
A Novel Self-Supervised Re-labeling Approach for Training with Noisy Labels

Devraj Mandal ∗

Indian Institute of Science

devrajm@iisc.ac.in

Shrisha Bharadwaj ∗†

University of Tübingen

shrishabharadwaj5@gmail.com

Soma Biswas

Indian Institute of Science

somabiswas@iisc.ac.in

Abstract

The major driving force behind the immense success of

deep learning models is the availability of large datasets

along with their clean labels. This is very difficult to ob-

tain and thus has motivated research on training deep neu-

ral networks in the presence of label noise. In this work,

we build upon the seminal work in this area, Co-teaching

and propose a simple, yet efficient approach termed mCT-

S2R (modified co-teaching with self-supervision and re-

labeling) for this task. Firstly, to deal with significant

amount of noise in the labels, we propose to use self-

supervision to generate robust features without using any

labels. Furthermore, using a parallel network architecture,

an estimate of the clean labeled portion of the data is ob-

tained. Finally, using this data, a portion of the estimated

noisy labeled portion is re-labeled, before resuming the net-

work training with the augmented data. Extensive experi-

ments on three standard datasets show the effectiveness of

the proposed framework.

1. Introduction

The success of deep learning models like Alexnet [16],

VGG [34], ResNet [12], etc. for image classification tasks

can be attributed to the availability of large, annotated

datasets like ImageNet [17]. But, obtaining clean annota-

tions of large datasets is very expensive, and thus recent

research has focused on learning from weakly supervised

data, where the labels are often noisy, since they have been

acquired from web searches [19] or crowd-sourcing [37].

The presence of noisy labels can severely degrade the per-

formance of the learned classifiers, since deep neural net-

works can even over-fit on the noisy labels with sufficient

training, due to their memorization capability [40] [3].

Recently, several approaches have been proposed to han-

dle label noise in the training data [40] [11] [38] [13] [21]

[10] [30]. One direction to address this problem is to es-

timate the noise transition matrix itself by utilizing an ad-

∗Both authors contributed equally.
†work done during internship at Indian Institute of Science, Bangalore.

ditional softmax layer [10] for modeling the channel noise.

An alternative two-step approach along the same lines is

proposed in [30]. However, it is observed that estimation of

the noise transition matrix is often hard and computation-

ally expensive, especially when large number of classes are

present in the data [11].

A more recent and elegant direction to handle label noise

is to utilize the concept of small-loss instances [13] [32]

[11]. Here, the algorithms estimate which samples are cor-

rectly labeled, and uses them to train the network subse-

quently. MentorNet [13] uses a pre-trained network (trained

in a self-paced manner with a curriculum loss) to select

clean labeled data to train the final classification model. Co-

teaching [11] trains two networks in parallel and updates the

weights of the networks using only the small loss samples.

In addition, the gradients of the two networks are switched

during the parameter update, which leads to better perfor-

mance. It is observed [11] that when the training continues

for a long time, the two networks generally converge to the

same state and start performing similarly leading to the ac-

cumulation of errors.

Here, we propose a framework based on the Co-teaching

approach [11], which also uses the concept of small-loss in-

stances along with self-supervision and re-labeling, to sig-

nificantly improve the training of deep networks with very

noisy training data. The proposed approach has four main

steps. First, to deal with significant amount of label noise,

we utilize self-supervision as a pre-training step, so that the

network can learn robust features without the use of any la-

bels. Second, we use a parallel network architecture similar

to the one in [11] to get an estimate of the small loss sam-

ples. In the third step, utilizing a portion of the small loss

samples, the per class means for all the categories are com-

puted, which are then used to re-label the large loss samples.

Finally, the training of the network is resumed by taking all

the small loss samples along with a portion of the re-labeled

large loss samples based on a confidence measure. The

proposed framework is termed as mCT-S2R (modified co-

teaching with self-supervision and re-labeling). The main

contributions of this work are as follows:

• We develop an approach by utilizing self-supervision

1381

and re-labeling of the large loss data using the small

loss samples for training deep networks under signifi-

cant label noise.

• Our framework uses two parallel networks only to de-

termine the small loss instances. Unlike [11] [21]

which requires two networks for the entire training,

the final training of the proposed framework after re-

labeling proceeds using a single network. This makes

our model computationally much lighter.

• We propose using a self-supervised training paradigm

like [9] to learn about the data distribution without us-

ing the labels, which helps to avoid over-fitting on the

noisy labels.

• Extensive experiments on three benchmark datasets

show the effectiveness of the proposed framework.

2. Related Work

Training deep neural networks in the presence of label

noise is an active research area [21][11][38][8]. Several di-

rections have been proposed in the literature to address this

problem. Some works [31] [7] have focused on designing

an appropriate loss function, which acts as a regularization

term while training. [31] proposes to increase the weight of

the regularization term during the training paradigm so that

the network focuses more on the clean examples with sub-

sequent iterations. An unbiased estimator to handle label

noise is proposed in [25], while a robust non-convex loss

function is designed in [22] for this task.

