transmittance of

facial skin also forms a stable pattern for different frontal

faces. Based on the physical model of rPPG [8], larger light

incident angle brings weaker pulse signal observation so the

transmittance varies along facial structures according to its

angle towards the camera. The bridge of the nose and the

face border has a larger angle than the cheek and chin so

the amplitude of rPPG signals within those regions is lower.

As a result, the similarity of the amplitude of local rPPG

signals also contains such property and the final similarity

feature encodes this spatial information. Such spatial distri-

bution does not hold on masked faces where their source is

environmental noise.

Given local rPPG signals S = [s1, s2, . . . , sN ], we mea-

sure the similarity of each two signal si, sj with Euclidean

distance

Da(si, sj) = ‖si − sj‖2 (3)

The amplitude similarity feature can be robust to differ-

ent lighting conditions since the amplitude of local rPPG

signals are globally affected by such variation and thereby

maintain a stable similarity pattern.

Gradient. Inspired by the use of edge or shape in designing

2D image features (e.g., SIFT, HOG), the gradient of rPPG

signals implies the detailed shape information of the heart-

beat such as the slope of the tangent (shown in Fig. 2 b).

Hence, we take the gradient of an rPPG signal which con-

tain finer information of the heartbeat waveform. In prac-

tice, we use the Gaussian Derivative Filter (GDF) to sup-

press the high frequency noises and artifacts while preserv-

ing the detailed pulse waveform. The Gaussian kernel G[n]
with size L is constructed as

G[l] = e−
(l−(L/2))2

2σ2 (4)

where σ is the standard deviation. Then, the Gaussian

derivative kernel is computed as F [l] = G[l + 1] − G[l]
where l = 1, 2, 3, . . . , L − 1. The Gaussian derivative of

rPPG signal s
f
i [t] is calculated by convolving the original

rPPG signal si[t] with the kernel F [t].
Since the gradient of rPPG signal tends to amplify the

finer shape, it may also be sensitive to interferences in un-

constrained scenarios. For better robustness we use the

normalized cross correlation (NCC) metric to measure the

shape similarity of si and sj

Ds(si, sj) =
(sfi (t)− s̄

f
i )

⊺(sfj (t)− s̄
f
j )

‖sfi (t)− s̄
f
i ‖2‖s

f
j (t)− s̄

f
j ‖2

(5)

where s̄
f is the mean of filtered rPPG signal sf . Example

of TSrPPG pattern with Ds is visualized in Fig. 3(b) and

Fig. 3(d) for genuine and masked face.

Phase. Despite the shape information described through

amplitude and gradient, the phase (time) delay of local

rPPG signals also encloses liveness information. For rPPG

signals on genuine faces, they share the close phases (Fig. 2

(a)) since the blood flow through different facial regions at

the same time. While for rPPG signals on masked faces,

their phases are inconsistent since random noises are from

various sources. Fig. 2 (c) and 2(f) show an example of their

difference. We measure phase similarity of two rPPG sig-

nals as the lag argument of the maximum response of their

cross-correlation. So the distance metric is defined as,

Dp(si, sj) = si · sj (6)

4.2. Classification
Given the 3 sets of local rPPG similarity features, we use

SVM with RBF kernel to obtain their classification scores

sa, ss and sp. Since each similarity feature is based on dif-

ferent properties of rPPG signals, they are effective to han-

dle different variations in real world environment. There-

fore, score level fusion is employed to summarize them

so that each can contribute appropriately to the final deci-

sion. In this paper, the classification score sa, ss and sp are

weighted (the classification results (AUC) in training stage)

summed as the final score.

5. Experiments
5.1. Experimental Setup

We evaluate our method on 3DMAD [9] dataset that con-

tains 17 subjects with customized Thatsmyface (TMF) 3

3http://thatsmyface.com/
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Subject/Mask Num. Video Slot Num. 3D Mask Type Light Cond. Camera Face Resolution (pixel) Compression

3DMAD [18] 17 17 2550 TMF 1(Studio) Kinect 80×80 Motion JPEG

HKBU-MARsV1+ [19] 12 12 2160 TMF+RF 1(Room) Logitech C920 200×200 H.264

CSMAD [3] 14 6 1582 Silicon 4 RealSense SR300 350×350 H.264

HKBU-MARsV2+ 16 16 4800 TMF+RF 6 MV-U3B 200×200 Motion JPEG

Summary 59 39 11092 3 12 4 4 2

Table 1. Variation summary of datasets used in the experiments

masks, and HKBU-MARsV1+ [19] that contains two types

of masks: 6 TMF masks and 6 high-quality masks from

REAL-f (RF) 4. Both of them are recorded under controlled

single lighting condition as shown in Fig. 4(a) and 4(b). To

further investigate the robustness to masks with different

transmittance, we also conduct experiments on the Custom

Silicone Mask Attack Dataset (CSMAD) [3].

