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Abstract

Global contextual dependency is important for semantic

segmentation of 3D point clouds. However, most existing

approaches stack feature extraction layers to enlarge the

receptive field to aggregate more contextual information of

points along the spatial dimension. In this paper, we pro-

pose a Point Global Context Reasoning (PointGCR) module

to capture global contextual information along the channel

dimension. In PointGCR, an undirected graph representa-

tion (namely, ChannelGraph) is used to learn channel inde-

pendencies. Specifically, channel maps are first represented

as graph nodes and the independencies between nodes are

then represented as graph edges. PointGCR is a plug-and-

play and end-to-end trainable module. It can easily be inte-

grated into an existing segmentation network and achieves

a significant performance improvement. We conduct exten-

sive experiments to evaluate the proposed PointGCR mod-

ule on both indoor and outdoor datasets. Experimental re-

sults show that our PointGCR module efficiently captures

global contextual dependencies and significantly improve

the segmentation performance of several existing networks.

1. Introduction

Semantic segmentation is an important task in computer

vision. It has been widely applied in numerous areas such

as autonomous driving, virtual reality, mobile robotics, and

3D reconstruction. The task of 2D/3D semantic segmenta-

tion is to predict per-pixel/per-point categories of a given

scene. Thanks to the advent of depth cameras and laser

radars, 3D point clouds have become increasingly acces-

sible. Consequently, the 3D semantic segmentation task has

attracted a lot of attention in recent years [23, 16, 38, 30].

However, there is a large performance gap between exist-

ing 2D and 3D semantic segmentation algorithms. This is

mainly because, it is impractical to directly extend existing

2D segmentation networks to 3D point clouds due to the

irregularity and sparsity of point clouds.

Prior works address the unstructured problem of point

clouds using different representation methods. Early stud-

ies in the area focus on voxel-based and view-based repre-

sentations [21, 29, 32]. These methods first convert a point

cloud into a regular voxel grid or multiple view images,

and then apply a Convolutional Neural Network (CNN) on

these regular representations. However, due to the infor-

mation loss of voxel-based and view-based representations,

the performance of these methods is limited. An alternative

is to directly process unordered point clouds. A pioneer-

ing work in this category is PointNet [22], which applies

Multi-Layer Perceptrons (MLPs) to obtain order-invariant

features of a point cloud. However, PointNet cannot capture

local contexts and spatial relationship between features. To

address this problem, PointNet++ [23] uses local neighbor-

hoods and hierarchical feature learning to combine multi-

scale local structure information. Although PointNet++ can

capture local fine-grained and global context information,

it still cannot capture spatial distribution and long-term de-

pendency since its features are learned by stacked MLP lay-

ers.

It is observed that existing semantic segmentation frame-

works usually confuse some particular categories with oth-

ers. For example, the objects of window and board, the re-

gions of door and wall are usually indistinguishable. To dis-

tinguish these confusing categories, it is necessary to learn

discriminative feature representations. In recent years, sev-

eral PointNet based methods have been proposed to address

this problem. Two strategies are usually adopted in these

methods, including multi-scale context fusion and long-

term dependency capturing. For example, Engelmann et al.

[8] and [17] aggregated multi-scale spatial contexts in input-

level and output-level, while Wu et al. [38] exploited the

encoder-decoder structure to fuse high-level and mid-level

semantic features. Although the fusion of context features

can capture multi-scale information, they still cannot fully

explore the global relationship between objects, which is

important for semantic segmentation. To capture long-term

dependencies, Ye et al. [39] applied a two-direction hier-

archical RNN to explore contextual features. However, its

performance highly depends on its long-term memorization
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capability.

In this paper, we mainly investigate global long-term

contextual dependencies to address the aforementioned

problems faced by point cloud segmentation. Inspired by

the GloRe Unit [6], we propose a module called PointGCR

to model global contextual dependencies between channels

of 3D point cloud features by learning a graph representa-

tion (namely, ChannelGraph). Specifically, it first uses the

channel self-attention mechanism to learn point-wise fea-

ture similarity between any two channels, and models an

initial graph representation of ChannelGraph with its nodes

embedded from channels. Then, it learns the dependencies

between graph nodes and updates ChannelGraph by passing

the relationship information of nodes represented by graph

edges. To the best of our knowledge, our method is the

first to apply channel-attention with graph convolution on

3D point cloud features. Difference from the GloRe unit

[6], our module learns point-wise channel self-attention fea-

tures on 3D point clouds rather than 2D images. Several

improvements are also introduced by our PointGCR mod-

ule in different aspects such as attention weight calculation

and dimension change.