Another research direction is to model the noise behav-

ior itself [10][24]. The work in [24] models the conditional

probability of observing a wrong label, and considers the

correct label to be a latent variable. However, [24] assumes

that the label-flip probability is known apriori, which re-

quires extra knowledge about the training data. This has

been mitigated in [10], where an additional softmax layer is

used to model the noise transition matrix. Noise rate esti-

mation is also addressed in the works of [23] [18] and [33].

Most of the current approaches in this area utilize the

concept of small loss instances [13][21][11], where the net-

work tries to estimate those samples which are probably

correctly labeled, and ignore those samples which are prob-

ably noisy. Due to the ease of training these models and

their generalization capability, they have been well accepted

in the machine learning community. Our approach falls in

this category, and we propose a framework mCT-S2R for

this task.

There are some other related works [26][4][2][43],

which assume the availability of a small clean set of data

in addition to the large, noisy or unlabeled dataset for train-

ing the classification model. One recent work in [35] ap-

proaches this problem from the semi-supervised paradigm

Figure 1. Plot of R(T) for different values of label corruption ǫ =
{0.45, 0.5, 0.2}. R(T) is used [11] to control how many samples

are used to update the network weights per epoch. The proposed

approach augments the training set by adding a portion of the large

loss samples after re-labeling them using the small loss instances.

and uses the consistency loss along with the rotation self-

supervised loss in an end-to-end manner to design noise ro-

bust classification models. The work [35] also needs a clean

validation set (which is not available in our case) to tune the

hyper-parameters of the model to get the best possible re-

sults. In addition, since the classification loss, consistency

loss and the self-supervision objectives are used in an end-

to-end manner [35], proper weighing of each of the factors

for each individual dataset is required. These approaches

are beyond the scope of our work, since we do not as-

sume the presence of any examples with clean labels, which

makes the tuning of the hyper-parameters of our model very

difficult [11][38]. Thus, we try to design models which are

very robust to the choice of the hyper-parameters.

3. Motivation

To develop the proposed framework, first, we analyze

the recently proposed methods which utilize the small loss

instances [11]. These approaches typically use two net-

work architecture, and each network updates the peer net-

work weights based on the small loss samples. The train-

ing procedure uses a factor R(T) (at epoch T) to quantify

the amount of small loss samples per mini-batch to be used

to update the network weights. R(T) is directly related to

the amount of label corruption ǫ (ǫ is either assumed to be

known or can be estimated by using the strategies outlined

in [18] [39]), and is defined as R(T) = 1 − min{ T
Tk

ǫ, ǫ},

where Tk is the epoch after which R(T) becomes constant.

Typical profiles of R(T) for different ǫ is shown in Figure

1. We observe that the model initially considers all the input

data and slowly zones into the cleanly labeled data (guided

by the concept of small loss instances) to train the model.

After completion of Tk epochs (here Tk = 10), the network

weights are updated using (1 − ǫ) portion of the training

data (marked as small loss instances) and ignores the large

loss samples under the assumption that they are wrongly

labeled. Even though the small and large loss samples for

1382

Figure 2. The architecture of the network used for the pre-training task using the self-supervised objective. For the pretext task, each

image is fed into the image rotation module (marked with light blue shade) to generate different rotated images and their corresponding

labels (i.e., the degrees of rotation), and the network is trained using the standard cross-entropy loss. For training the final noise-tolerant

classification model, two networks of the same architectural design as shown are taken. The weights are randomly initialized and only the

first 3 convolutional layer weights (marked with deep blue shade) are loaded with the weights from the pre-trained self-supervised model.

The two parallel networks are trained using the images and their provided noisy labels. (Figure best viewed in color)

every mini-batch of an epoch are sampled randomly, the ba-

sic premise is to only focus on those samples whose labels

are possibly correct. This automatically leads to ignoring a

large portion of the data samples for training the model. In

this work, we analyze whether the small loss samples can

be used to correct the labels of some of the incorrectly la-

beled samples, which can then be utilized to better train the

network.

4. Proposed Approach

The proposed framework has four main steps: (1) pre-

training the neural network in a self-supervised fashion to

learn about the data distribution in an unsupervised man-

ner, (2) training of two parallel networks following the same

strategy as in [21] [11] to estimate the small loss instances,

(3) re-labeling of the large loss samples using the small loss

instances and (4) final training of one network using an aug-

mented set of the small loss samples and a portion of the

re-labeled large loss samples. Pseudo-code of the proposed

approach is provided in Algorithm 1. Now, we describe the

different steps in detail.

4.1. Pre­training

To deal with significant amount of label noise, we first

want to impart the knowledge of the training data distri-

bution to the proposed network architecture without us-

ing the noisy labels. Recently, self-supervised models like

[9][41][42][6][27][1] have been used to learn high level

convolutional network features in an unsupervised manner.

Features learned in a self-supervised way by solving a pre-

text task such as image colorization [41][42], prediction of

relative position of image patches [6][27], ego-motion pre-

diction by using motion between two frames [1] and pre-

diction of 2d rotation of the images [9] have helped to learn

unsupervised features which are useful for further down-

stream computer vision tasks.

