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Abstract

We address Unsupervised Video Object Segmentation

(UVOS), the task of automatically generating accurate pixel

masks for salient objects in a video sequence and of track-

ing these objects consistently through time, without any in-

put about which objects should be tracked. Towards solv-

ing this task, we present UnOVOST (Unsupervised Offline

Video Object Segmentation and Tracking) as a simple and

generic algorithm which is able to track and segment a large

variety of objects. This algorithm builds up tracks in a

number stages, first grouping segments into short tracklets

that are spatio-temporally consistent, before merging these

tracklets into long-term consistent object tracks based on

their visual similarity. In order to achieve this we intro-

duce a novel tracklet-based Forest Path Cutting data asso-

ciation algorithm which builds up a decision forest of track

hypotheses before cutting this forest into paths that form

long-term consistent object tracks. When evaluating our ap-

proach on the DAVIS 2017 Unsupervised dataset we obtain

state-of-the-art performance with a mean J&F score of

67.9% on the val, 58% on the test-dev and 56.4% on

the test-challenge benchmarks, obtaining first place

in the DAVIS 2019 Unsupervised Video Object Segmenta-

tion Challenge. UnOVOST even performs competitively

with many semi-supervised video object segmentation al-

gorithms even though it is not given any input as to which

objects should be tracked and segmented.

1. Introduction

Video Object Segmentation (VOS) aims at automatically

generating accurate pixel masks for objects in each frame of

a video, then associating those proposed object pixel masks

in the successive frames to obtain temporally consistent

tracks. VOS has mostly been tackled in a semi-supervised

fashion [19, 32, 30], where the object masks of the objects

to be tracked in the first-frame are given, and only those ob-

jects need to be tracked and segmented throughout the rest

of the video.
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Figure 1. Example results of UnOVOST on three sequences from

the DAVIS Unsupervised Dataset. UnOVOST is able to accurately

segment and track many diverse objects simultaneously. Frames
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and T are shown, where T is the number of frames in

the sequence.

In this paper we tackle VOS in the more general unsu-

pervised setting [5]. In such a setting we need to detect all

of the possible objects in the video and track and segment

them throughout the whole video. Results of our method on

this task can be seen in Figure 1. In this setting, methods are

evaluating against a possibly incomplete set of ground-truth

objects. As such methods are not penalized for segmenting

more objects than present in the ground-truth. However,

the number of predictions that can be made is limited in

that predicted masks may not have overlapping pixels, and

a maximum number of objects may be proposed across a

whole video. As such UVOS methods must seek to segment

and track the most salient objects in a video regardless of the

category of those objects. Saliency here is defined as the ob-

jects that catch and maintain the gaze of a viewer across the

whole of the video sequence. The definition of an object is

also important and possibly ambiguous. Two important fac-

tors in determining objectness are that objects should con-

sistently have common fate, moving together consistently

throughout the scene, and that they should also be semanti-

cally consistent.
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An algorithm that tackles the UVOS task has many in-

teresting real-world applications. One such example is in

robotics and autonomous vehicles where it is of crucial im-

portance to be able to understand the precise location and

motion of a huge variety of objects, from far more cate-

gories than present in any labeled dataset.

To solve this UVOS task, we present the UnOVOST (Un-

supervised Offline Video Object Segmentation and Track-

ing) algorithm. This algorithm hierarchically builds up ob-

ject segmentation tracks in multiple stages (see Figure 2).

After obtaining a set of candidate object proposal masks

per frame using Mask R-CNN [9]. We then reduce the set

of mask proposals to a set which does not contain overlap-

ping pixels by sub-selecting and clipping the given propos-

als. In order to perform segment tracking we use two main

similarity cues, the spatio-temporal consistency of the mask

segments in contiguous frames under optical flow warping,

and the appearance-based visual similarity of the mask seg-

ments encoded as an object re-identification vector.

We then develop a novel data-association algorithm us-

ing these two similarity cues which accurately merges these

mask segments into tracks. Our algorithm works in two

stages. The first stage uses only the spatio-temporal con-

sistency cues to merge segments in contiguous frames into

short-tracklets which contain segments that are very likely

to belong to the same object. In a second stage, we then

merge these short-tracklets into long-term consistent tracks

using their visual similarity. This two stage process has the

benefit that the easy tracking decisions are made early and

then fixed, reducing the size of the required search-space

for performing data-association, and enabling information

to be pooled over segments within a tracklet to better model

object properties used for tracking.