The main contributions of our work are as follows:

• We propose a PointGCR module to model the contex-

tual dependencies between channels using a graph rep-

resentation and a self-attention mechanism. Our mod-

ule is lightweight and plug-and-play, it can be conve-

niently integrated into a point cloud segmentation ar-

chitecture to significantly improve its performance.

• We introduce a node attention block to embed fea-

ture channels as graph nodes, we also present a graph

embedding block to learn the dependencies between

graph nodes.

• We integrate the proposed PointGCR module into sev-

eral point cloud segmentation frameworks and perform

experiments on three indoor and outdoor scene seg-

mentation datasets. It is demonstrated that our Point-

GCR module can capture global contextual dependen-

cies and significantly boost the segmentation perfor-

mance.

2. Related Work

In this section, we will briefly review existing methods

in two main areas: point cloud segmentation, and contextual

modeling for segmentation.

2.1. Point Cloud Segmentation

Learning discriminative feature representations from

point clouds is the foundation for 3D semantic segmenta-

tion. A main challenge is how to effectively process irreg-

ular and unstructured point clouds using a deep learning

approach. According to different representations of point

clouds, these methods can be broadly divided into voxel-

based, view-based and points-based methods.

Voxel-based Representation. Since point clouds of a

3D scene are unordered and unstructured, we cannot di-

rectly extend convolution operations of 2D images to 3D

point clouds. Voxelization [18] is proposed to convert irreg-

ular point clouds into regular voxel grids, CNN is then ap-

plied on this grid data to extract features. Tchapmi et al [29]

performed 3D fully convolution on voxels, and then utilized

Condition Random Field (CRF) to obtain fine-grained seg-

mentation results. To learn high-resolution representation

of 3D data, Riegler et al. [25] utilized unbalanced octrees

to divide space hierarchically according to the sparsity of

point clouds. Voxelization is an effective way to use CNN,

but its performance is limited by the computational com-

plexity and information loss.

View-based Representation. These methods firstly

project a 3D point cloud into several a 2D image space, and

then use a deep learning model to perform feature learning

on images. Su et al. [27] proposed a 3DCNN by project-

ing a 3D shape onto different viewpoints. VGG-M is then

used to learn features of projection views. Kalogerakis et al.

[13] obtained a set of shaded images and depth maps of 3D

shapes at different viewpoints and scales, and then used a

full convolutional network to learn features. The projection

used in these methods changes the local and global struc-

ture of a 3D shape, which reduces the discriminability of

features.

Points-based Representation. PointNet [22] is pro-

posed to directly process irregular point clouds using a deep

learning method. It adopts a transformation matrix to keep

the point cloud rotation invariant, uses several MLPs to

learn point-wise features, and finally employs a symmet-

ric function to obtain global features. PointNet provides

an effective way to apply neural networks to point clouds.

However, it does not capture the local structure information

of a point cloud. To address this issue, PointNet++ [23]

is proposed to use local dependencies and hierarchical fea-

ture learning to capture multi-scale local structure informa-

tion. It combines sampling and grouping layers with Point-

Net to learn local representation. To capture the relation-

ship between individual points, DGCNN [35] is proposed

to incorporate edge convolution layers (EdegConv) into the

PointNet architecture. It considers the relationship between

points as edge features, which are aggregated from points

and their k nearest neighbors.

2.2. Contextual Modeling for Segmentation

Image Segmentation. In the area of 2D image segmen-

tation, lots of methods have been proposed based on Fully

Convolutional Networks (FCNs). Several methods are also

proposed to focus on the capturing and aggregation of con-
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Figure 1. An overview of the proposed PointGCR module. Given a point cloud, we first use an encoder-decoder network (such as Point-

Net++ or PointConv) to obtain a point-wise feature map. Then, our PointGCR module is appended on top of the feature map to achieve

accurate point cloud segmentation.

textual relations for the improvement of feature represen-

tations. Deeplabv2 [4] is proposed to explore multi-scale

contextual details using Spatial Pyramid Pooling (SPP). The

DAG-RNN [26] model is introduced to employ long-range

dependencies by incorporating a Recurrent Neural Network

(RNN) for relationship learning. A non-local network [34]

is also developed to collect long-term relationship for video

recognition.