Inspired by this, we propose to first use a self-supervised

training paradigm to learn a feature representation without

using any label information. We have selected the RotNet

model [9] for our framework as shown in Figure 2 (marked

with light blue shade). We have selected RotNet model [9]

for the self-supervision task because studies in [14] have

shown that this model gives superior performance in the

downstream classification task as compared to the other

self-supervision approaches. Here, the pretext task is to cor-

rectly predict the rotation operation (such as image rotations

of 0, 90, 180, 270 degrees) which have been applied to the

input image. The loss function used is the standard cross-

entropy loss Lce with a 4-dim logit layer (for the 4 degrees

of orientation i.e., here K = 4).

As mentioned, the proposed mCT-S2R is built on the Co-

teaching approach [11] and has the same base architecture

(Figure 2). For seamless transfer of the learned weights

from the self-supervised pretext task, we use the same ar-

chitecture as in [11] with RotNet objective [9]. To train the

model for the pretext task, we feed each image through the

image rotation module (shown inset in Figure 2) to generate

the training data and its labels, i.e. the orientation degree.

This training is performed on the same dataset on which we

need to train the classification model later i.e., the down-

stream task. Once trained, this pre-trained network can be

used for building the noise-robust classification model.

Based on the studies in [9][11][21], we need to consider

two important things: (1) the best way to transfer the knowl-

1383

edge learned while solving the pretext task and (2) impart-

ing randomness in the two parallel networks, so that they

do not converge to the same model. The network architec-

ture for the two parallel networks is identical as shown in

Figure 2. Each network has a final dense layer of K-dim,

which is randomly initialized, where, K denotes the total

number of training categories in the data. The work in [9]

has shown that the initial layers learn generic features as

compared to the later layers, which are mostly tuned to the

pretext task. Thus to impart the knowledge of the data dis-

tribution following the studies in [9] [28], the weights of

the first 3 convolutional layers of both the networks in the

proposed framework are initialized with the corresponding

weights of the pre-trained self-supervised model. The ran-

domness of the rest of the layers prevents the two networks

from converging to the same model during training.

4.2. Computing the small­loss instances

We train two parallel networks, each one having the ar-

chitecture as in Figure 2 simultaneously as in [21] [11] by

feeding the original image data and the corresponding noisy

labels. Let us denote the two networks as p and q and their

learnable weights as wp and wq . For each network, we de-

note the output from the final, fully connected (fc) layer

logits to be {up, uq} of dimension K, and the penultimate

fc layer features to be {fp, fq} (128-dim). The algorithm

proceeds as in [11], where, in each mini-batch, the network

computes the loss over the available samples in the mini-

batch, sorts the loss in ascending order, and selects a portion

of the samples to form the small loss instance set {Dp,Dq}
based on the value of R(T). The parameters wp and wq

are updated by using the information from the peer network

i.e., Dq and Dp. The loss to train the network is the stan-

dard cross-entropy loss Lce = − log
(

eu[i]/
∑K

k=1 e
u[k]

)

,

where i is the correct class index.

In [11], the two networks are trained until the pre-defined

number of iterations Tmax. During testing, one of the

learned networks (either p or q) is used for classification.

In contrast, we train the two parallel networks for an initial

Tupdate number of steps and then collect all the small loss

{Sp, Sq} and large loss {Lp, Lq} indices set based on the

value of R(T). Unlike [11], we use the two networks only

to get an estimate of the small and large loss samples. For

subsequent training, we choose one of the networks, thus

reducing the computational requirement significantly.

4.3. Re­labeling the large loss samples

Let us consider, that we choose the network p and its

index set {Sp, Lp}. The set of all small loss samples is

denoted as Ds. In this step, first, all the training data is

passed through the network p and their features F = {fp}
are extracted. The indices Sp and Lp are used to compute

the feature sets for the small loss and large loss samples.

Algorithm 1 Proposed Framework - mCT-S2R

Input: Network structure {p, q}, learning rate η, ǫ,
epoch Tk, Tupdate, Tmax, total number of mini-batches

Nmax, number (N) of small loss instances to compute

class means, training set D, threshold value κ.

Output: Trained noise robust classification model p.

Step 1: Pre-training

1. Randomly initialize one network and train it using

the self-supervised objective loss function as in [9].

2. Randomly initialize the model weights wp and wq

for the two networks p and q.

3. The initial three conv layer weights of both p and

q are loaded with the weights of the pre-trained self-

supervised model, while the remaining layers are ran-

domly initialized.

Step 2: Compute small-loss instances

for T = 1, 2, ..., Tupdate do

Shuffle the training set D.

for N = 1, ..., Nmax do

Fetch mini-batch Dmb from D.

Sub-select a portion of the samples (as defined

by R(T)) from Dmb to form the small loss set Dj .

Hence, Dj = argminx:|x|≥R(T)|Dmb| L
ce(j, x)

Update wj = wj − η∇Lce(j,Dj̄).
(j = {p, q}, if j = p, j̄ = q)

Update R(T) = 1−min
(

T
Tk

ǫ, ǫ
)

.