For the second-stage, we propose a novel Forest Path

Cutting (FPC) algorithm. This algorithm builds a forest

consisting of decision trees of possible track hypotheses.

The final set of object tracks is then produced by iteratively

cutting paths from this forest, until the forest is divided into

a non-conflicting set of paths which are the final tracks. This

algorithm is both simple and efficient while being powerful

enough to model the combinatorial complexity of the long-

term data-association problem.

When evaluating UnOVOST on the unsupervised DAVIS

benchmark dataset [5] we achieve state-of-the-art results

compared to all previous methods, as well as results com-

petitive with semi-supervised methods using the given first-

frame mask as guidance for which objects to track and seg-

ment. Our method also achieves the first place in the DAVIS

2019 Unsupervised Video Object Segmentation Challenge.

When extending our method to the task of Video Instance

Segmentation (VIS) by adding classifying our object tracks,

we also obtain state-of-the-art results on the YouTube-VIS

benchmark and won the 2019 YouTube-VIS challenge.

2. Related Work

Multi-Object Unsupervised Video Object Segmenta-

tion. The UVOS task (also known as zero-shot VOS) is

quite recent, and there are few methods that tackle this task.

UVOS [5] was proposed as a challenge task for the 2019

DAVIS Challenge on Video Object Segmentation. [5] eval-

uate the RVOS (Recurrent Video Object Segmentation) [29]

method for the UVOS task. This method uses a number of

recurrent neural networks, one over the set of objects, and

one over time to generate tracks. Our method, UnOVOST,

outperforms RVOS by more than 25 percentage points on

the J&F metric on all benchmarks. In the 2019 DAVIS

Challenge, our method obtained first place. The second

[41] and third [7] place methods presented very different ap-

proaches to the UVOS task. [41] propose to run a detector

on each frame, as well as a series of single object trackers

used to merge the detections into tracks. [7] adapts [19]

from semi-supervised VOS to UVOS task, while adding

a proposal pruning step after a number of initial frames,

and then tracking these objects as though this was a semi-

supervised task.

Single-Object Unsupervised Video Object Segmenta-

tion. There has been a number of papers tackling single-

object unsupervised video object segmentation (SOUVOS)

[15, 16, 12, 27, 28]. This is inherently a different problem to

the multi-object task that we tackle in this paper. SOUVOS

is closer related to foreground/background segmentation as

it requires only one foreground area to be segmented which

often is a grouping of multiple objects into one foreground

object. This task is often evaluated on the DAVIS 2016 sin-

gle object benchmark [24]. This task requires estimating

the single most salient grouping of foreground objects in a

video. Methods that tackle this task, such as [12] and [28]

often perform two class segmentation on an image concate-

nated with optical-flow.

Motion Segmentation. Another related field is motion

segmentation. This task differs from video object segmenta-

tion in that it only requires the segmentation of objects that

are moving [2], whereas UVOS requires the segmentation

of all objects whether they are moving or not. Motion seg-

mentation methods [3, 37, 8] are often based on low-level

vision features such as the optical-flow. [8] adapts Mask

R-CNN [9] to operate on both image and optical-flow in-

put. [37] extract features from the combination of the image

and the optical-flow and clusters these. [3] develops a two-

stage model that estimates piece-wise rigid motions, which

are then merged into objects. This is evaluated as either

a multi-object task, or a foreground/background estimation

task often using the FSMB [21] dataset.

Multi-Object Semi-Supervised Video Object Segmen-

tation. Semi-Supervised Video Object Segmentation

(SSVOS) is where the objects that need to be tracked are

given as segmentation masks in the first frame. Algorithms
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Figure 2. An overview of the UnOVOST algorithm. From an in-

put video (row 1) a number of object mask proposals per frame

are generated, sub-selected and clipped to have non-overlapping

pixels (row 2). These are grouped into short-tracklets using the

spatio-temporal consistency of these segments under optical-flow

(row 3). These tracklets are then merged into long-term consistent

object tracks using the tracklets’ visual similarity and our novel

Forest Path Cutting (FPC) data association algorithm.