Several works on relationship learning in 3D point

clouds are currently available. Engelmann et al. [8] in-

corporates spatial contexts into segmentation by applying

several Multi-Scale (MS) blocks and Consolidation Units

(CU). The MS and CU blocks are used to obtain input-level

and output-level contexts, respectively. 3DContextNet [40]

uses a k-d tree structure to represent point clouds and ex-

ploits both local and global contextual cues on this repre-

sentation. SPG [15] learns the local-to-global contextual

information using a Graph Convolution Network (GCN).

Here, a GCN uses Gated Recurrent Unit (GRU) and Edge-

Conditioned Convolution (ECC) blocks to learn and pass

contextual information of global and local features on the

whole superpoints graph. DGCNN [35] captures the shape

relationship using edge features between individual points.

Its edge features are aggregated from points and their cor-

responding k nearest neighbors. Our method learns the re-

lationship by modeling and reasoning long-term dependen-

cies of high-level feature representations.

Self-attention. Attention mechanism has been used in

Natural Language Processing (NLP) to model long-term

context dependencies [31]. The self-attention mechanism is

an improvement of the attention mechanism, which reduces

the dependence on external information and works better in

capturing the internal correlation of data or features. It has

been currently applied to many visual tasks, including im-

age recognition [34], semantic segmentation [19] and video

understanding [37].

Graph-based Representation. Graph representations

can be used to model relationships between irregular data.

Before the deep learning explosion, long-term dependen-

cies in images or videos have been investigated using graph

representations, e.g., through the Conditional Random Field

(CRF) method [3]. CRF is usually applied to refine seg-

mentation results. In deep learning architectures, traditional

methods such as CRF are gradually replaced by neural net-

works. In this paper, we introduce the recently proposed

GCN [14] to reason global context relationships to improve

the performance of point cloud segmentation.

Relational Reasoning. Relational reasoning has demon-

strated its strong capacity in many visual tasks such as vi-

sual recognition [5], question answering [33] and object

detection [36]. It mainly captures the interaction between

elements by modeling their dependencies. Several recent

works have been proposed to efficiently perform relational

reasoning, including the non-local module [34] and the at-

tention module [31][19]. These methods aggregate the in-

formation from feature embeddings for all position pairs of

the entire input, while the weight for aggregation is con-

strained by the target task. Our model is associated with

a graph convolution, which utilizes the graph structure to

represent the context relationship between multiple cate-

gories. It automatically generates a neighborhood matrix of

the graph convolution operation, and finally passes the in-

formation to capture the relationship between these nodes.

3. Method

In this section, we first define the ChannelGraph, and

then introduce the nodes and edges of the graph. We also

discuss the implementation details of our pointGCR mod-

ule, and integrate the proposed module into an existing

point cloud segmentation network.

3.1. Overview

The goal of this work is to develop a generic module

to incorporate relational information with global reasoning.

This module is designed to help a network to learn discrimi-

native point cloud features for the improvement of semantic

segmentation performance.

High-level features (i.e., the final output) of a feature ex-

traction layer can be considered as category responses. It is

believed that interactions exist between these semantic re-

sponses, which can be further used to improve segmentation

performance. For example, in an indoor scene, tables and

chairs, walls and blackboards, windows and doors have par-

ticular semantic context dependencies. In an outdoor scene,
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cars and roads, roads and plants, people and streets also

have particular semantic context dependencies. To capture

the semantic context relationship in point clouds, that is, the

inter-dependencies between global features, we introduce

a point global context reasoning module. We use a graph

structure called ChannelGraph to model global feature de-

pendencies and perform global reasoning on the graph rep-

resentation. Inspired by the channel self-attention mecha-

nism [19], we extract the global feature map as a channel-

wise map. Each channel map is used as a graph node, and

the dependency between any two channels is used to form

a graph edge. Consequently, a graph structure embedding

can be constructed.

