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Abstract

Although the topic of image search has been heavily

studied in the last two decades, many works have focused

on either instance-level retrieval or semantic-level retrieval.

In this work, we develop a novel visually similar spatial-

semantic method, namely spatial-content image search,

to search images that not only share the same spatial-

semantics but also enjoy visual consistency as the query

image in complex scenes. We achieve the goal by capturing

spatial-semantic concepts as well as the visual representa-

tion of each concept contained in an image. Specifically,

we first generate a set of bounding boxes and their cate-

gory labels representing spatial-semantic constraints with

YOLOV3, and then obtain visual content of each bounding

box with deep features extracted from a convolutional neu-

ral network. After that, we customize a similarity compu-

tation method that evaluates the relevance between dataset

images and input queries according to the developed im-

age representations. Experimental results on two large-

scale benchmark retrieval datasets with images consisting

of multiple objects demonstrate that our method provides

an effective way to query image databases. Our code is

available at https://github.com/MaJinWakeUp/

spatial-content.

1. Introduction

Image retrieval has long been an active research topic in

computer vision and multimedia as it is essential in many

applications, such as online shopping [15], person identi-

fication [9] and photo management [23]. The objective of

image retrieval is to return a ranked list of images that are

relevant to a query within a very large database. Basing

on the definition of relevance, we can roughly split litera-

ture into two main groups: instance- and category-level im-

age retrieval. In instance-level retrieval, we want to search

images of the exact same object presented in a query im-

age. This direction is first tackled with sparse Bag-of-Words

(BoW) representation model [25], and then with dense yet

compact representation models, such as Fisher Vectors [19]

and VLAD [11]. In short, these models represent each im-

age by embedding and aggregating a set of local descrip-

tors (e.g., SIFT) into a global image-level vector. Recently,

this direction has benefited from the success of deep learn-

ing, and builds image representations[1, 31, 28, 18] either

with activations of a fully connected layer or a convolu-

tional layer from a Convolutional Neural Network (CNN).

Previous work has achieved excellent results on instance re-

trieval within a single category, such as buildings [20] and

shoes [27]. However, it is infeasible to collect labelled data

to train a retrieval model for each class separately as it has

been estimated that humans can distinguish at least 30,000

object classes [3].

Category-level image retrieval, which concentrates on

searching semantic-related images of the same category[29,

2], is on the other end of the retrieval spectrum. Typ-

ical research on category-level retrieval often uses ma-

chine learning techniques to learn a mapping between vi-

sual and semantic representations, such as image caption

generation[8, 17] and word vector embeddings [7, 4]. De-

spite popularity, such methods cannot deal with spatial con-

straints such as object positions. Although the retrieval

method [30] based on concept maps can deal with spatially

distributed semantic concepts, it cannot reflect the relative

scales of different objects. Recently, Mai et al. [16] tackle

the scale problem by manipulating the sizes of concept text-

boxes on a 2D query canvas. However, similar to other

category-level retrieval methods, it still suffers from the lim-

itation that the retrieved images may not come up to expec-

tation of query users due to visual semantic discrepancy.

In this work, we extend the state-of-the-art category-

level retrieval methods, and introduce a novel image re-

trieval task in complex scenes, where the goal is to search
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(a) Spatial-semantic image search

(b) Spatial-content image search
Figure 1. Spatial-content image retrieval. (a) Searching with a set of bounding boxes (generated by YOLOV3 [22]) representing spatial-

semantic constraints of the query image returns confused retrieval results due to lack of query visual information. (b) By incorporating

visual features into retrieval process, our method return visually similar semantic retrieval results as the query image.

images that not only share the same spatial-semantics but

also enjoy visual consistency as the query image. As shown

in Fig.1, compared with conventional spatial-semantic im-

age search, our retrieval system can indeed return images

that are both semantically and visually relevant to the user

query image.

The main challenge in developing such an image search

technology is to design appropriate image representations.