that tackle this task often finetune a segmentation network

on the given first frame [4, 32, 19], or propagate from

the given first-frame mask directly to the rest of the video

[30, 36]. These methods are not able to be easily adapted to

UVOS as they rely heavily on the first-frame mask. [19] is

the closest related SSVOS to our method, as it also produces

generic object segmentation proposals and links these in

time with spatio-temporal and visual similarity cues. How-

ever, unlike our method, [19] finetunes all of its components

heavily on the first-frame, uses the given-first frame to guide

which objects to track, and performs data association in a

simple frame-by-frame fashion. SSVOS is often evaluated

on the DAVIS 2017 semi-supervised dataset.

Video Instance Segmentation and Multi-Object Track-

ing and Segmentation. Recently, the related tasks of

Video Instance Segmentation (VIS) [39] and Multi-Object

Tracking and Segmentation (MOTS) [31] has been pro-

posed. These tasks are similar to UVOS in that objects need

to be tracked and segmented without being given guidance

on which particular instances are to be tracked. However,

these tasks differs from UVOS in that only objects belong-

ing to a specified categories need to be tracked and seg-

mented, as well as these being classified correctly. This sig-

nificantly simplifies the task, and limits the applicability of

methods that tackle these tasks. MOTS differs from VIS in

that in MOTS sequences are much longer and many more

instances are present with objects disappearing and reap-

pearing much more often. MOTS is evaluated on the KITTI

and MOTChallenge datasets [31]. VIS on the YouTubeVIS

benchmark [39]. We extend UnOVOST from the UVOS

task to the VIS task by classifying our resulting tracks, and

also achieve state-of-the-art performance on this task.

Category Agnostic Multi-Object Tracking. Previously, a

number of methods [22, 23] have attempted to extent multi-

  

Figure 3. Initial stage of the UnOVOST algorithm. Mask proposals

are generated by Mask R-CNN with a low scoring threshold that

generates a large number of overlapping proposals. These are then

sub-selected and clipped based on their score and intersection to

produce a set of non-overlapping mask proposals in each frame.

object tracking methods beyond tracking objects from a pre-

defined set of object categories. These methods [22, 23]

have typically relied on the presence of stereo-camera in-

put to obtain 3D information for evaluating the objectness

of generic object proposals. These methods also make no

attempt to create a set of object tracks without overlapping

segment masks, instead they create a large set of track pro-

posals that have large overlap with one-another, often track-

ing the same object multiple times on different scales. Our

method by contrast works on monocular video and creates

a set of segmentation tracks without overlapping segment

masks.

Data-Association for Multi-Object Tracking. The task

of multi-object tracking (MOT) has a long research history

[14]. The leading paradigm for MOT has become tracking-

by-detection, where a set of object detections are proposed,

and tracking is reduced to a data-association problem. In

this paper we propose a new data-association algorithm

designed specifically for the UVOS task. Previous data-

association methods are either too simple or unnecessar-

ily complex. Many methods such as those used in [31]

and [19] only take into account associations in the previ-

ous frame, or the previous and first frame [19], and do not

use the context from the whole video. On the other hand,

data-association algorithms such as [13] are unnecessarily

complex in that they produce an exponentially large num-

ber of potential track hypotheses and score each of these

individually. Our data-association algorithm is able to take

advantage of a number of simplifications to be able to use

the whole video context to evaluate the likelihood of a track-

ing hypothesis, while being much simpler and efficient. We

take advantage of the fact that mask segments can not over-

lap to significantly reduce the set of possible tracking com-

binations. Furthermore, we split tracking into two compo-

nents, firstly grouping proposals based on spatio-temporal

consistency, before only using visual similarity in a second

stage. These simplifications in combination with our effi-

cient Forest Path Cutting algorithm, results in an algorithm

that is accurate, powerful and efficient.
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3. Approach

In this section we detail the specifics of our novel Un-

OVOST algorithm for tackling the UVOS task. Our method

begins by generating a large set of generic object propos-

als and sub-selects and clips these to be non-overlapping.

These proposals are then grouped over contiguous frames

into short-tracklets based on the spatio-temporal consis-

tency of the object proposals under an optical-flow warping.