Using the proposed graph-based representation, all fea-

tures of the entire feature map can be covered while preserv-

ing the spatial relationship. An overview of the proposed

method is shown in Fig. 1. More details will be presented

in the following sections.

3.2. Point Cloud Segmentation Backbone

Given a large-scale point cloud (e.g., with around 5 bil-

lion points), we first randomly down-sample L points from

the point cloud. We then use a classical 3D segmentation

backbone to extract point-wise features for subsequent la-

bel prediction. The backbone model PointConv [38] is a

type of encoder-decoder framework for feature extraction

and propagation. The backbone model takes a point cloud

P = {p
1
,p

2
, . . . ,pL} ∈ R

L×C0 as its input, which con-

tains L points with C0 channels (including position features

{x, y, z}, and color features {r, g, b}), and produces a L×C

feature map at the end of its last decoder layer.

3.3. ChannelGraph

Given an input feature map X = {x1,x2, . . . ,xL} ∈
R

L×C , where C is the feature dimension (number of chan-

nel maps). Our goal is to construct an undirected graph

G = (V, E) to represent the interaction structure of chan-

nel maps in a feature map. Note that, each channel map can

be consider as a class-specific response. The graph nodes

V represent class-specific responses, while graph edges E
are used to capture long-range contextual dependencies of

these semantic responses.

3.4. Graph Node Learning

There are tens of thousands of points in the point cloud of

a scene. The large number of points in a point cloud limits

the complexity of the feature extraction architecture. Exist-

ing methods [22][15] usually use down-sampling or over-

segmentation methods to reduce the number of points used

for processing. Besides, GCN is a module with a relatively

high computational complexity. To enable GCN to learn

global context reasoning, it is necessary to embed origi-

nal features into a relatively small number of graph nodes.

Therefore, we reduce the dimension of original feature X

by embedding it into a feature V with a low computational

complexity. These features V are then used to represent

graph nodes.

It is important to design an appropriate approach for

the learning of graph node features. Inspired by the self-

attention mechanism [31], we use a Node Attention (NA)

block to represent the global feature map as a graph struc-

ture by embedding these channels into graph nodes. We

embed these channels according to their pairwise similari-

ties. The similarity between a pair of channels is formulated

as:

f(xi,xj) = θ(xi)
Tφ(xj) (1)

where θ and φ are two embeddings. We have θ(xi) =
Wθxi and φ(xj) = Wφxj , where parameter matrices Wθ

and Wφ have a size of C×C and are to be learned during the

Back Propagation (BP) process. Using dot multiplication

between Wφxj and the transpose of Wθxi, a channel atten-

tion map V with a dimension of C×C is produced. Conse-

quently, the graph nodes of ChannelGraph are obtained and

the relationship between responses of different categories

is initially modelled. The channel attention map V is pro-

cessed with graph convolutions and then has a dot-product

with embedding g(xj) to produce V̂. That is:

v̂i = f(xi,xj)g(xj) (2)

Consequently, the channel attention map of size C × C is

transformed to a feature map of size L×C. Here, g(xj) =
Wgxj . Finally, the element-wise sum of the original feature

map X and the new feature map V̂ is obtained through a

residual connection [10], resulting in the final feature map:

x̂i = Wvv̂i + xi (3)

where Wv is a parameter matrix to learn.

Implementation Details. Given the input point features

X ∈ R
L×C , we feed it into two one-dimensional con-

volution (Conv1D) layers to obtain two new feature maps

Y ∈ R
L×C and Z ∈ R

L×C , respectively. Then, we

perform dot product between the the transpose of matrix

Y ∈ R
L×C and Z ∈ R

L×C , resulting in a node atten-

tion feature V ∈ R
C×C . Through the above transformation

operation, the graph nodes of ChannelGraph is embedded.

The attended node vector is Vi = {vij |i, j = 1, 2, . . . , C},

Vi ∈ R
C×C , where vij represents the j-th node feature in

Vi. The process of node attention is illustrated in Fig. 2.