Step 3: Re-labeling large-loss samples

1. Pick one network randomly (say p). Store the sorted

(in ascending order) small and large loss indices at

Tupdate epoch as {Sp, Lp}. The small loss samples are

denoted as as Ds.

2. Compute the class-wise means using the the top-N

small loss instances (Algorithm2).

3. Based on distance of the large loss samples from

the means, generate the re-labeled targets Yr and their

confidence of re-labeling C (Algorithm3).

5. Select the large loss samples whose confidence c ≥
κ to form Dr.

6. Construct augmented training set Daug = Ds ∪ Dr.

Step 4: Final training with augmented data

for T = Tupdate + 1, Tupdate + 2, ..., Tmax do

Shuffle the training set Daug .

for N = 1, ..., Nmax do

Fetch mini-batch Dmb from Daug .

Obtain Dp = argminx:|x|≥R(T)|Dmb| L
ce(p, x)

Update wp = wp − η∇Lce(p,Dp) .

Update R(T) = 1−min
(

T
Tk

ǫ, ǫ
)

.

1384

Algorithm 2 Feature Extraction & Mean Set Computation

Input: Network p, training data D, sorted small &

large loss index set {Sp, Lp}, N : number of samples

for computing class means.

Output: Features of large loss samples FL, class-wise

means M = {µ1, ..., µK} for K categories

1. Pass data D through network p and generate the ex-

tracted features.

2. Use index set Sp and Lp to get the features for large

loss and small loss samples as FL and FS .

3. Use N small loss samples per category to compute

its mean µk for class k ∈ K.

Algorithm 3 Re-labeling & Confidence Computation

Input: Feature set of large loss samples FL, class-wise

means M = {µ1, ..., µK}
Output: Re-labeled targets Yr = {yr}, Confidence

values C = {c}
for i = 1, ..., |FL| do

Compute distance d of the ith sample from M.

Generate similarity value d̂ by passing (−d)
through softmax function. (A smaller distance denotes

a higher similarity.)

Set pseudo label as: yr = argmaxk d̂[k]

Set confidence of re-labeling as: c = maxk d̂[k]

The per class mean feature representation is then computed

using the small loss sample features to form the mean set

M = {µ1, µ2, ..., µK}. Instead of using all the samples

of each class to compute the means, we use only the top-

N small loss samples per category, i.e the samples with the

lowest loss. This step of feature extraction and class-wise

mean computation is illustrated in Algorithm 2.

Next, we use the class-wise means M and the extracted

features of the large loss samples to generate their pseudo-

labels Yr and confidence values C. The pseudo labels are

generated by computing the distance of each large loss sam-

ple feature from M and converting it into a softmax prob-

ability score. The index of the highest softmax value gives

the pseudo-label yr, while the highest value is stored as its

confidence measure value c. The steps are outlined in Al-

gorithm 3.

4.4. Final training with augmented data

Once we obtain the re-labeled samples and their confi-

dence scores, we sub-select a portion of the large loss sam-

ples, whose confidence c ≥ κ. Let us denote this set by

Dr. Finally, we construct the augmented training set as

Daug = Ds ∪ Dr. We use the original provided labels

for the small loss instances i.e., Ds and the predicted labels

for the large loss samples i.e., Dr to further train the chosen

network (here p).

5. Experimental Evaluation

Here, we describe in details the extensive experiments

performed to evaluate the effectiveness of the proposed

framework.

5.1. Dataset details and noise models

We conduct experiments on three standard benchmark

datasets used for evaluating models trained with noisy la-

bels, namely MNIST [5], CIFAR-10 [15] and CIFAR-

100 [15]. MNIST [5] dataset contains gray-scale images

of handwritten digits of size 28 × 28 spread over 10 dif-

ferent categories. This dataset has 60, 000 training and

10, 000 testing examples. CIFAR-10 [15] and CIFAR-100

[15] contains a huge collection of 32 × 32 size color im-

ages which has been divided into a training:testing split of

50, 000 : 10, 000 examples. CIFAR-100 (CIFAR-10) data

contains 100 (10) different categories, with each category

having 600 (6000) images per class.

We follow the standard protocol as in [30][31] to in-

troduce label noise into the datasets. Specifically, the la-

bels are corrupted using a noise transition matrix P , where

Pij = Prob(l̂ = j|l = i), i.e., probability that the label

of an example actually belonging to category i (l = i) has

been corrupted to belong to category j (l̂ = j). We have

used two different noise models: (1) symmetry flipping [36]

(symmetry) and (2) pair flipping (pair). In symmetry flip-

ping, the probability of an example being correctly labeled

under the noisy setting is (1 − ǫ), while the probability of

being corrupted (i.e. ǫ) is equally distributed over the rest

of the categories. In pair flipping, the probability of being

corrupted is distributed over a single category. Studies in

[11] have shown that it is typically harder to train classifi-

cation networks under the pairflip noise model as compared

to the symmetry noise model, which is further validated by

the performance of the algorithms under those settings.