We then merge these tracklets into long-term consistent ob-

ject tracks using our novel Forest Path Cutting algorithm

and visual similarity cues between tracklets. Finally, a final

set of object tracks is selected based on their video saliency.

Unlike previous approaches [19, 31, 8] our algorithm is

able to segment and track objects regardless of their ob-

ject class, whether they are static or undergo motion, and

whether they are present in the foreground or background

of the scene. Our algorithm instead relies on a more general

concept of objectness to determine what should consist of

an object to be tracked and segmented. An overview can be

seen in Figure 2.

Object Mask Proposal Generation. We generate a large

number of proposals, segmentation masks which cover po-

tential objects, for a diverse range of objects. Specifically

we use a Mask R-CNN [9] implementation by [34] with a

ResNet101 [10] backbone trained on COCO [18]. Although

this network has been trained to detect the 80 COCO cate-

gories, we find that when using a low-confidence threshold

this network produces adequate mask proposals for objects

beyond these 80 categories. This network produces masks,

bounding boxes, object categories and confidence scores for

object proposals as outputs. We discard the object cate-

gories and treat all detections as if they come from the same

foreground object category. We extract all proposal masks

with a confidence score greater than 0.1. An example of

generated overlapping proposals can be found in Figure 3.

Proposal Sub-Selection and Clipping. In order to sim-

plify the tracking and segmentation problem, we initially

ensure that our set of segment masks do not overlap in each

frame individually before tracking these segments through-

out the video. All proposal masks in a frame are compared

against one another using their intersection over union (IoU)

to detect overlaps. If the IoU between two proposal masks

is higher than 0.2, then the proposal mask with higher confi-

dence score is kept and the other proposal mask is removed.

This is a form of mask-based non-maximum suppression.

For all the remaining masks, we clip overlaps so that the

mask with the highest confidence score is on top of a mask

with a lower score. This set of proposals without overlaps

has three advantages, it reduces the number of proposals

that need to be tracked, simplifies the matching using tem-

poral consistency cues as conflicting proposals are removed,

and removes many spurious masks not belonging to real ob-

jects. See Figure 3.

Algorithm 1: Forest Path Cutting Algorithm (FPC)

Data: Tracklets Li with average ReID vectors Ri, beginning

timestep bi and ending timestep ei, ordered by increasing bi.

Result: Tracks Fj which are groupings of tracklets.

Define:Visual Similarity Vi,j

Vi,j := 1−
‖Ri−Rj‖

maxm∈{1...T},n∈{1...T} ‖Rm−Rn‖

Part 1: Build a forest of track hypotheses, by calculating optimal

predecessors Mi for each tracklet Li.

for i ∈ {1 . . . |L|} do

if {j | ej < bi} 6= ∅ then
k := argmax

j|ej<bi

{Vi,j}

while {j | ej < bi, bj > ek, Mj = Lk} 6= ∅ do
l := argmax

j|ej<bi,j 6=k

{Vi,j}

if l ∈ {j | ej < bi, bj > ek, Mj = Lk} then
k := l

else
break

end

end

Mi := Lk

else
Mi := ∅

end

end

Part 2: Define the set of track hypotheses H as the paths from

root nodes to leaf nodes through the hypothesis forest, and

calculate a score Ci for each path. Select final tracks F by

iteratively cutting the optimal paths from the forest.

H := {{Li,Mi,Mj|Lj=Mi
, . . . , Lk|Mk=∅}|Li 6= Mm∀m}

F := ∅
while H 6= ∅ do

for Hi ∈ H do

CV
i := min

m,n|Lm∈Hi,Ln∈Hi

{Vm,n}

CT
i :=

∑

j|Lj∈Hi

ej − bj + 1

Ci := 0.1CV
i + 0.9CT

i

end

k := argmax
i|Hi∈H

Ci

F := F ∪ {Hk}
for Hi ∈ H \ {Hk} do

Hi := Hi \Hk

end

H := H \ {Hk}
end

Tracklet Generation. A tracklet is a series of proposals in

contiguous frames which have been merged to belong to the

same object identity. In the first stage of our tracking algo-

rithm we join proposals in contiguous frames into tracklets

if they have a very high spatio-temporal consistency.