To evaluate the performance with limited observation

time, we chop every long-term video into numbers of 1-

second videos. As such, The 3DMAD that contains 255 10-

second videos generates 2550 (255×10) samples, HKBU-

MARsV1+ that contains 180 12-second videos generates

2160 (180×12) samples. CSMAD generates 1582 samples

since the video length is not fixed.

HKBU-MARsV2+. To evaluate the performance under

practical lighting conditions, we extend the HKBU-MARs

V2 dataset [17] which contains 6 lighting conditions into a

larger scale version with more variations, namely HKBU-

MARsV2+. Specifically, 4 subjects and their customized

REAL-f masks are added so the number of subject/mask is

expanded to 16. The number of videos of each subject and

mask is also increased by two times. The extended dataset

is recorded at 800 × 600, 20fps using an industrial camera

(MV-U3B). Example images of the 6 light settings (room

light, dim light, bright light, warm light, side light, and

down light) and the customized REAL-f masks (left four

are newly added) are shown in Fig. 4(c).

HKBU-MARsV2+ contains 480 10-second videos in to-

tal where under each lighting condition, each genuine and

masked subject contains three and two videos respectively.

Similarly, we chop each 10-second video into 10 1-second

videos and obtain 4800 (480×10) samples in total.

Finally, we conduct extensive experiments on 11092

(2550+2160+1582+4800) video slots from the four

datasets. It totally contains 39 masks from 3 mask types

with different appearance quality and light transmittance,

12 lighting conditions, 4 cameras with different video qual-

ity in terms of resolution of face region and compression

setting. Details of the variation we covered in this work are

summarized in Tab. 1. To our best knowledge, this is the

largest 3D mask dataset scale that is used to evaluate the

rPPG-based PAD method.

Implementation Details. We follow [18]5 to define the 15

half-overlapped local facial ROIs (see Fig. 2). TSrPPG op-

erator extracts the similarity of 105 possible combinations.

4http://real-f.jp
5https://github.com/boomer647/LrPPG.

(a) 3DMAD [10] (b) HKBU-MARsV1+ [19]

(c) HKBU-MARsV2+

(d) CSMAD [3]

Figure 4. Example face images from 4 3D mask face anti-spoofing

datasets: (a) 3DMAD, (b) HKBU-MARsV1+, (c) the extended

HKBU-MARsV2+, (d) CSMAD. Genuine and masked faces are

shown in the first and seconde row, respectivly. (c) also demon-

strates 6 lighting conditions and the hyper real mask examples

made by REAL-f (left four are newly added).

For background TSrPPG we extract 9 larger facial regions

and 6 (J = 6) background regions following the same def-

inition in [19]. The shifting index n ranged from −Fs/2
to Fs/2, where Fs is the fps of the face video. The gradi-

ent feature parameter {L, σ} is set as {7, 1} empirically.

Parameters of SVM are tuned automatically through MAT-

LAB during training.

Baseline Methods. We compare our method with all

existing rPPG-based 3D mask PAD methods: the global

rPPG-spectrum based method GrPPG [16] and local rPPG-

spectrum based method LrPPG [18], PPGSec [24], and

CFrPPG [19] which is the state of the arts. We follow their

original classifier settings with well-tuned parameters.

Evaluation Criteria. AUC, EER, Half Total Error Rate

(HTER) [10] are used as the evaluation criterias. For intra-

dataset testing, HTER on the development set (HTER dev)

and testing set (HTER test) is measured. ROC curves with

Bona fide Presentation Classification Error Rate (BPCER)

and Attack Presentation Classification Error Rate (APCER)

are plotted for qualitative comparisons.