We evaluate our framework under extreme noisy setting

[11], with ǫ = 0.45 (for pairflip) and ǫ = 0.5 (for symme-

try), where almost half of the training examples have been

corrupted and have noisy labels. Studies in [11] have shown

that algorithms need additional information to handle more

label noise i.e., ǫ > 0.5 in the training data.

5.2. Network structure and implementation details

We implement the proposed framework in PyTorch (ver-

sion 0.4.1) [29] on a NVIDIA GTX 1080 Ti GPU using the

architecture shown in Figure 2. The model is trained with

Adam optimizer using momentum of 0.9 and a learning rate

Table 1. Average test accuracy on the MNIST, CIFAR-10 and

CIFAR-100 datasets over the last ten epochs in the supervised set-

ting (with 100% clean labels).

MNIST CIFAR-10 CIFAR-100

Acc 99.60 89.34 63.41

1385

Table 2. Average test accuracy on the MNIST dataset over the last ten epochs. The results of our approach without (and with) self-

supervision pre-training is denoted as mCT-R and mCT-S2R respectively.

Flipping-Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching mCT-R mCT-S2R

Pair-45%
56.52
± 0.55

57.23
± 0.73

56.88
± 0.32

0.24
± 0.03

58.03
± 0.07

80.88
± 4.45

87.63
± 0.21

95.52
± 0.04

94.72
± 0.02

Symmetry-50%
66.05
± 0.61

67.55
± 0.53

62.29
± 0.46

79.61
± 1.96

81.15
± 0.03

90.05
± 0.30

91.32
± 0.06

97.79
± 0.02

97.82
± 0.02

Symmetry-20%
94.05
± 0.16

94.40
± 0.26

98.31
± 0.11

98.80
± 0.12

95.70
± 0.02

96.70
± 0.22

97.25
± 0.03

99.05
± 0.03

98.86
± 0.01

Figure 3. T-sne plots of the large loss samples for MNIST. The

small loss samples are used to re-label the large loss instances and

the correctly (wrongly) re-labeled data are marked with green (red)

respectively. (a, b, c) and (d, e, f) denote the results of mCT-R and

mCT-S2R. (Left to right): The three columns correspond to the

noise models: pairflip-45%, symmetric-50% and symmetric-20%.

(Figure best viewed in color)

of 0.001. First, the model is trained using self-supervision

based on the RotNet objective for 25 epochs. For handling

large amounts of label noise, the first three convolutional

layers of the two parallel networks are initialized with pre-

trained weights of the self-supervised model and the re-

maining layers are initialized with random weights. We use

a batch size of 128 and train for 200 epochs, and report the

average test accuracy over the last ten epochs. We follow

the same protocol as in [11] and fix the other parameters of

our model as R(T) = 1− ǫ.min(T
Tk

, 1), Tk = 10, Tmax =
200. We set Tupdate = 30 and the softmax confidence mea-

sure κ = 0.90 for all our experiments. We also perform ab-

lation studies to analyze the performance of our algorithm

with the change in Tupdate and κ and report the results later.

We compare the proposed approach against the state-of-

art approaches: Bootstrap [31], S-model [10], F-correction

[30], Decoupling [21], MentorNet [13] and Co-teaching

[11]. The results of all the compared methods are taken

from the published results in [11]. We also compute the

classification accuracy of the proposed mCT-S2R on the

three datasets using all the clean labels. The results in Table

1 represents the upper-bound of classification accuracy that

can possibly be achieved by our network.

5.3. Evaluation on MNIST dataset

The results of the proposed mCT-S2R under different

noise models on the MNIST dataset is reported in Table

2. We also report the results without self-supervision (de-

noted by mCT-R) to analyze the importance of the two ma-

jor components of the proposed framework, namely self-

supervision and re-labeling. We observe the following:

(1) For all the approaches, the performance for the pair-

flip noise model is lower as compared to symmetry flip;

(2) As expected, the performance of all the algorithms for

20% symmetric noise is better than for 50% noise; (3) The

proposed approach significantly outperforms the state-of-

the-art models, especially for pairflip noise; (4) The perfor-

mance of mCT-S2R for the symmetric case is close to the

best possible value (shown in Table 1). This might be be-

cause MNIST is an easier dataset compared to the others

and the data for a particular category in MNIST has com-

paratively lesser variations. (5) The results of mCT-S2R and

mCT-R are very similar, signifying that self-supervision is

not particularly beneficial for this dataset.

Now, we analyze the usefulness of re-labeling in the pro-

posed framework. We train the two parallel networks till

Tupdate, then randomly select one of them, and use the

small loss instances to predict the labels of the large loss

instances. The t-sne [20] plots of the large loss sample fea-

tures are shown in Figure 3. The large loss samples which

are correctly re-labeled are marked with green, while those

which are wrongly re-labeled are marked with red. The

top (bottom) row denotes the results without (with) self-

supervised pre-training. We observe that most of the large

loss samples are getting correctly re-labeled in both the

cases. Based on a softmax confidence threshold, our frame-

work selects a portion of the re-labeled samples (preferably

from the green marked ones) to train the network further.