The spatio-temporal consistency score between two pro-

posals in contiguous timesteps is calculated as the IoU be-

tween the proposal projection from the earlier frame and the

proposal in the later frame. The proposal projection is the

segmentation mask generated by warping a proposal by its

corresponding optical flow vectors calculated using PWC-

Net [26]. Effectively the projection of this proposal into the

next timestep.
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Figure 4. Visual representation of our Forest Path Cutting (FPC) algorithm. In box A, tracklets are visualized as black lines showing their

temporal extent on the horizontal axis. The optimal predecessors for each tracklet are shown as blue and orange dotted lines. Box B shows

that the set of tracklets with predecessors from box A defines a forest of track hypotheses. Box C shows an optimal path (in red), selected

from the forest and added to the final object tracks.This optimal path is cut from its tree, dividing it into a number of sub-trees (green and

purple circles). Box D shows the resulting new forest produced with sub-trees that only contain a single path added to the list of final

tracks. Box E shows the final result after this process is iterated until the forest is completely divided into a set of tracks.

This first stage proceeds frame by frame. For each pair

of contiguous timesteps, we create a complete bipartite

graph whose nodes are the proposals in successive frames

and whose edge scores are the spatio-temporal consistency

scores. Edges are dropped from the graph if their score is

less than 0.05. We then solve the matching problem be-

tween the two sets of nodes using the Hungarian matching

algorithm, which finds an optimal set of matches between

the two frames. If any proposal is not matched this ends a

tracklet. Tracklets may span only a single frame.

Merging Tracklets into Tracks. A track is a set of pro-

posals over an entire video which belong to the same object

identity. A track often contains multiple tracklets with po-

tentially frames in-between them without proposals.

The second stage of UnOVOST merges tracklets into

long term tracks. To do this we introduce a novel Forest

Path Cutting (FPC) algorithm. An overview of this algo-

rithm can be seen in Algorithm 1 and Figure 4. This al-

gorithm merges tracklets based on visual similarity cues.

Note that spatio-temporal consistency now provides very

little further value for data-association. If the tracklets could

be easily determined to belong together by spatio-temporal

consistency they would have been merged in the first stage.

The remaining data association decisions are more difficult

such as tracking objects through heavy or total occlusion.

For each proposal we calculate a ReID vector, a repre-

sentation of the visual appearance of a proposal which can

be used to compare the visual similarity of proposals or

tracklets, and thus to re-identify a proposal or tracklet as be-

longing to a certain object identity. To calculate these vec-

tors we use an appearance embedding network [23] which

extracts an embedding from an image crop. This network is

inspired from the person re-identification community. This

is a wide ResNet [35] trained with a batch-hard soft-margin

version of the triplet loss. This is pretrained to distinguish

classes on COCO [18], before being trained to distinguish

instances on YouTube-VOS [38]. It is trained so that the

embedding for instances in the same track are pulled closer

together in embedding space that for difference tracks. We

average ReID vectors over all proposals in a tracklet to

achieve a more robust appearance representation.

To compare two tracklets we define a visual similarity

score as the L2 distance of the two ReID vectors normalised

to between 0 and 1, with 1 being identical, and 0 being the

maximum distance between all tracklets in a video. We sub-

tract this from one to convert it to a similarity score.

To perform long-term tracking we enumerate a set of po-

tential track hypotheses as different combinations of track-

lets. A final set of tracks can be selected as a valid subset of

this set of track hypotheses.

For this task we introduce our Forest Path Cutting (FPC)

algorithm as can be seen in Algorithm 1 and Figure 4. Ini-

tially (Part 1 and Box A) our algorithm builds up a forest of

potential tracking hypotheses throughout the video by deter-

mining an optimal predecessor for each tracklet. Our FPC

algorithm draws parallels to dynamic programming, as we

wish to determine an optimal back-pointer for each tracklet

to a previous predecessor tracklet. However, a naive imple-

mentation of a dynamic programming algorithm would not

be able to take advantage of the desirable properties of a

UVOS solution.