5.2. Experimental Results

Intra-dataset Evaluation On the 3DMAD and HKBU-

MARsV1+ with 1 second observation time, we follow the
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leave one out cross validation (LOOCV) setting with ran-

dom subject selection in [19, 18] for intra-dataset evalu-

ation. Results summarized in Tab. 2 and Tab. 3 shows

the strong performance of the proposed method, which

outperforms the state-of-the-art rPPG-based methods in a

large gap (about 20% improvement on EER and AUC).

The results on 3DMAD are better than that on HKBU-

MARsV1+ because the latter is recorded under uncon-

trolled light where the local rPPG signals are prone to being

contaminated. It is worth mentioning that some subjects

shows around 50-55 beats per minute heart rate as they sit

quite during the dataset recording. This validates that pro-

posed TSrPPG operator can obtain a distinguishable pat-

tern within less one heartbeat cycle. With short observa-

tion time, the performance of CFrPPG [19], LrPPG [18]

and GrPPG [16] drops dramatically compared with their re-

ported results. This verifies our deduction that the rPPG-

spectrum based approach highly depends on the length of

observation time.

HTER dvlp HTER test EER AUC

GrPPG [16] 34.1 ± 5.7 33.7 ± 11.6 38.3 65.9

LrPPG [18] 33.3 ± 3.1 33.0 ± 8.1 34.8 69.4

PPGSec [24] 45.2 ± 3.2 44.8 ± 8.8 45.3 55.7

CFrPPG [19] 32.8 ± 1.7 32.7 ± 7.4 32.5 70.8

TSrPPG 13.1 ± 3.0 13.4 ± 11.2 13.3 93.8

TSrPPG-amp 13.4 ± 3.0 13.5 ± 11.2 13.6 93.2

TSrPPG-grdt 15.1 ± 2.8 15.4 ± 10.4 15.4 92.4

TSrPPG-phs 15.2 ± 2.9 15.2 ± 11.1 15.4 91.9

TSrPPG-no-bkgrd 14.5 ± 2.9 14.5 ± 11.1 14.6 92.4

TSrPPG-strfwd 16.2 ± 2.8 16.5 ± 10.0 16.2 91.3

Table 2. Intra dataset evaluation results on 3DMAD with short observa-

tion time (1 second)

HTER dvlp HTER test EER AUC

GrPPG [16] 29.2 ± 4.7 29.1 ± 9.7 33.8 72.0

LrPPG [18] 42.4 ± 2.1 42.9 ± 5.8 43.0 59.3

PPGSec [24] 45.3 ± 3.7 45.1 ± 12.0 45.3 56.2

CFrPPG [19] 41.6 ± 3.3 42.1 ± 5.6 42.0 60.8

TSrPPG 21.5 ± 2.6 22.3 ± 8.8 22.0 85.2

TSrPPG-amp 22.3 ± 3.0 22.8 ± 9.9 22.8 84.1

TSrPPG-grdt 22.3 ± 2.7 23.0 ± 8.3 23.2 84.0

TSrPPG-phs 24.0 ± 3.0 25.1 ± 9.2 24.6 82.0

TSrPPG-no-bkgrd 22.4 ± 2.7 22.9 ± 9.6 23.0 84.1

TSrPPG-strfwd 25.8 ± 2.4 26.3 ± 9.1 26.1 81.0

Table 3. Intra dataset evaluation results on HKBU-MARsV1+ with short

observation time (1 second)

Ablation Study. Following the intra-dataset testing, we

conduct the ablation study to evaluate the effectiveness

of each TSrPPG component, TSrPPG-amp, TSrPPG-grdt,

and TSrPPG-phs. The intuitive TSrPPG solution TSrPPG-

strfwd is implemented and evaluated by setting m =
0. TSrPPG without background information (TSrPPG-no-

bkgrd) is also compared. All sub-components of TSrPPG

are evaluated using SVM with RBF kernel. Results in Tab. 2

and 3 illustrate the effectiveness of the each component.

The comparison between TSrPPG and TSrPPG-strfwd in-

dicates the superiority of the proposed feature operator.