3.5. Graph Edge Learning

Once features are embedded into graph nodes, a chan-

nel attention map ChannelGraph V is produced. Each node

vector vi represents a channel map xi. Since we em-

bed these nodes by learning pair-wise similarities, Chan-

nelGraph can be considered as a fully connected graph. The

2934



��

������ ������ ������

������

V

X

G

X̂

L C�

C L� L C�

C C�

C C�

L C�

L C�L C�
L C�

L C�Y Z

Figure 2. An illustration of PointGCR.

next step is to perform context reasoning to capture the rela-

tionship between channels, that is, to learn the graph edges

between graph nodes.

In this work, we perform context reasoning on this fully

connected graph using GCNs [14]. The graph convolution

operation can be represented as:

G = AVWe, (4)

where V and G are the input and output graphs with C×C

dimensions, respectively. A ∈ R
C×C represents an adja-

cency graph, which is used to pass information across graph

nodes while reasoning on the ChannelGraph along the node

dimension. We represents the edge weight matrix with a

dimension of C × C, which is used to update node states

while reasoning on the ChannelGraph along the channel di-

mension.

Implementation Details: The matrices A and We

are initialized randomly and learned during training. We

implement the graph convolution by applying two one-

dimensional convolution (Conv1D) layers along the node

and channel dimensions, respectively. At the first step, we

learn the adjacency weight matrix A by applying a Conv1D

along the node dimension to propagate the node informa-

tion over the ChannelGraph. At the second step, we learn

edge weights We by applying a Conv1D along the chan-

nel dimension to learn interactive information between the

channels within a graph node. Consequently, we can cap-

ture both the relationship between channels within each

node feature vij and the inter-dependencies across differ-

ent nodes. Once the final ChannelGraph representation is

obtained, a batch normalization layer and an activate func-

tion ReLU are used to improve the training performance.

4. Experiments

In this section, we test our PointGCR module on three

3D point cloud segmentation datasets, including the Stan-

ford Large-Scale 3D Indoor Spaces (S3DIS) [1], ScanNet

[7] and Semantic3D [9] datasets. We first briefly describe

these datasets, the evaluation metrics and our implemen-

tations. Then, we integrate our module into three popular

point cloud semantic segmentation frameworks (i.e., Point-

Net++ [23], PointConv [38]) and PointSIFT [12] to test its

performance. In addition, we provide an ablation study of

our PointGCR module.

4.1. Experimental Setup

Datasets. We conduct comprehensive evaluation of our

PointGCR module on three challenging datasets, i.e., two

indoor datasets including S3DIS [1] and ScanNet [7], and

one outdoor Semantic3D [9] dataset.

Evaluation Metrics. We quantitatively test the segmen-

tation performance using three metrics: Overall Accuracy

(OA), per-class Intersection over Union (IoU), and mean

IoU of each class (mIoU). IoU is defined as:

IoU =
TP

TP + FP + FN
(5)

where TP is the number of true positives, FP is the number

of false positives and FN is the number of false negatives.

Implementation Details. In our experiments, we con-

ducted experiments using the tensorflow toolbox and ran

programs on an NVIDIA GTX1080 Ti GPU.

Table 1. Semantic segmentation results (%) achieved on the Scan-

Net dataset. mIoU results of existing methods are from the Scan-

Net Benchmark Challenge. * denotes the results of existing meth-

ods trained by us. The number in each brackets indicates perfor-

mance improvement (red) or decline (blue).

Method mIoU (%) Accuracy (%)

TangentConv [28] 43.8 -

FCPN [24] 44.7 82.6

PointCNN [16] 45.8 85.1

PanopticFusion [20] 52.9 -

PointNet++ [23] 33.9 83.3*

PointNet++-GCR (Ours) 37.8 (3.9) 84.7 (1.4)

PointConv [38] 58.2* -

PointConv-GCR (Ours) 60.8 (2.6) -

PointSIFT [12] 41.0* 84.2*

PointSIFT-GCR (Ours) 42.7 (1.7) 85.3 (1.1)

4.2. Results on the ScanNet Dataset

The ScanNet [7] dataset is a large-scale 3D indoor

dataset, which contains 1513 scanned and reconstructed in-

door scenes. For the semantic segmentation task, 20 cate-

gories are provided for evaluation. In our experiments, 8192

points were randomly sampled from each point cloud for

training.