To calculate optimal back-pointers, our algorithm iter-

ates over the tracklets in order from the earliest to the lat-

est starting time. For the current tracklet Li, if there are
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Figure 5. An example of the final stage of UnOVOST, where the

final set of tracks is reduced to a maximum of 20 objects over the

whole video using our video object saliency metric. Note that ob-

jects that would capture an observer’s attention are retained while

the rest are discarded.

any tracklets ending before the tracklet’s start time, it de-

termines the most similar predecessor tracklet Lk based on

the visual similarity score. This is an initial guess for the

best predecessor tracklet, however this may belong to the

same object, but not be the direct predecessor if there is

another tracklet between the two that also belongs to the

same object. We check if there are any compatible tracklets

between Li and Lk, which have tracklet Lk as their prede-

cessor. Choosing one of these tracklets as the predecessor

would result in Lk still being an earlier predecessor. How-

ever, we only wish to choose one of these tracklets if it is

the most visually similar tracklet to tracklet Li (except for

Lk). We repeat this procedure iteratively until there are no

more tracklets between the Li its current predecessor Lk, or

another tracklet which does not have Lk as its predecessor

is the most visually similar tracklet not in the current set of

predecessors.

We now have a forest of track hypotheses, each tracklet

may only have a single predecessor, but a tracklet can be the

predecessor for multiple successor tracklets. The resulting

forest has at least one tree whose root node corresponds to

one of the tracklets with the earliest starting time. Each path

Hi through the trees from a root node to a leaf node in this

forest is a possible long-term object track. We now cut this

forest into a set of paths which is the best possible set of

object tracks by applying a greedy recursive track selection

strategy. This selects an optimal path from the forest, which

is then added to the set of final long-term object tracks F .

This path is then cut from forest, with all nodes belonging

to this path being removed from the forest, and the forest

rearranging itself into a new set of trees with the remaining

nodes. This can be seen in Algorithm 1 part 2 and Figure 4

parts B-E. To score paths we use a combination of a Visual

Consistency Score CV
i and a Temporal Density Score CT

i .

The visual consistency score is the minimum visual sim-

ilarity embedding distance between any two tracklets in a

path. The temporal density score is the fraction of frames

of a video where there is a segment present. This pe-

nalizes large temporal gaps between tracklets, making it

more likely that objects undergoing short occlusion are cor-

rectly tracked, and ensures that the most salient objects are

grouped consistently throughout the video, as objects to be

Ours VSD [41] KIS [7] RVOS [29]

U17
T-C

J&F Mean 56.4 56.2 51.6 -

J

Mean 53.4 53.5 48.7 -

Recall 60.9 61.3 55.1 -

Decay 1.5 -2.1 4.0 -

F

Mean 59.4 59.0 54.5 -

Recall 64.1 63.2 59.4 -

Decay 5.8 0.1 7.7 -

U17
T-D

J&F Mean 58.0 56.5 54.2 22.5

J

Mean 54.0 51.7 50.0 17.7

Recall 62.9 59.9 58.9 16.2

Decay 3.5 21.7 8.4 1.6

F

Mean 62.0 61.4 58.3 27.3

Recall 66.6 65.7 62.1 24.8

Decay 6.6 15.7 11.4 1.8

U17
Val

J&F Mean 67.9 56.6 59.9 41.2

J

Mean 66.4 51.7 - 36.8

Recall 76.4 - - 40.2

Decay -0.2 - - 0.5

F

Mean 69.3 61.4 - 45.7

Recall 76.9 - - 46.4

Decay 0.01 - - 1.7

Table 1. Our results compared to all other UVOS methods on

the DAVIS 2017 unsupervised benchmarks: test-challenge

(U17 T-C), test-dev (U17 T-D), and val (U17 Val). VSD [41]

and KIS [7] obtained second and third place (after our method) in

the 2019 DAVIS Unsupervised VOS Challenge.

tracked in UVOS are present in mostly all frames. The final

path score is a weighted sum of 90% the temporal density

and 10% the appearance consistency.

We select paths with the highest score through the forest,

add these to a final list of tracks F , and cut these from the

current forest, reshaping the forest into a new set of trees.

This algorithm select a set of object tracks which do not

include any overlapping tracklets and have long-term tem-

poral consistency.

Final Tracks Selection. In UVOS algorithms are not pe-

nalized for making predictions that do not overlap with

ground-truth. However, the number of total object tracks

that can be predicted in still limited. In the DAVIS 2017 un-

supervised benchmark this is limited to 20 predictions over

the whole video.