When humans look at an image containing multiple ob-

jects, they usually observe the objects presented in the im-

age, and then observe the position of each object as well

as position relations between different objects. Inspired

by this observation characteristic, we consider recent ad-

vances of object detection techniques and generate a set

of bounding boxes representing spatial-semantic constraints

with YOLOV3 [22]. Then, we obtain visual content of each

bounding box with deep convolutional features extracted

from a pre-trained Convolutional Neural Network (CNN).

Finally, we represent images with a set of tuples, where

each tuple contains information of position, label and vi-

sual description of an object. After that, we design a sim-

ilarity computation method that takes into consideration of

both semantic and visual similarities to rank database im-

ages. To our knowledge, this is the first work to propose a

visually similar based spatial-semantic image retrieval sys-

tem.

We organize the rest of this paper as follows. Section 2

describes the proposed image retrieval system, where we

present the computation of image representations and im-

age relevant scores in detail. We report experimental results

as well as some discussions on the MS-COCO and Visual

Genome datasets in Section 3. Finally, we conclude the pa-

per in Section 4.

2. Proposed Approach

2.1. Image Representation

Our representation framework consists of two compo-

nents: spatial-semantic object representation and visual ob-

ject representation. First, we tackle spatial-semantic object

representation with object detection. Given an image, the

goal of object detection is to return the spatial location and

extent of each object instance usually via a bounding box.

The main object algorithms in the literature can be broadly

classified into two groups: one-stage and two-stage. The

one-stage detection framework refers broadly to architec-

tures that directly predict class probabilities and bounding

box offsets from full images with a single feed forward

CNN network. Representative algorithms include Over-

Feat [24], SSD [14] and YOLO [21]. The two-stage detec-

tion framework first includes a pre-processing step for re-

gion proposal generation, and then determines the category

labels of the proposals with category-specific classifiers.

Well-known methods include RCNN [6], Fast RCNN [5]

and Mask RCNN [10]. In this work, we prefer to one-stage

framework, and select YOLOv3 [22] for our purpose as it

is both effective and efficient in practice. For a given im-

age M , we choose bounding boxes corresponding to score

values greater than 0.5 for final detection. The obtained

bounding boxes and category-labels are respectively con-

sidered as spatial constraints and semantic information of

object instances contained in the image. Therefore, they for-

mulate a spatial-semantic representation of the image, and

can be used to support image retrieval. However, as shown

in Fig.1 (a), searching only with spatial-semantic informa-

tion is not enough to return expected similar images. This

is because even if the object instances belong to a same cat-

egory, their visual differences may be still huge. Therefore,

it is necessary to leverage visual features to return relevant

images what query users expect.

Second, we generate the visual representation of each

object instance with deep convolutional features. Specifi-

cally, we feed the image M through a convolutional neu-

ral network, and correspondingly obtain a 3D tensor vector

F ∈ R
W×H×K produced by the activations (responses) of

a convolutional layer, where W×H is the spatial resolution

of the feature maps, and K is the number of feature maps

(channels). Basing on the fact that the convolutional layer
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still preserves the spatial information of the input image, for

an object instance detected by YOLOv3 in the original im-

age M , we derive its subset of locations on the spatial grid

W × H using the size and location of the bounding box.

Consequently, we obtain the feature set F ′ ∈ R
W ′

×H′
×K

of the object instance, where W ′ × H ′ is the object size

in the feature space. Finally, we compute visual represen-

tation f = (φ1, . . . , φK)T of the object with the simplest

sum-pooling strategy. That is,

φk =
W ′∑

p=1

H′∑

q=1

F ′
pqk, ∀k = 1, . . . ,K. (1)

Up to now, we have built an effective representation

IM = {O1, O2, . . . , On} for the image M , where each

Oi is an object instance of the image. Besides, each Oi

contains three components {bi, li, fi}, where bi, li and fi
denote its bounding box, category label and visual vector,

respectively. Formally, the image representation of the im-

age M is

IM = {O1, ..., Oi, ..., On}, Oi = {bi, li, fi}. (2)

2.2. Similarity Computation

Now, we consider how to compute similarity scores be-

tween different images with Eq.(2). In [16], the authors de-

fine a method to compute the relevance between an input

query Q and a retrieved database image D as

S(IQ, ID) =
1

|IQ|

∑

Oi∈IQ

max
Oj∈ID

I(li = lj)
bi ∩ bj

bi ∪ bj
(3)

where |IQ| denotes the number of object instances in Q; Oi

and Oj correspondingly denote the object instances of the

image Q and the image D; while li and bi (lj and bj) are the

category label and bounding box of Oi (Oj), respectively.