Performance. We integrated our PointGCR mod-

ule into PointNet++ [23], PointConv [38] and PointSIFT
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Table 2. Semantic Segmentation results (%) achieved on the S3DIS dataset (Area-5). IoU results of existing methods are from [29], [11]

and [39]. The number in each brackets indicates performance improvement (red) or decline (blue).

Method ceiling floor wall beam column window door chair table bookcase sofa board clutter mIoU

PointNet [22] 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22 41.09

SEGCloud [29] 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60 48.92

RSNet [11] 93.34 98.36 79.18 0.00 15.75 45.37 50.10 65.52 67.87 22.45 52.45 41.02 43.64 51.93

SPGraph [15] 91.50 97.91 75.95 0.00 14.23 51.29 52.26 86.38 77.43 65.51 40.44 7.23 50.77 54.68

PointNet++ [23] 90.79 96.45 74.12 0.02 5.77 43.59 25.39 69.22 76.94 21.45 55.61 49.34 41.88 50.04

PointNet++-GCR

(Ours)

90.71 96.13 74.85 0.10 16.09 50.17 32.29 68.95 78.09 41.26 60.69 53.82 43.76 54.38

(-0.08) (-0.32) (0.73) (0.08) (10.32) (6.58) (6.90) (-0.27) (1.15) (19.81) (5.08) (4.48) (1.88) (4.34)

PointConv [38] 92.03 97.79 73.79 0.00 3.31 43.67 23.02 69.90 76.80 32.43 54.11 44.50 43.10 50.34

PointConv-GCR

(Ours)

93.12 98.02 76.44 0.00 17.24 42.46 27.10 74.32 83.14 18.95 62.18 39.28 49.22 52.42

(1.09) (0.23) (2.65) (0.00) (13.93) (-1.21) (4.08) (4.42) (6.34) (-13.48) (8.07) (-5.22) (6.12) (2.08)

DGCNN [35] 92.42 97.46 76.03 0.37 12.00 51.59 27.01 64.85 68.58 7.67 43.76 29.44 40.83 47.08

DGCNN-GCR

(Ours)

91.73 97.66 75.98 0.00 15.09 53.43 21.19 67.42 69.08 19.44 51.92 39.06 44.39 49.72

(-0.69) (0.20) (-0.05) (-0.37) (3.09) (1.84) (-5.82) (2.57) (0.50) (11.77) (8.16) (9.62) (3.56) (2.64)

[12] networks, resulting in three new networks, namely,

PointNet++-GCR, PointConv-GCR and PointSIFT-GCR.

We further compare them to existing methods including

PointNet++ [23], PointConv [38], PointSIFT, PointCNN

[16], and TangentConv [28]. The mIoU results achieved

on the ScanNet dataset are shown in Table 1. It can be

seen that, the networks integrated with our PointGCR mod-

ule obtain a significant improvement as compared to their

baseline networks (i.e., 3.9 % for PointNet++, 2.6 % for

PointConv blue and 1.7% for PointSIFT in terms of mIoU).

Compared to FCPN [24], PointCNN [16] and PanopticFu-

sion [20], the network PointConv-GCR with our PointGCR

module achieves the best segmentation performance.

4.3. Results on the S3DIS Dataset

The S3DIS [1] dataset contains 3D points of 6 areas with

271 different rooms, including hallways, conference rooms,

and lounges. This dataset is acquired with Matterport scan-

ners. Each point is annotated with one of 13 semantic class

labels, including chair, table, wall, ceiling, and clutter. In

our experiments, we performed 6-fold cross validation over

6 areas. For fair comparison, we choose Area 5 as the test

set and train our module on the remaining 5 areas.

Performance. We integrated our PointGCR module into

DGCNN [35], PointNet++ [23] and PointConv [38] net-

works, and also compare their results to PointNet [22],

SEGCloud [29], 3DContextNet [40], DGCNN [35], and

SPGraph [15]. Comparative results are listed in Table 2.

It can be seen that, the best mIoU performance achieved

with our PoinGCR module is 54.38%, which is increased

by 4.34% as compared to the baseline network PointNet++.