UnOVOST predicts a potentially large number of tracks,

therefore a final object video saliency estimation step is

performed to estimate the 20 most salient objects over the

whole video to report for evaluation.

Our video saliency score Ssal,i is calculated for each

track using each tracklet tj in the track i:

Ssal,i =
∑

j

temp(tj) conf(tj) (1)

where temp(tj) is the temporal length of tracklet j and

conf(tj) is the average of the confidence scores of propos-

als in tracklet tj . This video saliency metric prefers tracks
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Figure 6. Quality versus timing plot comparing UnOVOST to

state-of-the-art semi-supervised methods on DAVIS17 val. All

methods other than ours are “semi-supervised” and use the given

first-frame ground-truth. Our methods obtains similar results

while working in an “unsupervised” manner without using any

given information about which objects should be tracked.

that are present in many frames and that have high object-

ness confidence. An example of this is shown in Figure 5.

4. Experiments

Unsupervised VOS Evaluation. We evaluate UnOVOST

on the DAVIS 2017 Unsupervised dataset [5]. This contains

videos in four sets, with 60 train, 30 val, 30 test-dev

and 30 test-challenge videos. The train and val

sets contain the same videos as the DAVIS 2017 semi-

supervised dataset, however they have been re-annotated ac-

cording to the definition of the UVOS task. The test-dev

and test-challenge sets contain new videos. All of

these datasets include multiple objects per video sequence.

Methods are ranked on the J&F metric which is the av-

erage of an area overlap (J ) and a boundary overlap (F)

metric. More details can be found in [24].

Table 1 shows our results on these three UVOS bench-

marks, and compares our method to three other methods

that have presented UVOS results. UnOVOST outperforms

all other previous UVOS algorithms over all datasets, often

by a large margin. The val set is significantly easier than

the other two datasets, in this easier setting UnOVOST has

the largest margin over the other methods. This shows that

when scenes are not too crowded or complex our method

does an exceptional job of successfully tracking and seg-

menting objects through videos. The test-dev set is sig-

nificantly more difficult, and yet the UnOVOST algorithm

can still perform extremely well, especially when compared

to the performance of RVOS [29]. We present additional

qualitative results in Figure 8.

Comparison to Semi-Supervised VOS Methods. As well

as comparing to other UVOS methods, we also compare

our results on the DAVIS 2017 val set to the current state-

of-the-art semi-supervised VOS methods. Figure 6 plots

the J&F metric of approaches against their runtime per

frame. Although these methods use the given first-frame

U17
Val

U17
T-D

U17
T-C

Mask R-CNN 0.74 0.78 0.77

Optical Flow 0.10 0.14 0.12

Appearance Embedding 0.10 0.15 0.11

UnOVOST Tracking 0.08 0.07 0.06

Total 1.02 1.15 1.06

Table 2. Runtime analysis of UnOVOST on the DAVIS 2017 Un-

supervised val, test-dev and test-challenge datasets.

Times are seconds per frame.

mask, so they know exactly what objects need to be tracked

in the video, our UnOVOST algorithm outperforms many of

these methods, even though it operates completely unsuper-

vised without having access to the first frame. Furthermore,

many of these methods [4, 19, 32] extensively finetune their

segmentation and tracking algorithms on the appearance of

the given first-frame objects. Our method still outperforms

many of these methods while being significantly faster.

Runtime Analysis. In Table 2 we provide detailed run-

time analysis of our UnOVOST algorithm across the three

datasets that we test on. The whole algorithm is able to run

at around 1 frame per second (fps). The bottleneck of our

algorithm is the proposal generation using Mask R-CNN

which is more than 70% of the total runtime. We use two

other networks to extract features for matching these pro-

posals over time. Our optical-flow and appearance embed-

ding networks, while both reasonably fast at around 10 fps

each, make up a combined 20% of the runtime. The re-

maining runtime for actually running our algorithm, includ-

ing proposal sub-selection and clipping, tracklet generation,

tracklet merging with the FPC algorithm, and track saliency

estimation and selection runs in around 0.07 seconds per

frame, or at around 15 fps.

Ablation of the Method. We perform an extensive ablation

of all design decisions for UnOVOST, for which the results

can be found in Figure 7. For all design decisions we use the

method which performs best on the training set, even though

this is often not the best on the other data splits, except for

limiting the output to 20 objects which is required by the

evaluation. Interestingly across all experiments, results on

train and val are very similar, whereas test-dev is

much harder, and often shows different trends in the results

than the other two sets.