Besides, I represents the indicator function which takes the

value 1 if its argument is true and zero otherwise. The main

idea behind the Eq.(3) is that, for each object instance Oi in

the query image Q, it first searches all the object instances

with the same category label as Oi in the database image D,

and then selects the object instance with the largest spatial

overlap ratio to compute the object relevance score. Finally,

it obtains the relevance score of Q and D by averaging all

the individual object relevance scores.

As stated above, the category-label information required

by the relevance score Eq.(3) is too coarse to describe the

query user intent, and therefore searching with Eq.(3) can-

not guarantee promising retrieval results. To overcome this

limitation, we incorporate visual object representation into

relevance score computation:

S̃(IQ, ID) =
1

|IQ|

∑

Oi∈IQ

max
Oj∈ID

I(li = lj)(α
bi ∩ bj

bi ∪ bj
+

(1− α) cos(fi, fj))
(4)

where α ∈ [0, 1] is a scale parameter ; fi and fj denote

the visual representations of object-instances Oi and Oj ,

respectively; the symbol cos means the Cosine similarity of

two vectors. We call the score computed by Eq.(4) spatial-

content relevance score as it adds visual content similar-

ity when matching objects of the query image Q and the

database image D.

The parameter α in Eq.(4) is used to balance the contri-

bution of semantic representation and visual representation

in similarity computation. When α = 1, Eq.(4) degener-

ates to Eq.(3); while on the other end α = 0, the equation

becomes

S̃α=0(I
Q, ID) =

1

|IQ|

∑

Oi∈IQ

max
Oj∈ID

I(li = lj) cos(fi, fj)

(5)

which means we compute the relevance score only with-

out the spatial constraint. In other words, we compute the

relevance score between Q and D by matching object de-

scriptors belonging the same category labels. We empiri-

cally select the optimal value for α according to experimen-

tal evaluations.

It should be noted that, although the spatial-semantic

constraint is included in both Eqs.(3) and (4), it is ob-

tained in different ways and it serves different aims in

these two equations. First, the bounding box and category-

label information used in Eq.(3) is obtained with image an-

notations, while in our Eq.(4), these information is pro-

duced by the detection technique YOLOv3. Second, the

spatial-semantic constraint is aimed to annotate ground-

truth spatial-semantic relevance images in Eq.(3), however

it is partly used for searching relevance images in Eq.(4),

and its effect will be examined by our experimental results.

As is just said, the relevance score of Eq.(4) is based

on the spatial-semantic information produced by the object

detection technique. However, it is worth noting that, the

number of categories used to train the detection model is

limited. This means we may not detect every object for

some images. In order to handle this special case, we con-

sider an image as a single object, and use the original deep

convolutional features F to generate its representation with

Eq.(1). That is I = {O} = {f}. If this case happens to at

least one of two compared images, we compute their simi-
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larity score using the following equation:

Ŝ(IQ, ID) =
1

|IQ|+ β





max
Oj∈ID

cos(fQ, fj), IQ = fQ

max
Oi∈IQ

cos(fD, fi), ID = fD

(6)

where β ∈ N is a penalization parameter to tune the rele-

vance score between Q and D in this situation. Both the

Eqs.(4) and (6) together constitute the similarity computa-

tion method designed for the proposed spatial-content im-

age retrieval.