Specifically, PointNet++-GCR achieves performance im-

provement on 10 categories out of all 13 categories as com-

pared to its baseline PointNet++. Among these categories,

bookcase and column are very hard to identify by existing

methods. However, with our PoinGCR module, the IOU

performance of PointNet++ is improved by 19.81% and

10.32% on these two categories, respectively. Besides, the

IOU performance of PointNet++ on door and window has

also been improved by over 6.5%. Further, our module also

brings a significant performance improvement to the base-

line methods DGCNN and PointConv. These results clearly

demonstrate that our module can implicitly learn the rela-

tionship between different categories.

4.4. Results on the Semantic3D Dataset

The Semantic3D [9] dataset is the largest publicly avail-

able 3D outdoor dataset, which contains more than 40 mil-

lion points acquired from urban and rural scenes. Each

point has RGB and intensity values and is labeled with one

of the 8 semantic categories: man-made terrain, natural ter-

rain, high vegetation, low vegetation, buildings, hard scape,

scanning artifacts, and cars.

Performance. We conducted experiments on the

reduced-8 subset, which is a reduced version of the Se-

mantic3D dataset. We also compare our PointNet++-GCR

and PointConv-GCR to several existing methods including

PointNet [22], SEGCloud [29], 3DContext [40], DGCNN

[35] and SPGraph [15], as shown in Table 3. It can be seen

that the PointNet++ framework integrated with our Point-

GCR module outperforms its baseline by 4.7% in terms

of mIoU and 5.8% in terms of OA. PointGCR also im-

proves the performance of the baseline PointConv frame-

work. Specifically, PointConv with our PointGCR module

obtains performance improvements in 6 out of 8 categories.

The hard scape and low vegetation categories are improved

by about 10.5% and 3.7% in terms of IoU. From Sections

4.2-4.4, it can be concluded that our relationship learning

module has a good generalization capability and works well

on different indoor and outdoor datasets.
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Table 3. Semantic segmentation results (%) achieved on the Semantic3D dataset (semantic-8 challenge). IoU data of existing methods are

from the Semantic3D online evaluation website. The number in each brackets indicates performance improvement (red) or decline (blue).

Method
man-made

terrain

natural

terrain
high vegetation low vegetation buildings hard scape

scanning

artefacts
cars mIoU OA

FCNVoxNet 6.6 27.2 58.0 36.4 80.9 28.3 9.5 50.9 37.2 52.3

DeepSegNet [9] 89.4 81.1 59.0 44.1 85.3 30.3 19.0 5.0 51.6 88.4

SnapNet [2] 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2 67.4 91.0

SPGraph [15] 91.5 75.6 78.3 71.7 94.4 56.8 52.9 88.4 76.2 92.9

PointNet++ [23] 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6 63.1 85.7

PointNet++-GCR (Ours)
92.3 79.6 60.3 59.2 92.2 34.3 42.4 82.3 67.8 91.5

(10.4) (1.5) (-4.0) (7.5) (16.3) (-2.1) (-1.3) (9.7) (4.7) (5.8)

PointConv [38] 92.2 79.2 73.1 62.7 92.0 28.7 43.1 82.3 69.2 91.8

PointConv-GCR (Ours)
93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3 69.5 92.1

(1.6) (0.8) (-8.7) (3.7) (1.2) (10.5) (-8.8) (3.0) (0.3) (0.3)

4.5. Visualization

A visualization of segmentation results achieved by

PointConv and PointConv-GCR is shown in Fig. 4. Note

that, red boxes are used to highlight the major differences

between these segmentation results. It can be seen that our

PointConv-GCR can accurately segment detailed structures

and contours. That is mainly because our module can learn

discriminative features by utilizing the attention mechanism

and GCN. For example, PointConv incorrectly classifies

some points on table as desk and classifies several points

on cabinet as counter on Scene0095 01. On Scene0100 00,

PointConv predicts curtain as door and classifies the ma-

jority of the cabinet as counter. This is because, PointConv

is unable to effectively capture long-term context dependen-

cies and to classify isolated points in the scene from a global

perspective. As shown in the last two rows in Fig. 4., we can

find that PointConv always confuses the points on board and

windows (which are attached to the wall) on the scene con-

ference 3. On office 14, PoinConv produces a large number

of mis-classified points on the board. However, with our

PointGCR module, a more complete and smoother results

can be obtained, especially for these objects attached to the

wall.