This extra set of correctly re-labeled samples helps our ap-

proach to achieve better classification accuracy.

5.4. Evaluation on CIFAR­10 dataset

We report the results of our approach on CIFAR-10

dataset in Table 3. Even for this data, we observe simi-

lar trends in the results as with MNIST. But for CIFAR-10,

the results of mCT-S2R are significantly better than mCT-

R, which clearly shows the effectiveness of self-supervised

pre-training for more difficult data.

1386

Table 3. Average test accuracy on the CIFAR-10 dataset over the last ten epochs. The results of our approach without (and with) self-

supervision pre-training is denoted as mCT-R and mCT-S2R respectively.

Flipping-Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching mCT-R mCT-S2R

Pair-45%
49.50
± 0.42

50.05
± 0.30

48.21
± 0.55

6.61
± 1.12

48.80
± 0.04

58.14
± 0.38

72.62
± 0.15

78.09
± 0.11

80.58
± 0.54

Symmetry-50%
48.87
± 0.52

50.66
± 0.56

46.15
± 0.76

59.83
± 0.17

51.49
± 0.08

71.10
± 0.48

74.02
± 0.04

77.69
± 0.24

81.23
± 0.07

Symmetry-20%
76.25
± 0.28

77.01
± 0.29

76.84
± 0.66

84.55
± 0.16

80.44
± 0.05

80.76
± 0.36

82.32
± 0.07

84.89
± 0.09

87.21
± 0.04

Table 4. Average test accuracy on the CIFAR-100 dataset over the last ten epochs. The results of our approach without (and with) self-

supervision pre-training is denoted as mCT-R and mCT-S2R respectively.

Flipping-Rate Standard Bootstrap S-model F-correction Decoupling MentorNet Co-teaching mCT-R mCT-S2R

Pair-45%
31.99
± 0.64

32.07
± 0.30

21.79
± 0.86

1.60
± 0.04

26.05
± 0.03

31.60
± 0.51

34.81
± 0.07

31.80
± 0.11

38.67
± 0.08

Symmetry-50%
25.21
± 0.64

21.98
± 6.36

18.93
± 0.39

41.04
± 0.07

25.80
± 0.04

39.00
± 1.00

41.37
± 0.08

41.46
± 0.06

52.87
± 0.16

Symmetry-20%
47.55
± 0.47

47.00
± 0.54

41.51
± 0.60

61.87
± 0.21

44.52
± 0.04

52.13
± 0.40

54.23
± 0.08

56.29
± 0.19

60.49
± 0.36

The t-sne plots for the different losses in Figure 4 (top

row) clearly indicate that for the models trained with-

out self-supervision, distinct clusters of data have not

been formed and the number of wrongly marked samples

(marked in ”red”) is quite high. Thus, the re-labeled sam-

ples will potentially have many wrongly assigned labels.

In the bottom row, self-supervision pre-training clearly

helps in forming distinct (10) clusters of data leading to a

larger number of correctly re-labeled samples (marked in

”green”). These additional correctly labeled data helps the

proposed framework to achieve significantly better classifi-

cation performance.

5.5. Evaluation on CIFAR­100 dataset

We report the results of our algorithm on the CIFAR-

100 dataset in Table 4. This is the hardest dataset of all

the three due to the presence of 100 different categories,

which increases the possibility of incorrect re-labeling of

the large loss samples. Indeed, we observe that for pairflip-

45%, mCT-R shows poorer performance than [11], possibly

due to incorrect re-labeling of the large loss samples. For

this dataset, mCT-S2R shows significant improvements as

compared to mCT-R. From the t-sne plots for the different

losses in Figure 5, we clearly observe how self-supervised

pre-training immensely helps to correctly re-label the sam-

ples leading to the improved performance of mCT-S2R.

5.6. Ablation studies

Here, we provide additional analysis of the proposed

framework. The analysis of why self-supervised pre-

training helps to improve the performance of the network

is shown in Figure 3, 4, 5. Further analysis for different

choice of the hyper-parameters is provided below.

Choice of Tupdate: The Tupdate parameter controls the

epoch after which we re-label the large loss samples using

Figure 4. T-sne plots of the large loss samples for CIFAR-10. The

small loss samples are used to re-label the large loss instances and

the correctly (wrongly) re-labeled data are marked with green (red)

respectively. (a, b, c) and (d, e, f) denote the results of mCT-R and

mCT-S2R. (Left to right): The three columns correspond to the

noise models: pairflip-45%, symmetric-50% and symmetric-20%.

(Figure best viewed in color)

the small loss instances. We analyze the performance of

the proposed mCT-S2R using different values of Tupdate =
{10, 20, 30} and report the results in Table 5 on MNIST and

CIFAR-100 datasets. We observe that the results are quite

consistent, which implies that the proposed framework per-

forms well for a wide range of hyper-parameter Tupdate

value. Having a smaller value of Tupdate is advantageous

for our algorithm since after re-labeling, we can train only

a single network which is computationally much lighter.