2.3. Flowchart of Spatial­content Image Search

To be clear, we summarize the framework of the pro-

posed spatial-content image retrieval method as follows:

1. For each image D in a large-scale database, we repre-

sent it with ID = {O1, ..., Oi, ..., On}, where Oi =
{bi, li, fi} is the detected object instance in D with

YOLOv3. The components bi, li and fi represent the

bounding box, category label and visual representation

of Oi, respectively.

2. For a user given query image Q, we generate its rep-

resentation IQ, and then compute its relevance score

with each image D in the database. Specifically, if

both Q and D have object instance labels, we compute

their similarity score with Eq.(4). Otherwise, we com-

pute their similarity score with Eq.(6).

3. Return a ranked list of the retrieved images by sorting

the relevance scores.

3. Experiments

In this section, we utilize the GNet-Conv feature ex-

tracted from the fifth inception convolutional layer of

GoogleNet [26] to construct the object visual representation

in Eq.(2). For each object, we apply L2 normalization to the

feature before and after sum-pooling operation. The GNet-

Conv baseline, which uses the L2 normalized sum-pooling

vector of whole GNet-Conv feature for image search, is

compared to show the effectiveness of our method.

3.1. Standard Relevance Score

In order to evaluate the performance of the proposed

method, we need to define a standard relevance score.

In [16], Mai et al. use Eq.(3) as standard relevance score but

without any proof. While in [8], Gordo et al. discuss the se-

lection of standard relevance score in detail. Specifically,

this publication investigate the agreement score between

users’ ranking and several visual baseline methods based on

dataset annotations, and discover that the tf-idf BoW repre-

sentation of captioned texts has the highest agreement score

with users, which means this representation is a good pre-

dictor of the relevance between two images. So in this pa-

per, we employ the cosine similarity of L2 normalized tf-idf

BoW representations of two images as their proxy standard

relevance score.

3.2. Datasets

We evaluate the performance on two large-scale datasets

that are designed for cognitive scene understanding tasks:

MS-COCO [13] and Visual Genome [12].

MS-COCO: We use the training and validation sets with

captioned texts of MS-COCO 2017 in this experiment. The

validation set contains 5000 images, it can be treated as a

small dataset for experimental setup. We select 15 groups

images of complex scenes from the validation set, every im-

age within one group is similar to each other, then choose 5

images from each group randomly and combine them to-

gether into a query set of 75 images. Besides, we filter

some images that are similar with these query images from

training set according to standard relevance score (if one

image’s tf-idf similarity with any query is larger than 0.3,

then filter it), then add remaining images to validation set

as distractors. This operation turns the validation set into a

large dataset of 92341 images, we denote this large dataset

as MS-COCO2017, and the validation set as MS-val2017.

Visual Genome: This dataset consists of 108,077 im-

ages with detailed region-level text descriptions. Similarly,

we select 15 groups images of complex scenes from this

dataset, and choose 5 images from each group randomly

and combine them together into a query set of 75 images.

Fig.2 shows 15 query examples from each chosen group

on MS-COCO dataset and Visual Genome dataset respec-

tively.

3.3. Metrics

As in [16], we employ three standard metrics that are

widely used in information retrieval tasks to evaluate the

performance of all methods.

Normalized Discounted Cumulative Gain (NDCG):

NDCG is a measure of ranking quality according to the ac-

cumulated relevance score of retrieved results. In our case,

the relevance score of one image with respect to the query

is the cosine similarity of their tf-idf representations. We

compute the NDCG score for every image in query set and

report their average value. Following [16] we compute the

NDCG quality of top R results for different values of R to

obtain the NDCG curves.

Spearman Rank Correlation: Spearman rank correla-

tion assesses how well the relationship between two vari-

ables can be described using a monotonic function. Giving

the ranking results returned by the proposed method and

the ranking results returned by proxy tf-idf method for each

query, it measures the correlation between these two rank-
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(a) Query examples from 15 chosen groups on MS-COCO dataset

(b) Query examples from 15 chosen groups on Visual Genome dataset

Figure 2. Query examples on MS-COCO and Visual Genome.

ing results. Similarly, we report the average value of Spear-

man rank correlation for all queries.