First we ablate different Mask R-CNN threshold values

for our input proposals. With too small or too large a thresh-

old performance degrades significantly. We then ablate the

threshold for which to remove proposals if their masks over-

lap. Again it is important to select a reasonable threshold.

Next we ablate the IoU threshold required for merging pro-

posals into tracklets, which is not so important for the eas-

ier validation set, but has large effects on the test set results.

We use two different tracklet merging strategies, either us-
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Figure 7. Results of ablating a number of design decisions for

UnOVOST on the three splits of the DAVIS 2017 Unsupervised

dataset. A cross indicates the selected option chosen as the best

performing option on the training set.

ing the Hungarian algorithm for associating proposals into

tracklets or alternatively using greedy merging. Hungarian

performs better on the train and validation splits but worse

on the test split. We show resulting scores when evaluating

just our tracklets from the first stage, compared to merging

these tracklets in a second stage. Across all sets the second

stage is incredibly important. We ablate the use of different

similarity features for comparing tracklets, as well as the

ReID vectors we compare to using last layer activations of

pretrained ResNet 101 [10] and VGG [25] models trained

on ImageNet. The ReID vectors outperform the other sim-

ilarity features on the train and test set, but the ResNet 101

features perform slightly better on the validation set. We

ablate different weightings of the Visual Consistency Score

and the Temporal Density Score used in our algorithm. In-

terestingly, the 90:10 ratio which we use as it slightly out-

performs other ratios on the training set, is far from the op-

timal weighting on the other sets. A 50:50 weighting of the

two scores performs the best on both the validation and test-

ing set, with more heavily relying on either of scores per-

forming worse. Finally we test the result of our algorithm

if we relax the constraint that we can only select 20 ob-

jects for evaluation (we could not do this for the hidden test

test). Our algorithm performs slightly better in this setting

indicating that this restriction removes some correct objects.

We recommend that UnOVOST to be used without this re-

striction step when being applied in the wild, and consider

this only an adaption to the dataset and evaluation.

Extension to Video Instance Segmentation. The task

of Video Instance Segmentation (VIS) is very similar to

UVOS, however in VIS the objects to be tracked must be

classified into a set of predefined classes rather than just

being salient throughout a video. To investigate the gener-

alization of UnOVOST beyond the UVOS domain we run

our algorithm on the YouTube-VIS dataset [39] after train-

ing our detector and segmentor on the set of 40 classes in

this dataset and adding another classification network to im-

Figure 8. Additional qualitative results of UnOVOST.

prove classification results. Apart from that we run Un-

OVOST with exactly the same parameters as for the unsu-

pervised DAVIS task. Details of how we trained our detec-

tor and segmentor for VIS, and of the classifier we used can

be found in the supplemental material.

The VIS task is evaluated using the mAP metric. This

is similar to the mAP metric used for instance segmentation

[18], however it has been extended from single images to

video. Details of mAP for VIS can be found in [39].

The previous state-of-the-art VIS method is MaskTrack

R-CNN [39], which achieves a mAP scores of 30.3 and

32.2 on the YouTube-VIS validation and test set respec-

tively. UnOVOST significantly outperforms this, achieving

mAP scores of 44.8 and 46.7 on the two benchmarks re-

spectively. With these scores UnOVOST also won the 2019

YouTube-VIS Challenge on Video Instance Segmentation,

outperforming 18 other methods. In the supplementary ma-

terial we present a table comparing results to all previous

benchmarks and 2019 challenge entries.

5. Conclusion

In this paper, we present the novel UnOVOST (Unsu-

pervised Offline Video Object Segmentation and Tracking)

algorithm for tackling the unsupervised video object seg-

mentation task. Our algorithm is able to track and segment

a huge variety of objects in complex scenes by combin-

ing both spatio-temporal consistency and visual similarity

cues in a novel tracklet based Forest Path Cutting algorithm

for performing data association. UnOVOST outperforms

all previous UVOS methods, while even performing com-

petitively with many semi-supervised video object segmen-

tation algorithms without requiring any human input as to

which objects should be tracked and segmented.
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