4.6. Ablation Study

Ablation study on components of PointGCR . We ap-

ply our module on top of PointNet++ and PointConv net-

works to capture long-term dependencies. To verify the ef-

fectiveness of major components in our module, we per-

form experiments on their combinations. The results on the

S3DIS dataset are summarized in Table 4.

It is clear that, the graph reasoning block improves the

performance significantly. Compared to the baseline Point-

Net++, using the GCN reasoning block obtains an mIoU of

54.38%, which brings an increase of 4.34%. However, us-

ing two GCN reasoning blocks only produces about 1.75%

increase in mIoU. That means, multiple stacking of GCN

blocks cannot improve the performance. In addition, if only

Table 4. Ablation study on two major components of the Point-

GCR module on S3DIS.
Baseline NA GCN 2GCN SE-net S3DIS [1]

PointNet++ [23]

50.04

� 51.69

� � 54.38

� � 51.79

� 51.88

PointConv [38]

50.34

� 50.54

� � 52.42

� � 52.46

� 51.30

Table 5. Ablation study on the depth of baseline networks.

Baseline two layers four layers PointGCR S3DIS [1]

PointNet++ [23]

� 42.16

� � 46.70

� 47.59

� � 49.16

PointConv [38]

� 41.74

� � 47.66

� 47.31

� � 52.41

the similarity relationship modeling module is used without

GCN reasoning, mean IoU can also be improved by about

1.65%. Similar conclusions can also be observed for Point-

Conv. These results show that relationship reasoning makes

a major contribution to the improvement of segmentation

performance.

In addition, we insert SE-net module into PointNet++

and PointConv to test their performance on the S3DIS

dataset. The SE-net module brings improvements of 1.84%

on PointNet++ and 0.96% on PointConv. In contrast, the

improvement brought by our module on PointNet++ and

PointConv are 4.34% and 2.08%, respectively.

Ablation study on the depth of baseline networks. To
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Scene0095_01

ScanNet

Scene0100_00

S3DIS

Conference_3

Office_14

RGB point cloud Ground truth PointConv PointConv-GCR

Figure 3. Semantic segmentation results obtained by PointConv [38] and its PointGCR variant on the ScanNet [7] dataset. From left

to right: RGB point clouds, groundtruth, PointConv, PointConv-GCR. Comparative results between PointConv and PointConv-GCR are

highlighted in red boxes.

Table 6. Parameters and model sizes of different networks.
Methods PointNet++ PointNet++-GCR PointConv PointConv-GCR

Parameters 1.41M 1.55M 3.93M 4.07M

Model Size (MB) 11.4 13.3 259.9 261.9

further demonstrate the effectiveness of PointGCR, we con-

duct ablation experiments using PointNet++ and PointConv

frameworks. Note that, PointNet++ consists of 4 feature

extraction layers followed by 4 propagation layers. We re-

moved the last feature extraction layer and the first prop-

agation layer, the results are summarized in Table 5. The

performance of PointNet++ is reduced by removing these

two layers. However, the mIoU performance is improved

(i.e., 1.57% for PointNet++ and 5.10% for PointConv) af-

ter appending our PointGCR module. Further, when the

last 2 feature extraction layers and the first 2 propagation

layers are removed, a significant gain in mIoU (i.e., 4.54%

for PointNet++ and 5.92% for PointConv) is also achieved.

These results demonstrate that our PointGCR module sig-

nificantly improves point cloud segmentation performance

by reasoning long-term relationship.

Parameters and model size. We summarize the param-

eters numbers and model sizes of PointNet++, PointConv

and their PointGCR variants in Table 6. This further demon-

strates that our PointGCR module can improve the segmen-

tation performance without significant increase in computa-

tional complexity.

5. Conclusion

In this paper, we have proposed a PointGCR module for

semantic segmentation of point clouds. We define a graph

representation ChannelGraph to model the global long-term

contexts for relational reasoning. We embed the nodes of

ChannelGraph using channel attention, and learn the edge

weights by performing graph convolutions along the chan-

nel dimension. Our PointGCR module is plug-and-play

and end-to-end trainable. Extensive experiments have been

conducted on three different datasets. Experimental results

show that, our PointGCR module can introduce significant

and consistent improvements to existing point cloud seg-

mentation networks.
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