Mean Average Precision(mAP): mAP is widely used

in content-based image search to evaluate ranking results.

When calculating the average precision in this experiment,

either one image being relevant to the query or not is defined

by either it belongs to the group of that query or not. The

final mAP score is the mean value over all queries’ average

precision scores. We report the top R results for different

values of R as in NDCG metric.

In the experiments, the NDCG score and Spearman rank

correlation evaluate how well the proposed method corre-

lates with the proxy tf-idf measure, while mAP evaluates

how well it correlates with subjective cognition since the

relevance is annotated by humans in this metric.

3.4. Results and Discussion

In this part, we show the image search results of the

proposed method on three datasets: MS-val2017, MS-

COCO2017 and Visual Genome.

Parameters. First of all, in order to determine the op-

timal values of two parameters in the proposed spatial-

content image search method: α in Eq.(4) and β in Eq.( 6),

we test the retrieval performance on MS-val2017 when as-

signing different values to these parameters. Specifically,

we study the impact of α by giving a fixed value to β, and

after finding a promising value of α. We in turn study the

impact of β with the chosen α value. We repeat this process

until we find the best values for both α and β.

According to the experiment results, we choose α = 0.2
and β = 1 for our method in this paper. Fig.3 shows the im-
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Figure 3. The impacts of the different parameters on image search

performance on MS-val2017 dataset( R = 200 for NDCG and

mAP). Left: the impact of α on performance when β = 1. Right:

the impact of β on performance when α = 0.2.

pacts of different parameter values on performance on MS-

val2017 dataset. For the showed results, we set R = 200 in

the NDCG and mAP measurements, and set the whole rank-

ing list in the Spearman rank correlation. One can observe

that when α changes from 0 to 1, the image search per-

formance increases slowly at the beginning and then drops

rapidly after α = 0.2. Thus, the performance of α = 1
is much worse than α = 0, which indicates that search-

ing by spatial-categories performs worse than searching by

category labels and visual representations. This observation

confirms the necessity for adding visual content information

to spatial-semantic search.

As for β, there is an obvious improvement from β =
0 to β = 1, but the performance remains stable when β

becomes larger. This means the penalization is beneficial

to our method, however, a large β is not necessary as large

β values leads to the value of Ŝ in Eq.(6) approximating
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Figure 4. Performance of the proposed method and the baseline method on MS-val2017 dataset. From left to right: NDCG for different

values of R, mean Average Precision for different values of R, Spearman Rank Correlation for whole ranking list.
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Figure 5. Performance of the proposed method and the baseline method on MS-COCO2017 dataset. From left to right: NDCG for different

values of R, mean Average Precision for different values of R, Spearman Rank Correlation for whole ranking list.

to zero, and therefore make the final performance stable.

Without losing the meaning of Eq.(6), we set β ≡ 1 in the

following experiments.

Results. We present the performance of spatial-content

image search method under three different values of param-

eter α: Ours(1) stands for the proposed method when α =
1, it is an approximate spatial-semantic baseline method

which uses spatial information and category labels for re-

trieval as in [16]; Ours(0) stands for the proposed method

when α = 0, it uses visual content information and category

labels for retrieval; Ours(0.2) stands for the best condition

of spatial-content search, which combines all information

together and produces the most gratifying results.

Figs. 4, 5 and 6 compare the image search performance

of the proposed method and the baseline method on MS-

val2017, MS-COCO2017, Visual Genome datasets respec-

tively. From these three figures, we have the following

observations. On one hand, when α = 0, the proposed

method performs better than baseline GNet-Conv method

with a significant gap on all three metrics. On the other

hand, when α = 1, the proposed method performs worse

than GNet-Conv in terms of NDCG and mAP metrics in

most cases, but with a slight gain over it using Spearman

rank correlation. This again confirms the above discussion

on parameter α. Meanwhile, the change from α = 0 to

α = 0.2 further improves the search quality on three met-

rics, which proves the combination of spatial-semantic and

visual content information is beneficial to image search in

complex scenes.