We also study the performance with different length of

observation time by chopping every long-term video into

several half-overlapped short-term videos. Results sum-

marized in Tab. 4 show that TSrPPG outperforms the oth-

ers with different length of observation time. It is also

noted that the TSrPPG with only 2-second observation

outperforms the LrPPG with 10-second observation (95%

AUC [18]).

3DMAD HKBUMARsV1+

1s 2s 3s 4s 1s 2s 3s 4s

GrPPG [16] 65.9 79.1 84.6 87.7 72.0 79.2 80.3 82.3

LrPPG [18] 69.4 84.1 89.3 92.0 59.3 71.5 78.8 84.5

PPGSec [24] 55.7 68.3 74.5 80.0 56.2 74.4 76.7 79.8

CFrPPG [19] 70.8 88.1 93.1 94.4 60.8 78.6 85.8 89.0

TSrPPG 93.8 97.0 97.7 98.4 85.2 89.0 89.9 90.3

Table 4. Performances (AUC) with different length of observation time.

Cross-dataset Evaluation. To evaluate the generalization

ability, we follow protocols in [19] to conduct the cross-

dataset experiments by training and testing with differ-

ent datasets. For train on 3DMAD and test on HKBU-

MARsV1+ (3DMAD→HKBUMARsV1+), the number of

training subjects is 8. For HKBUMARsV1+→3DMAD, the

number of training subjects is 6. All subjects in the testing

dataset are used for both settings. Besides the rPPG ap-

proach, three popular appearance-based methods are added

for comparison: the multi-scale LBP (MS-LBP) [22], the

color texture analysis (CTA) [5], and CNN which use a pre-

trained VGGNet [31] as the feature extractor (output of fc2

layer). SVM with RBF kernel with well tuned parameters

is employed as the classifier.

Results summarized in Tab. 5 illustrate the robustness

of the proposed method. The performance degradation of

rPPG-based baselines compared with their original reported

results verifies their weakness with short observation time

again. It is also noted that the performance of appearance-

based methods drops compared with the reported intra-

dataset testing results(around 99% AUC on 3DMAD) [18],

which exposes the over-fitting problem due to their data-

driven property.

Rubustness to lighting variation. We conduct the ran-

dom LOOCV (16 iterations) on HKBU-MARsV2+ where

the number of training and development subjects is set as

7 and 8, after leaving 1 testing subject out. To evaluate

the robustness to different lighting conditions, we conduct

the leave one variation out (LOVO) [17] protocol under the

LOOCV framework. Differently, the one variation left out

is for training while the others are for testing. The small

performance degradation of TSrPPG shown in Tab. 6 and

Fig. 5 indicates its good generalizability to practical unseen

lighting conditions. GrPPG and LrPPG loose the robustness

with limited observation time and drop about 10% on EER

and AUC. CFrPPG keeps similar results since the rPPG cor-

respondence template can extract liveness information from

noisy spetrums. It is also noted that appearance-based meth-

ods struggle to adapt the lighting variations hardly.
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3DMAD→HKBUMARsV1+ HKBUMARsV1+→3DMAD

HTER(%) EER(%) AUC(%) HTER(%) EER(%) AUC(%)

MS-LBP [10] 53.0 ± 3.6 39.8 60.4 32.8 ± 11.5 32.5 75.3

CTA [4] 40.1 ± 7.8 40.2 62.1 47.7 ± 5.4 42.5 60.5

CNN 50.0 ± 0.0 47.8 54.6 50.0 ± 0.0 44.3 58.6

GrPPG [16] 46.8 ± 3.0 47.5 53.6 31.5 ± 3.8 31.1 70.0

LrPPG [18] 39.2 ± 0.8 43.1 60.1 40.4 ± 2.7 41.7 60.6

PPGSec [24] 49.7 ± 3.1 49.2 50.7 48.0 ± 2.0 47.8 52.6

CFrPPG [19] 39.2 ± 1.4 40.1 63.6 40.1 ± 2.3 40.6 62.3

TSrPPG 23.5 ± 0.5 23.5 83.4 16.1 ± 1.0 17.1 90.4

Table 5. Cross-dataset evaluation results between 3DMAD and HKBU-MARsV1+ with short observation time (1 second)