Choice of R(T): The value of the dropping rate R(T) is

set to be 1−ǫ.min(T
Tk

, 1) and common profiles of R(T) for

different noise levels ǫ is shown in Figure 1. Essentially, af-

ter T ≥ Tk, R(T) = 1 − ǫ, which implies that the training

tries to concentrate on the correctly labeled portion of the

1387

Figure 5. T-sne plots of the large loss samples for CIFAR-100.

The small loss samples are used to re-label the large loss instances

and the correctly (wrongly) re-labeled data are marked with green

(red) respectively. (a, b, c), (d, e, f) denote the results of mCT-

R and mCT-S2R. (Left to right): The three columns correspond to

noise models: pairflip-45%, symmetric-50% and symmetric-20%.

(Figure best viewed in color)

Table 5. Average test accuracy (over the last ten epochs) on

MNIST and CIFAR-100 datasets for different values of Tupdate.

MNIST Symmetry-50% Pair-45%
Tupdate 10 20 30 10 20 30

Accuracy 98.62 98.38 97.82 97.41 96.66 94.72

CIFAR-100 Symmetry-50% Pair-45%
Tupdate 10 20 30 10 20 30

Accuracy 53.84 53.61 52.87 38.57 39.88 38.67

data. It was observed in [11] that if too many instances are

dropped, then the networks might not get sufficient train-

ing data and the performance can substantially deteriorate.

However, in our work, since we are re-labeling the large loss

samples and utilizing the possibly correct ones for training,

the performance of the proposed approach may not be so

intricately related to the value of ǫ. We analyze the perfor-

mance of our algorithm in Table 6 by setting ǫ = 0.5 to

compute R(T). We choose this value, since, in general, it

is difficult to train deep based noise-tolerant models for a

larger noise rate (ǫ > 0.5) without any additional informa-

tion [11]. From Table 6, we observe that the performance

of mCT-S2R is quite consistent, which indicates that even

without the knowledge of the true noise level ǫ, our frame-

work should perform well.

Choice of the softmax threshold value κ: The pa-

rameter κ controls which large loss re-labeled samples are

picked for further training of the network. We analyze

the performance of our algorithm in Table 7 by setting

κ = {0.80, 0.90, 0.95} and observe that the results are con-

sistent for a wide range of κ values. We considered a high

value of κ for our evaluation as a higher value essentially

means that we are only using the most confident relabeled

Table 6. Average test accuracy (over the last ten epochs) on

MNIST, CIFAR-10 and CIFAR-100 datasets for ǫ = 0.5 as com-

pared to the recommended value (ǫ = actual noise level, denoted

by “*”) as proposed in [11].

MNIST CIFAR-10 CIFAR-100

ǫ ∗ 0.5 ∗ 0.5 ∗ 0.5

Pair-45%
94.72
± 0.02

97.79
± 0.02

80.58
± 0.54

83.53
± 0.10

38.67
± 0.08

41.06
± 0.13

Symmetry-20%
98.86
± 0.01

99.45
± 0.02

87.21
± 0.04

83.65
± 0.07

60.49
± 0.36

60.76
± 2.14

Table 7. Average test accuracy (over the last ten epochs) on the

MNIST and CIFAR-100 datasets for different values of κ.
MNIST Symmetry-50% Pair-45%

κ 0.80 0.90 0.95 0.80 0.90 0.95

Accuracy 94.34 94.72 94.95 97.91 97.82 97.79

CIFAR-100 Symmetry-50% Pair-45%
κ 0.80 0.90 0.95 0.80 0.90 0.95

Accuracy 38.14 38.67 37.95 53.19 52.87 53.04

samples for training the network.

Choice of the network for re-labeling: Here, we ana-

lyze the performance of our method when one of the net-

works (in random) is chosen for re-labeling and subsequent

training. We observe from the results in Table 8 that the

performance does not vary much and hence our framework

is robust to the choice of the network used for re-labeling.

Table 8. Average test accuracy (over the last ten epochs) on the

MNIST, CIFAR-10 and CIFAR-100 datasets for different noise

levels: (a) Pair-45%, (b) Symmetry-50% and (c) Symmetry-20%
with the 1st (first row) and 2nd (second row) network used for

re-labeling respectively.

MNIST CIFAR-10 CIFAR-100

(a) (b) (c) (a) (b) (c) (a) (b) (c)

1st 94.72 97.82 98.86 80.58 81.23 87.21 38.67 52.87 60.49

2nd 94.56 97.53 98.88 80.76 81.10 86.99 39.57 53.00 61.23

6. Conclusion

In this work, we present a framework mCT-S2R for train-

ing neural networks under different amounts of label noise.

The training paradigm uses the concept of small loss in-

stances along with re-labeling to build noise-resistant clas-

sification models. In addition, we have also shown how

self-supervision pre-training can effectively help to boost

the performance further. Our framework works on a wide

variety of datasets under different noise models and signifi-

cantly outperforms the current state-of-the-art, while being

computationally lighter. Ablation studies have shown that

the proposed model performs very well over a wide range

of hyper-parameter values and thus does not need an exclu-

sive clean validation set for tuning of the hyper-parameters

for optimum performance.