Figs. 7 and 8 show the top retrieved images for a spe-

cific query on MS-COCO2017 and Visual Genome datasets

respectively. Compared with the baseline method, the pro-

posed method can capture the high-level semantic informa-

tion within one image, such as vase and flower in Fig.7, and

person, bench as well as birds in Fig.8, thus return more

semantically similar results. Besides, when α = 0.2, our

method search images that are relevant to the query both

spatial-semantically and visually.

Finally, we show quantitative comparison results of the

evaluated methods in Table 1 with R = 200 for NDCG and

mAP, and the whole ranking list for Spearman rank cor-

relation. On the MS-val2017 dataset, the improvement of

Ours(α = 0.2) over the baseline is 7% in terms of NDCG,

24% in mAP and 6% in Spearman rank correlation. On the

MS-coco2017 dataset, the improvement of Ours(α = 0.2)

over the baseline is more than 13% in NDCG as well as

mAP, and 25% in Spearman rank correlation. On the Vi-

sual Genome dataset, the improvement gap is still signifi-

cant, and is over 11% in terms of any metric. In a word,

qualitative and quantitative results indicate that the pro-

posed method leads to remarkable improvements in search-

ing both visually and semantically relevant images.
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Figure 6. Performance of the proposed method and the baseline method on Visual Genome dataset. From left to right: NDCG for different

values of R, mean Average Precision for different values of R, Spearman Rank Correlation for whole ranking list.

Figure 7. Qualitative results on MS-COCO dataset. Left column: query image. Right: from top row to bottom row: the top retrieved

images of the methods GNet-Conv, Ours(1), Ours(0) and Ours(0.2).

Figure 8. Qualitative results on Visual Genome dataset. Left column: query image. Right: from top row to bottom row: the top retrieved

images of the methods GNet-Conv, Ours(1), Ours(0) and Ours(0.2).

2509



Table 1. Comparison of different methods on three datasets (R =

200 for NDCG and mAP).

Method NDCG mAP Spearman

MS-val2017

GNet-Conv 0.5549 0.4116 0.3998

Ours(α = 1) 0.4500 0.3701 0.4321

Ours(α = 0) 0.6207 0.6374 0.4635

Ours(α = 0.2) 0.6215 0.6555 0.4645

MS-COCO2017

GNet-Conv 0.4049 0.1338 0.2365

Ours(α = 1) 0.3676 0.1486 0.4542

Ours(α = 0) 0.5319 0.2519 0.4843

Ours(α = 0.2) 0.5375 0.2630 0.4851

Visual Genome

GNet-Conv 0.5411 0.1485 0.1845

Ours(α = 1) 0.4787 0.0705 0.3134

Ours(α = 0) 0.6513 0.2754 0.3929

Ours(α = 0.2) 0.6555 0.2991 0.3920

3.5. Time complexity

Giving one query image, we first pass it to YOLOv3

and GoogleNet for extracting information that we need, and

then construct the image representation with Eq.(2). We

notice that these steps take about 80ms on a Tesla P100

GPU. Subsequently, we compare the query image with

all database images either with Eq.(4) or with Eq.(6). In

practice, we employ sequence comparison with 4 parallel

threads, and the search time for each query is about 0.2s on

MS-val2017, and about 5s on the two large-scale datasets

MS-COCO2017 and Visual Genome. The time cost of our

implementing can be further reduced by building inverted

files with object category labels, however, this is beyond

the scope of this paper and therefore we will not discuss it

here.

4. Conclusion

In this paper, we present a solution for searching visu-

ally and semantically relevant images in complex scenes.

Specifically, by leveraging recent advances on object de-

tection, we use triplets of category labels, bounding boxes

and deep visual features to jointly represent object instances

contained in one image. With designed image represen-

tations, we then develop a novel similarity computation

method that takes into consideration of both semantic and

visual similarities to rank database images. Experiment re-

sults on MS-COCO and Visual Genome datasets show that

the proposed spatial-content method improves the retrieval

performance with a significant gap compared to the baseline

method.
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