LOOCV LOVO for training

HTER dvlp HTER test EER AUC HTER dvlp HTER test EER AUC

MS-LBP [10] 24.9 ± 6.8 26.0 ± 18.5 25.6 81.7 37.6 ± 6.7 38.6 ± 18.1 40.5 62.2

CTA [4] 23.3 ± 7.7 22.9 ± 18.4 26.5 81.0 35.9 ± 6.5 36.7 ± 17.1 38.9 64.4

CNN 13.5 ± 4.7 14.7 ± 13.8 15.8 91.8 21.4 ± 7.1 22.2 ± 16.1 25.1 82.4

GrPPG [16] 20.2 ± 3.5 20.4 ± 6.1 26.1 81.0 26.6 ± 5.0 26.9 ± 8.1 33.5 71.9

LrPPG [18] 22.3 ± 1.6 22.2 ± 5.3 22.5 85.0 23.6 ± 2.0 23.6 ± 5.7 33.0 74.4

PPGSec [24] 32.0 ± 2.1 32.6 ± 7.3 32.1 73.7 45.9 ± 3.9 45.6 ± 9.1 45.9 55.3

CFrPPG [19] 20.8 ± 1.6 20.7 ± 5.3 20.8 85.7 21.8 ± 1.8 21.8 ± 5.4 22.6 83.8

TSrPPG 6.74 ± 1.0 6.98 ± 3.3 6.87 97.8 7.80 ± 1.7 8.08 ± 4.2 9.46 96.4

Table 6. LOOCV and LOVO evaluation results on HKBU-MARsV2+ with short observation time (1 second)
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Figure 5. Average ROC in log scale on HKBU-MARsV2+ using

LOOCV and LOVO protocol with 1-second observation

Robustness to different masks transmittance and eye-

glass occlusion. To evaluate the robustness to masks with

different transmittance, we conduct experiment on CS-

MAD [3] that use soft silicon masks with higher trans-

mittance. For rPPG-based method, higher mask transmit-

tance means the rPPG signals may also be found on masked

faces. CSMAD also includes other challenging variations

such as the eyeglass occlusion and severe side lighting

(Fig. 4(d)). Since the number of subjects and masks is dif-

ferent, LOOCV is not applicable. We randomly select half

of the subjects for training and rest for testing and 20 rounds

are conducted (named protocol 1 in Tab. 7). To evaluate the

effect of eyeglass occlusion, based on protocol 1 we design

another protocol (protocol 2 in Tab. 7) by removing training

samples with eyeglass. We compare with the state-of-the-

art rPPG based methods with 1 sec. observation. Results

summed in Tab. 7 show that the proposed TSrPPG outper-

forms the state-of-the-art with a similar gap (around 15%

AUC) as it does on the 3DMAD and HKBU-MARsV1+

dataset. The similar results achieved under protocol 1 and 2

indicates the robustness of TSrPPG to eyeglass occlusion.

Protocol 1 Protocol 2

HTER test EER AUC HTER test EER AUC

LrPPG [18] 41.2 ± 1.7 41.7 60.7 45.0 ± 2.9 45.1 56.4

CFrPPG [19] 35.2 ± 2.3 35.4 67.9 34.9 ± 3.7 35.1 68.4

TSrPPG 23.0 ± 3.3 23.4 84.4 23.0 ± 2.2 23.3 85.5

Table 7. Evaluation on CSMAD with short observation time (1 second)

6. Discussion and Conclusion
The observation time issue of rPPG-based 3D mask PAD

is addressed in this work. We propose the TSrPPG feature

operator by analyzing the local rPPG signals in time domain

and introduce three types of similarity metrics based on the

physical properties of rPPG. With limited observation time,

our TSrPPG outperforms the state-of-the-art rPPG-based

methods largely and also maintains the generalizability. The

results on four 3D mask attack datasets with 25 variations

on mask type, light, camera, and video quality shows the

high potential of TSrPPG on real application usage.

Besides, we can find also that compared with the face

resolution and lighting condition, camera with different

compression settings affects more on the performance. For

instance, although HKBU-MARSv1+ is recorded at high

resolution compared with 3DMAD and HKBU-MARsV2+,

the performances are lower (see Tab. 1). This is because

the H.264 compression removes some of the subtle color

variations that reflect heartbeat [28]. More self-made 3D

mask attack datasets with different camera and compression

settings are needed to further investigate the properties of

rPPG-based 3D mask PAD.
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