1388

References

[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by

moving. In ICCV, pages 37–45, 2015.

[2] R. K. Ando and T. Zhang. Two-view feature generation

model for semi-supervised learning. In ICML, pages 25–32,

2007.

[3] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio,

M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Ben-

gio, et al. A closer look at memorization in deep networks.

In ICML, pages 233–242, 2017.

[4] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. In COLT, pages 92–100, 1998.

[5] L. Deng. The mnist database of handwritten digit images for

machine learning research [best of the web]. IEEE Signal

Processing Magazine, 29(6):141–142, 2012.

[6] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-

sual representation learning by context prediction. In ICCV,

pages 1422–1430, 2015.

[7] D. Flatow and D. Penner. On the robustness of convnets to

training on noisy labels, 2017.

[8] B. Frénay and M. Verleysen. Classification in the presence of

label noise: a survey. IEEE Transactions on Neural Networks

and Learning Systems, 25(5):845–869, 2013.

[9] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised rep-

resentation learning by predicting image rotations. In ICLR,

pages 1–16, 2018.

[10] J. Goldberger and E. Ben-Reuven. Training deep neural-

networks using a noise adaptation layer. In ICLR, pages 1–9,

2017.

[11] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and

M. Sugiyama. Co-teaching: Robust training of deep neural

networks with extremely noisy labels. In NIPS, pages 8527–

8537, 2018.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[13] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Men-

tornet: Learning data-driven curriculum for very deep neural

networks on corrupted labels. In ICML, pages 2304–2313,

2018.

[14] A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-

supervised visual representation learning. In CVPR, pages

1920–1929, 2019.

[15] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[18] T. Liu and D. Tao. Classification with noisy labels by impor-

tance reweighting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38(3):447–461, 2015.

[19] W. Liu, Y.-G. Jiang, J. Luo, and S.-F. Chang. Noise resistant

graph ranking for improved web image search. In CVPR,

pages 849–856, 2011.

[20] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(Nov):2579–2605,

2008.

[21] E. Malach and S. Shalev-Shwartz. Decoupling” when to up-

date” from” how to update”. In NIPS, pages 960–970, 2017.

[22] H. Masnadi-Shirazi and N. Vasconcelos. On the design of

loss functions for classification: theory, robustness to out-

liers, and savageboost. In NIPS, pages 1049–1056, 2009.

[23] A. Menon, B. Van Rooyen, C. S. Ong, and B. Williamson.

Learning from corrupted binary labels via class-probability

estimation. In ICML, pages 125–134, 2015.

[24] V. Mnih and G. E. Hinton. Learning to label aerial images

from noisy data. In ICML, pages 567–574, 2012.

[25] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari.

Learning with noisy labels. In NIPS, pages 1196–1204,

2013.

[26] K. Nigam and R. Ghani. Analyzing the effectiveness and

applicability of co-training. In CIKM, pages 86–93, 2000.

[27] M. Noroozi and P. Favaro. Unsupervised learning of visual

representations by solving jigsaw puzzles. In ECCV, pages

69–84, 2016.

[28] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash.

Boosting self-supervised learning via knowledge transfer. In

CVPR, pages 9359–9367, 2018.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017.

[30] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu.

Making deep neural networks robust to label noise: A loss

correction approach. In CVPR, pages 1944–1952, 2017.

[31] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and

A. Rabinovich. Training deep neural networks on noisy la-

bels with bootstrapping. In ICLR Workshop, pages 1–11,

2015.

[32] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to

reweight examples for robust deep learning. In ICML, pages

4334–4343, 2018.

[33] T. Sanderson and C. Scott. Class proportion estimation with

application to multiclass anomaly rejection. In AISTATS,

pages 850–858, 2014.

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[35] T. W. Tsai, C. Li, and J. Zhu. Countering noisy labels

by learning from auxiliary clean labels. arXiv preprint

arXiv:1905.13305, 2019.

[36] B. Van Rooyen, A. Menon, and R. C. Williamson. Learn-

ing with symmetric label noise: The importance of being

unhinged. In NIPS, pages 10–18, 2015.

[37] P. Welinder, S. Branson, P. Perona, and S. J. Belongie. The

multidimensional wisdom of crowds. In NIPS, pages 2424–

2432, 2010.

[38] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang, and M. Sugiyama.

How does disagreement help generalization against label

corruption? In ICML, pages 7164–7173, 2019.

1389

[39] X. Yu, T. Liu, M. Gong, K. Batmanghelich, and D. Tao. An

efficient and provable approach for mixture proportion es-

timation using linear independence assumption. In CVPR,

pages 4480–4489, 2018.

[40] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.

Understanding deep learning requires rethinking generaliza-

tion. In ICLR, pages 1–15, 2017.

[41] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. In ECCV, pages 649–666, 2016.

[42] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-

coders: Unsupervised learning by cross-channel prediction.

In CVPR, pages 1058–1067, 2017.

[43] X. J. Zhu. Semi-supervised learning literature survey. Tech-

nical report, University of Wisconsin-Madison Department

of Computer Sciences, 2005.

1390

